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GAME THEORETIC MODELING OF AIMD NETWORK  

EQUILIBRIUM  

This paper deals with modeling of network’s dynamic using game theory approach. The process of interaction 

among players (network users), trying to maximize their payoffs (e.g. throughput) could be analyzed using game-

based concepts (Nash equilibrium, Pareto efficiency, evolution stability etc.). In this work we presented the model 

of TCP network’s dynamic and proved existence and uniqueness of solution, formulated payoff matrix for a net-

work game and found conditions of equilibrium existence depending of loss sensitivity parameter. We consider 

influence if denial of service attacks on the equilibrium characteristics and illustrate results by simulations.  
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Introduction 

It is almost impossible now to imagine 

our life without computer networks. Only for 

several decades, the Internet has rapidly 

transformed the ways in which individuals, 

societies and even governments communicate, 

exchange information and conduct their 

economic and social activities. And this 

process is far from the ending. As was 

envisioned recently by Google's executive 

chairman Eric Schmidt: “the internet will 

disappear as everything in our life gets 

connected. There will be so many devices, 

sensors, things that you are wearing, things 

that you are interacting with that you won't 

even sense it. It will be part of your presence 

all the time.”  

It seems that future Internet has to be 

self-organizing, self-protecting, and self-

optimizing.  

This next-generation communication 

environment will include interaction of 

intelligent devices that are capable of 

autonomously take decisions within highly 

dynamic and rapidly changing digital world. 

However, the continuous (and successful till 

now) development of networks, which is 

accompanied by exponential growing of their 

complexity, heterogeneity and distributive-

ness and which appears natural at the present 

time, creates new challenging problems. As 

mentioned in [1], to address these problems 

with appropriate approach we need to develop 

a new set of models based on control theory, 

game theory, and network optimization. 

First, let us introduce a problem on a 

high level. Consider a interaction between 

selfish users in a network (network here is 

some common pool with limited resources). 

Each user can adopt a method of action 

(strategy) which have influence on whole 

network and other users. The examples of 

actions are: choose protocol, change rate or 

route of data flows. For every possible 

combination of adopted strategies (outcome) 

there is a reward or utility for each user, 

which indicates his/her preferences over 

outcomes. Selfishness (or rationality in game 

theory terminology) means that a user wants 

to maximize utility. For instance, when user 

wants to download big file he prefers to 

receive as much network resources as 

possible. However, if user wants to read news 

then small but stable connection is sufficient. 

This situation leads to obvious conflict when 

summary users’ demand is bigger then 

network supply. If this happens network 

drops or delays users’ data, so generally it is 

not good for users. From the other side, 

network underloading (when demand is 

smaller then network capacity) is also 

undesirable because leads to inefficiency of 

resource using.  

Delivering information about network 

state to end user is a challenging problem and 

crucial part of any feedback based protocol. 

As a rule user has knowledge about successful 

delivery of his data (in other words he knows 

that network is probably underloaded) and 

about overload event (if he doesn’t receive 

successful ACK – acknowledgement packet) 

with some delay. This type of information is 

called binary feedback. The natural rate 
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control based on this information called 

AIMD (additive increase, multiplicative 

decrease) scheme. There are another 

possibilities, but it was proved that AIMD 

algorithm will oscillate near the point of 

effective (all bottle-necks will be loaded) and 

fair (in some sense) allocation of network 

resources. AIMD was the core of first version 

of first successful protocol – TCP, which still 

carries 70 percent of the Internet traffic. 

Nowadays, TCP isn’t one protocol but big 

family (number keeps increasing) of 

algorithms with different implementations of 

the origin idea. 

Protocol development went through 

the competitive evolution between different 

protocols, abandonment of some of them and 

appearance of new ones. The possibility to 

deploy new versions of protocols gives user 

control to improve performance of his 

connection by choosing suitable algorithm. 

