
Програмування для комп’ютерних мереж та Internet

© O.V. Hordiichuk, O.S. Bychkov, 2015

ISSN 1727-4907. Проблеми програмування. 2015. № 3 39

UDC 004.75

O.V. Hordiichuk, O.S. Bychkov

A PEER-TO-PEER TOPOLOGY AND MULTICASTING

ALGORITHM WITH GUARANTEED QUALITY

OF EXPERIENCE

Peer-to-peer applications such as BitTorrent solved a load problem of file distributing, but unfortunately these

approaches are not suitable for video streaming due to a real-time data generation nature, heterogeneous behav-

ior of peers and underlying network. The main challenge is to develop a robust topology structure and a fast

dissemination algorithm that guarantees QoE (Quailty of Experience) for end-users. This paper presents a sim-

ple, but efficient and completely distributed topology constructing and data transmission algorithm that is

called Tailcast. It is based on an idea of building tailed tree topology, which guarantees low stretch and relia-

bility of the network. A delay penalty due to a peer churn doesn’t depend on a network size in the peer-to-peer

system proposed in this paper and the dissemination algorithm provides fast video data transmission compared

to existing solutions. Proposed system implemented using WebRTC protocol stack and could be executed in

modern browsers. Achieved results demonstrate robustness and efficiency of the system.

Introduction

Today most of Internet traffic is a vid-

eo. It takes over 57 % of all data transmitted

in the Internet and this amount will increase

up to 69 % by 2017 [1]. With increased

amount of disseminated data, cost of hard-

ware and software maintenance also grows.

Nowadays only several companies can afford

streaming over millions of simultaneously

watching users. Big sized screens and video

of ultra-high definition (so known UHDTV)

make this problem more considerable. That is

why this situation challenges lots of research-

es from the whole world to find new ap-

proaches that will solve big load problems.

The most trivial way of increasing overall

performance is working on network hardware

technology improvements such as IP multi-

casting. But unfortunately adopting this tech-

nology is nearly impossible nowadays as it

also requires replacing most of the network

hardware that serve the Internet.

While it is hard to solve this problem

on hardware level, it is still possible to opti-

mize video traffic using peer-to-peer net-

works. They provide ability to control net-

work traffic on a software level that elimi-

nates necessity of hardware replacement. An-

other important advantage is nearly unlimited

network resource due to a simple fact that

most of Internet connections are symmetric,

which means that upload and download

speeds are equal and most users in the net-

work can contribute at least equal amount of

bandwidth to its demand. Moreover this effect

could be increased if it is optimized with in-

formation about local peers. However peer-to-

peer networks lacks of stability, because they

are heterogeneous. It means that every peer

can join or leave the network in an unpredict-

able manner. Such behavior of peers performs

changes on the topology structure and there-

fore impacts on QoE (Quality of Experience)

of other peers.

Although there exist lots of video-

streaming solutions, all of them suffer either

from big delivery latency, from low robust-

ness of the system or provide good perfor-

mance only in special environments. This

paper proposes a distributed system that con-

sists of the topology constructing and self-

repairing algorithm as well as the data dis-

semination algorithm that is called Tailcast. A

main target of this system is minimizing data

transmission delay and maximizing reliability

of the network topology. This system imple-

mented using JavaScript language and

WebRTC protocol stack that is available in

modern browsers and makes possible to build

more complex video-streaming systems with-

out installing additional software for the end-

user. However, the proposed topology as well

as the data transmission algorithm could be

implemented using custom protocol built over

UDP and a congestion control algorithm that

is also described in this paper.

Програмування для комп’ютерних мереж та Internet

40

Related work

Generally, there are only two possible

ways of distributing video data: “pull” and

“push” approaches. In a case of “pull” strat-

egy every peer announces information about

available chunks to its neighbors and in a

result they can request new chunks by send-

ing appropriate command. The main ad-

vantage of this approach is a fact that peers

can be united into a topology of any type.