When many users are trying to achieve better 

performance it is difficult to predict 

consequences of such a competition. There is 

a problem how to ensure stable, fair and 

effective network behavior in the situation of 

dynamic and antagonistic interaction of 

selfish users. First natural approach to address 

this problem with optimization framework 

was developed in work by Kelly et al. [2]. 

Later it was shown that congestion control, 

routing and scheduling in wired and wireless 

networks can be thought of as fair resource 

allocation. The protocols in this framework 

are nothing else as algorithms that allow a 

decentralized solution of the problem. This 

idea to consider network as an algorithm for 

solving maximization problem of total 

network utility (sum of users’ utilities) proved 

to be very fruitful [3]. The limitation in this 

approach is that protocol (in centralized or 

decentralized manner) dictates what strategy 

user should use.  

It is natural to assume that users try to 

improve performance of their connection by 

choosing suitable protocol. The problem here 

lies in interaction between different 

implementations of TCP which could be 

“unfriendly”. This means that one 

implementation is more “aggressive” and 

another is more “peaceful” in competition for 

resources. The question of protocols 

interaction is quite complex. Building analytic 

model for predicting network behavior for 

different protocols is a challenging problem. 

There are many approaches of investigation 

of complex networks from different directions 

(static, dynamic, deterministic etc). There is, 

however, novel systematic approach towards 

network modeling – the game theory. Game 

theory addresses problems in which multiple 

players with conflicting goals compete with 

each other. The evolutionary games concept is 

a part of game theory that focuses on studying 

interactions between populations rather than 

individual players. One of the earliest 

publications about the use of evolutionary 

games in networking is [4] that study through 

simulations some aspects of competition 

between TCP users. For this model it was 

shown that dynamic of this process described 

by difference equation has stable solution and 

users payoffs are forming a structure of 

evolutionary game known as Hawk-Dove 

game. Also there were identified conditions 

under which equilibrium is evolutionary 

stable. 

There is another possible reason of 

inefficient, unstable or unpredictable 

network behavior – security violation. 

Unfortunately, networks have many security 

issues: illegal data access, viruses, network 

attacks, etc. One of the most dangerous 

attacker’s activities are Denial of Service 

(DoS) attacks. DoS attack aims to stop the 

service provided by a target. When the traffic 

of a DoS attack comes from multiple 

sources, it called a Distributed Denial of 

Service (DDoS) attack. By using multiple 

attack sources, the power of a DDoS attack is 

amplified and the problem of defense is 

made more complicated. Currently we have 

numerous DoS attack types. Each attack uses 

some special exploit of Internet protocols or 

software weaknesses. Recently novel type of 

attack was developed. This low-rate attacks, 

using carefully calculate timing, imply 

significant inefficiencies that tremendously 

reduce system capacity or service quality. In 

the literature, this kind of network intrusion 

is called shrew attack or Reduction of 

Quality (RoQ) attack. This constant 

development of new attacks demands new 

solutions especially in attack detection area.  
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Intrusion Detection Systems (IDSs) is 

a software which is used to monitor events 

occurring in a network. An IDS is also used to 

analyze these events in order to determine 

whether an attack has occurred. Once an 

attack is detected, a report is sent to the 

network administrator. Current IDSs are not 

very sophisticated and rely on ad hoc schemes 

and experimental algorithms. Due to these, 

IDSs need theoretical tools to handle 

sophisticated, organized attacks. Game 

theoretic approaches have been proposed by 

many researchers to improve network 

security, for example to analyze high level 

“security investment game”, but these models 

usually don’t include network dynamics.  

Game theory provides mathematical 

base for analyzing and modeling security 

problems with many agents which could 

interact in complex, dynamic environment. 

The advantage of game theory approach is s 

possibility of analyzing many different 

scenarios before adopting a certain strategy. 

Using mathematical modeling we can 

simulate network topology, controlling 

algorithms and users’ actions. This model 

could greatly improve network administration 

by predicting future security problems and 

likely behavior of users before we actually 

start to build our network.  