However, this also double dissemination

delay as every chunk should be announced

before it could be requested. Moreover, for

avoiding inefficient bandwidth utilization,

buffer-maps are distributed every T seconds

which increases the upper bound of an over-

all delay on value kT , where k – is the

height of the graph network structure. Un-

structured topologies are the most popular

approach for video streaming peer-to-peer

applications. PRIME [2] is one of possible

implementations for such system. Here au-

thors solve problem of content and band-

width bottleneck using receiver-driven be-

havior of peers. A delay problem is not di-

rectly addressed in this paper, but system

provides a tradeoff between performance and

quality of experience. Most of peer-to-peer

approaches for video streaming use UDP

protocol as it has predictable delivery delay

and a size of the chunk is typically equal to a

minimum upper bound of the MTU (Maxi-

mum Transmission Unit) value. However, in

MyMedia [3] system, which is extended for

usage in mobile devices, HTTP streaming

used with MPEG-DASH standard. Another

example is a CoolStreaming [4] where clas-

sical “pull” algorithm implemented as well

as strategies for recovering after failure

events. All of these systems suffer from big

delay problems, but at the same time they

can survive even a high churn rate due to

undirected data dissemination behavior.

In case of “push” approach a sender

side considers what data will be delivered as

well as its destination point. This significantly

decreases transmission delay as redundant

operation of available data transmission is

omitted. Perhaps the first attempt of using

tree-based topologies was Overcast [4], where

the “Up/Down” algorithm was used. The key

idea is to move each node as far as possible

from the root without losing bandwidth per-

formance. Also it stores and updates infor-

mation about all of its descendants. As a con-

sequence of this approach each peer starts

positioning from the root that leads to its

overload. Down to the tree load decreases, but

the closer node is to the root the more de-

scendants it should serve and from some big

value of the network size the topmost nodes

will not be able to process new peers. In the

Tailcast new node may be connected to a ran-

dom (any) node in the stream that provides

same load distribution among all peers and

complete decentralization of the system.

Naturally that most of “push” systems form a

tree-topology and is known that if remove any

element from such topology then all remain-

ing children nodes will become disconnected

from the network. For avoiding this problem

some approaches try to use hybrid topologies,

where mesh is combined with the tree data

structure, like it has done in AnyCast [5].

Here in the mesh topology could exist several

tree topologies with best multicasting capabil-

ities. The complexity of this operation grows

with network size and frequent churn events

lead to a poor QoE.

For solving the big latency and the

low robustness problems hybrid algorithms

such as Prime [6] and mTreebone [7] were

proposed. It is the most promising way of

creating video-streaming peer-to-peer net-

works. Here combination of tree and mesh

topologies provides a reasonable tradeoff

between reliability and performance. In the

first approach a random mesh is built and

data video stream is distributed using “push”

strategy among different subtrees. On the

one hand, missing chunks are distributed

using “pull” strategy among peers from dif-

ferent subtrees. On the other hand, mTree-

bone builds a tree from peers with a good

reputation, while others form the mesh. Here

the reputation value is presence duration of

each peer. It is assumed in this work that

probability of a peer churn depends on its

time presence. As a result this approach pro-

vides better (as compared with the mesh-

based topologies) end-user latencies. The

Tailcast also uses peer’s reputation value for

constructing topology.

Програмування для комп’ютерних мереж та Internet

41

Topology structure

The topology presented in this paper

has name “Tailcast” due to a specific chain

structure where peers from a head of se-

quence disseminate data to their neighbors

and nodes that located in the tail. When peer

joins the network it takes the last place in a

chain topology (Figure 1). Therefore, all peers

are always sorted by a duration presence in

the network starting from the most stable peer

and ending by the newest participant. This

approach guarantees that stable peers will be

always closer to a source of video stream and

thus will get better QoE (Quality of Experi-

ence) than peers in the tail. It should be men-

tioned that this topology forms a directed

graph, which means that peers are able to

disseminate data only to neighbors that are in

the right side of the topology if assume that

the source is always located in the left side.

While the chain topology has easy implemen-

tation and maintenance characteristics it also

lacks stability and reliability as when even

one peer leaves the network it makes one part

of it disconnected from another. A solution

of this problem implemented using a next

approach: every node holds a list kLL ,

of addresses that contains IP and port infor-

mation about its predecessors. In case when

peer leaves the network the corresponding

neighbors erase address information from

their list and request parent location from the

farthest node in the remaining list. At the

same time they also propagate L to a succes-

sors, which takes the first value and replaces a

record in its own list with an index k - L .

After this the node erases the first value in the

L and sends it to the next successor. This

operation continues while 0L .Value of k

should be chosen according to the peer failure

probability. The chain will break if all prede-

cessors leave the network simultaneously. If

the failure probability of one peer equals to p

then the chance of chain breakage will be
kpP  . While a big value of k provides

better robustness it also introduces a

notification overhead, thus a good tradeoff

should be chosen. The Tailcast uses 7k

because it provides good robustness even

if the node failure chance is equal to 0.5,

in this case the list of predecessors will

become empty with probability  75.0P

008,0 . If the chain failure event occurs

peer should to reconnect the network via

bootstrapping node.

In the Tailcast each node has its own

unique ID (identification), which represents

its position in the chain and is used for find-

ing new links in the network. A process of

finding new links is described in the next sec-

tion. The source has always ID being equal to

1, its successor being 2 and so on. When a

new peer joins it assigns incremented ID of

the last node in the chain. When someone

leaves the network a successor node decre-

ments its own ID and sends it down to the

own successor. The receiver of the message

updates its ID according to the predecessor

and resends it down to the tree until the last

node will be reached.

120 110 20 5 1

Figure 1. The chain topology. Numbers

represent duration (in seconds) of stay

in the network. Nodes are always

sorted in a descending order

While the chain topology provides

good robustness and sorts all nodes by repu-

tation it has propagation delay proportional

to the network size, thus it is not suitable for

a system with big amount of users. Moreo-

ver, each peer has different capacity of a

bandwidth and may upload incoming video

data to more than one successor that may

significantly reduce the latency for nodes

that are at the bottom of the chain. While

propagation delay of the chain topology has

upper bound equal to N , in a directed n-ary

tree topology this value is equal to  Nnlog

hops, where N – is a set of nodes. For this

purpose the chain topology is extended to

contain trees where each node contains l

links to other nodes at a distance
1210 2...2,2,2 l . The distance here is a differ-

ence between node IDs (see figure 2). This is

very similar to popular DHT (Distributed

Програмування для комп’ютерних мереж та Internet

42

Hash Table) systems like Chord [8] and

Kademlia [9] where similar approach is used.

When node needs to find another node by ID

it first looks at its own list of links if it al-

ready exists. If there is no such node then it

finds the closest node in its list and forwards

the request to this node. There will be no

more than  Nnlog hops until the searcha-

ble node will be found. This approach of

storing edges allows a new node to be con-

nected with any (random) other node and

find a proper place and links in the chain in a

logarithmic time.

1 2 3 5 94 6 7 8

Figure 2. The topology of Tailcast. Numbers

represent an ID of the node. Dotted edges

represent all links from the node 1 to other

nodes and dashed edges represent links from

all nodes to the node 9. Tree edges of nodes

between 1 and 9 do not present here

Dissemination algorithm

and protocol

As it was mentioned in the previous

section the topology has directed paths

of data dissemination. That is why it is pos-

sible to use “push” approach here and avoid

additional delay for exchanging available

data information as well as their requesting.

But this topology doesn’t form an acyclic

graph that makes impossible data dissemina-

tion without duplication. Therefore, an addi-

tional mechanism for avoiding loops pro-

posed. A key idea is to provide reasonable

performance and loops elimination at the

same time. It is known that the video stream

could be represented as a continuous file

divided into chunks of equal size. We use

chunks with 1300 bytes sizes like in Bit-

Torrent’s uTP protocol as it seems to be

proven tradeoff between real minimal ob-

served MTU (Maximum Transmission Unit)

in the Internet and minimal processing over-

head. Every chunk has its own ID that rep-

resents a time of creation of every chunk

created by the source. It could be a real

timestamp, but in the Tailcast we use 4-bytes

unsigned integers for chunk IDs that are

incremented every new entity appearance.

Also the Tailcast is built on top of WebRTC

protocol stack and uses guaranteed ordered

delivery data transmission layer. At the

sender side every peer uses these facts for

future data dissemination. First of all the

peer never sends data to its predecessor.

One-direction chunks delivery guarantees

better quality for nodes closer to the source.

Secondly every node transmits information

about the latest known chunk to their nearest

neighbors, which helps them to understand

current status and make a valid decision for

the next chunk delivery. Thirdly the peer

transmits data only to those neighbors that

have the latest known ID less than its own.

These approaches eliminate a possibility for

any loops in data dissemination paths and

described in figure 3.