On the other hand network security 

measurements involve risk assessment. For 

example, one of the metrics is the probability 

of it being attacked. If we adopt game theory 

view on network dynamic then we can 

formulate conditions when interaction 

between rational users leads to an equilibrium 

state of the network. Network attack is a 

result of malicious actions of attacker. Attack 

changes equilibrium characteristics and could 

be therefore detected.  

In this work we describing integrated 

approach based on game theory models. First, 

we introduce formal model of TCP network 

dynamic. We mainly focus on AIMD 

behavior because it is the most important 

mechanism of TCP congestion control. Using 

dynamic systems theoretic results we show 

existence and stability of network resources 

allocation point. Then we consider game 

between users in the network and formulate 

conditions for Nash equilibrium existence and 

uniqueness. We introduce network attacker 

into system and estimate attack influence on 

equilibrium characteristics. Finally, we show 

simulation results and make conclusions of 

future trends. 

1. Game theory. Definitions 

We will limit our scope with non-

cooperative games in strategic or normal 

form. A non-cooperativeness here does not 

imply that the players do not cooperate, but it 

means that any cooperation must be self-

enforcing without any coordination among the 

players. Strict definition is as follows. 

A non-cooperative game in strategic 

(or normal) form is a triplet  

    



iiii uSG ,, , 

where: 

   is a finite set of players, i. e., 

},...,1{ N ; 

 iS  is the set of admissible strategies 

for player i ; 

 RSui :  is the utility (payoff) 

function for player i, with NSSS  ...1  

(Cartesian product of the strategy sets). 

A game is said to be static if the 

players take their actions only once, 

independently of each other. In some sense, a 

static game is a game without any notion of 

time, where no player has any knowledge of 

the decisions taken by the other players. Even 

though, in practice, the players may have 

made their strategic choices at different points 

in time, a game would still be considered 

static if no player has any information on the 

decisions of others. In contrast, a dynamic 

game is one where the players have some 

information about each others’ choices and 

can act more than once, and where time has a 

central role in the decision-making. When 

dealing with dynamic games, the choices of 

each player are generally dependent on some 

available information. There is a difference 

between the notion of an action and a 

strategy. A strategy can be seen as a mapping 

from the information available to a player to 

the action set of this player.  

Based on the assumption that all 

players are rational, the players try to 

maximize their payoffs when responding to 
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other players’ strategies. Generally speaking, 

final result is determined by non-cooperative 

maximization of integrated utility. In this 

regard, the most accepted solution concept for 

a non-cooperative game is that of a Nash 

equilibrium, introduced by John F. Nash. 

Loosely speaking, a Nash equilibrium is a 

state of a non-cooperative game where no 

player can improve its utility by changing its 

strategy, if the other players maintain their 

current strategies. Formally, when dealing 

with pure strategies, i.e., deterministic choices 

by the players, the Nash equilibrium is 

defined as follows:  

A pure-strategy Nash equilibrium 

(NE) of a non-cooperative game  

    



iiii uSG ,,  

is a strategy profile Ss *  such that for all 

i we have the following:  

),(),( ***
iiiiii ssussu    for all ii Ss  . 

Here jijji ss   ,][  denotes the 

vector of strategies of all players except i . In 

other words, a strategy profile is a pure-

strategy Nash equilibrium if no player has an 

incentive to unilaterally deviate to another 

strategy, given that other players’ strategies 

remain fixed.  

Another important concept is Pareto-

dominance, which allow two strategies to be 

compared. The strategy profile Ss *  Pareto-

dominates  

Ss  if for all i  )()( * susu ii  . 

The strategy profile Ss *  is a Pareto-

optimal profile if it is dominated by no other 

profile. In Pareto-optimal profile no player 

could make his payoff better without worsen 

payoff of some other player. Now consider 

the notion of best response. The best response 

(BR) of player i to the strategy profile is  is a 

correspondence  

),(maxarg)( iii
Ss

ii ssusBR
ii




  .  