It should be mentioned that on the one

hand 4 bytes for ID are able to guarantee bil-

lions of unique values, but for really continu-

ous streams like TV channels it is possible to

notice that a next value after the maximum

integer)12(32  will be 0. This will break

original ordered chunk sequence numbers

logic. For avoiding this problem we introduce

a specific comparison operator that is defined

as follows:

)()(),(yxxyyxless  .

This operator is applied on computer

unsigned number, where minus operator

cannot produce negative values. Combining

this approach with a fact that at one time a

difference between the maximal and minimal

values of IDs typically will not be more than

10000 can guarantee that ordering logic will

work correct. However, there is still a possi-

bility to attack this network by providing

wrong information and therefore break the

dissemination that could be solved by intro-

ducing reputation peer-to-peer network mod-

els, but this is beyond of a topic discussion in

this paper.

It is reasonable to notice that peers

have different upload capabilities that defi-

nitely impact the performance. Moreover

they could suddenly change during different

reasons like user can start downloading a big

Програмування для комп’ютерних мереж та Internet

43

100

99

98

96

96

97

97

97

95

97

Figure 3. The dissemination algorithm over

the Tailcast topology. Numbers the latest

known chunk ID to the peer. Data distribution

is done by solid edges and dotted edges

are used for searching better sources

if they will appear

file or a network congestion may occur on

ISP level. That is why in this paper assumed

that a value b (number of links that peer

may use to upload the video data without

occurring network congestion) known by

each peer. Determination of b has done by

using a congestion control algorithm that

was previously specially designed for video

multicasting in the Tailcast [10]. This algo-

rithm handles sender’s queues that simulate a

virtual queue of network hardware, where a

transmission bottleneck occurs. A key idea is

to keep the virtual queue under a certain load

and avoid big overloading that will introduce

additional delay. With knowledge of the

bandwidth capacity peer uploads incoming

video data stream to the nearest peers. While

an amount of simultaneously served peers

may dynamically vary it doesn’t make addi-

tional problems for overall performance as a

decision for data dissemination chooses

clearly for all nodes at any given time.

Implementation and evaluating

Described topology and dissemination

algorithm were implemented using JavaScript

language and WebRTC protocol stack. While

the last technology is still not implemented in

all browsers (only Mozilla Firefox and

Google Chrome support it), anyway it makes

possible to cover more than a half of all

browser users in the Internet and avoid instal-

lation of additional software. We believe this

makes our software more applied for real sys-

tems than implementing it as a standalone

desktop or mobile application.

The Tailcast was benchmarked using

simulated tests on a local host. We used Mac

OS X and ipfw tool for simulating network

delay and packet loss events. A fake video

stream represented as a constant bitrate

(2 Mbit) continuous file and. We have meas-

ured average and maximum observed delay of

peers that are leaves of the tree (the farthest

nodes) in the Tailcast network. A size of

the swarm is equal to 150 peers with differ-

ent network environment that represented as

a neighborhood size for every peer. Every test

has run 10 times with 5 minutes duration (see

Table 1).

We have noticed that delay mostly

depends on a network delay and peer churn

rate rather on a packet loss rate. It could be

explained with bandwidth allocation system

behavior. If some packets are lost then the

congestion control algorithm of the Tailcast

will resend them and as it efficiently serves

virtual queue lost packets are quickly recov-

ered without significant impact on the per-

formance. At the same time observed values

are far from theoretical optimum because of

connection establishment time overhead that

introduced by the browser and operating sys-

tem.

Програмування для комп’ютерних мереж та Internet

44

Table 1. Test runs

Test runs 1–4

Neighborhood

size
3 3 3 3

Packet loss, % 0 2 2 5

Simulated net-

work delay, ms
0 0 10 10

Observed aver-

age delay, ms
12.1 15.2 65.3 78.4

Observed max-

imal delay, ms
20 20.1 81.2 88.2

Theoretical op-

timum, ms
4.5 4.5 45 45

Peer churn rate,

peers per mi-

nute

10 10 10 10

Test runs 5–8

Neighborhood

size
3–5 3–5 3–5 3–5

Packet loss, % 0 2 2 5

Simulated net-

work delay, ms
0 10 15 15

Observed aver-

age delay, ms
10.2 45.4 74.3 99.2

Observed max-

imal delay, ms
14.3 72.3 101 129

Theoretical op-

timum, ms

3.1–

4.5

31–

45

46.6

–

68.4

46.6

–

68.4

Peer churn rate,

peers per mi-

nute

30 30 30 30

An achieved result of implementing

the Tailcast topology demonstrates efficien-

cy. However we believe that performance

could be improved if the sender side will

also consider locality parameter when it

makes a decision for data transmission. This

will be our main direction for our future re-

searches.

Concusion

In this paper presented approaches for

building network topologies and dissemina-

tion algorithms for real-time video streaming

in peer-to-peer networks. Unlike existing so-

lutions the Tailcast does not suffer from delay

problems as here data transmitted with “push”

mechanism. At the same a specific topology

structure, which have a self-repairing algo-

rithm, makes it really reliable like popular

mesh-based topologies with “pull” data dis-

tribution models. Also this system guarantees

better QoE for those users that are the most

stable in the swarm and in a result all free-

riding peers are always in the bottom of the

topology, while real watchers receive stable

video stream.

Except technical advantages the Tail-

cast also has an ability to run in the web-

browser due to a WebRTC protocol stack that

is used here. This makes possible to create

new kind of video-streaming applications like

e-learning systems, TV-channels and video-

on-demand services in a scalable way without

additional cost for an infrastructure. Results

show flexibility, efficiency and robustness of

the system.

1. “Cisco visual networking index: forecast

and methodology, 2012-2017.”

http://www.cisco.com/en/US/solutions/colla

teral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-

481360.pdf.

2. Klusch M. et al. MyMedia: mobile semantic

peer-to-peer video search and live streaming

// Proceedings of the 11th International

Conference on Mobile and Ubiquitous

Systems: Computing, Networking and

Services. – ICST (Institute for Computer

Sciences, Social-Informatics and Telecom-

munications Engineering). – 2014. –

P. 277–286,

3. Magharei N. and Rejaie R. “Prime: Peer-to-

peer receiver-driven mesh-based stream-

ing,” Transactions on Networking. – 2009. –

Vol. 17. – P. 1052–1065.

4. Venkataraman V., Yoshida K., and Francis

P. “Chunkyspread: Heterogeneous unstruc-

tured tree-based peer-to-peer multicast,” in

Proceedings of the “14th IEEE International

Conference on Network Protocols, 2006.

ICNP’06”, IEEE, 2006. – P. 2–11.

5. Jannotti J., Gifford D.K., Johnson K.L.,

Kaashoek M.F., O’Toole J.W., and Jr.

“Overcast: Reliable multicasting with an

Програмування для комп’ютерних мереж та Internet

45

overlay network,” in Proceedings of the

“4th conference on Symposium on Operat-

ing System Design & Implementation”,

USENIX Association Berkeley. – 2000. –

P. 97–212.

6. Wang F., Xiong Y., and Liu J. “mtreebone:

A collaborative tree-mesh over- lay network

for multicast video streaming,” Parallel and

Distributed Systems. – 2010. – Vol. 21. –

P. 379–392.

7. Stoicay I., Morrisz R., Liben-Nowellz D.,

Kargerz D.R., Kaashoekz M.F., and Dabekz

F. “Chord: A scalable peer-to-peer lookup

service for internet application,” in Proceed-

ings of the “2001 SIGCOMM”, ACM,

2001. – P. 149–160.

8. Syropoulos A. “Kademlia: A peer-to-peer

information system based on the xor met-

rics,” in IPTPS ’01 Revised Papers from the

First International Workshop on Peer-to-

Peer Systems, Springer-Verlag, 2002. –

P. 53–65.

9. Hordichuk O. A congestion control algo-

rithm for video multicasting in peer-to-peer

networks, Bulletin of Taras Shevchenko

National University of Kyiv Series Phys-

ics & Mathematics. – 2014. – Vol. 2. –

P. 112–117.

Data received 18.03.2015

About authors:

Hordiichuk Oleh Volodymyrovich,

postgraduate,

Bychkov Oleksiy Sergiyovich,

docent,

PhD in physics and mathematics.

Location:

Taras Shevchenko National University of

Kyiv, faculty of information technologies,

03022, Kyiv, Ukraine;

Lomonosova st., 81,

E-mail: oleg.gordichuck@gmail.com,

bos.knu@gmail.com

mailto:oleg.gordichuck@gmail.com
mailto:bos.knu@gmail.com