The BR  is a correspondence that is a set-

valued function. In practice this means that 

for some situations player has (possible) 

many strategies with the same payoff. Using 

best response notion we can characterize 

Nash equilibrium as follows. A pure-strategy 

Nash equilibrium of a non-cooperative game  

    



iiii uSG ,,  

is a strategy profile  

Ss *  such that )( ** sBRs  . 

The strong side of Nash concept is that every 

game has at least one NE (under mild 

assumptions). From the other hand it is 

common situation to meet many NEs or to 

have Pareto-dominated NE.  

Let us define the last metric. From 

network performance point of view it is 

important to measure the aggregated payoff. 

The social optimum of a game is a maximum 

of the sum of the utilities of all players. Any 

social optimum is Pareto optimal.  

2. Game theory for security  

problems 

Let us fix following notations to 

explain attack-defense interaction in 

networks. Network is a collection of nodes 

and links. Node can be a server, user or 

router. Legitimate users are rational and 

interested in minimizing their own costs. Any 

user that launches an attack on a network is 

called attacker. IDS is a hardware or 

software system used to monitor the events 

occurring in a network or computer system. 

The main purpose of IDS is of course 

detection of attack. There are two possible 

issues: false alarms and missing detection.  

Several different approaches have 

been proposed for detecting intrusions. A 

currently widely used method is to check 

monitored events (packets in the network, log 

files, etc.) against a known list of security 

attack signatures. This approach has the 

advantage of enjoying a relatively small false 

alarm rate and ease of implementation. The 

disadvantages are the need to maintain and 

update the attack signature database, and the 

restriction to detection of only the known 

attacks documented in the database. These 

information structures are also useful in 

detecting more organized multistep attacks. 

An alternative approach is the anomaly 

detection, where changes in the patterns of 
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nominal usage or behavior of the system are 

detected. Although this approach increases 

the probability of detecting undocumented 

new attacks it is difficult to implement, and 

has often a higher false alarm rate. We 

introduce an idea to develop game theory 

based detection of anomalies. A significant 

shortcoming of the current IDSs is the lack of 

a unifying mathematical framework to put the 

pieces into a perspective. Game theory can 

provide a basis for development of formal 

decision and control mechanisms for intrusion 

detection. Specifically, game theoretic models 

can be used to address issues like the 

following: 

 Develop game model of network 

using huge amounts of data from detection 

mechanisms.  

 Finding weaknesses and possible 

targets of an attacker in a large complex 

system. 

 Reconfiguring the security system 

given the severity of attacks and making 

decisions on trade-offs like increasing 

security versus increasing system overhead or 

decreasing efficiency. 

 Deciding on where to allocate or 

reallocate limited resources in real time to 

detect significant threats to vital subsystems 

in a large networked system. 

 Analyzing of and modeling the 

interaction between different types of 

protocols, allocation algorithms and detection 

schemes. 

Game theory provides a framework to 

model interaction between selfish, compete-

tive users, malicious attackers and system 

administrator. Three key elements of such a 

system are: network dynamic model, game 

model and scenarios of malicious actions 

(attacks). Network dynamic modeling is a 

challenging problem, which was developed 

last decades. The work of F. Kelly et al. [2] 

was the first example of considering of 

Internet network resource allocation as an 

optimization problem. Later many authors 

[see for example 5–10] have developed 

generalizations of this framework. There are 

many approaches to investigation of complex 

networks from different angles (static, 

dynamic, deterministic etc.) using control 

theory, Petri nets, Markov chains etc. 

The evolutionary games concept is a 

part of game theory that focuses on studying 

interactions between populations rather than 

individual players. One of the earliest publica-

tions about the use of evolutionary games in 

networking is [11] that study through simu-

lations some aspects of competition between 

TCP users. The evolutionary games based on 

the concept of the ESS (Evolutionary Stable 

Strategy), defined in 1972 by the biologist 

Maynard Smith [12]. Fundamental survey of 

applications of game theory to networks is 

[9]. In this paper we develop the line of 

research presented in [13] by Altman et al. 

We consider a model of users which are using 

different TCP connections. For this model it 

was shown that dynamic of this process 

described by difference equation has a stable 

solution and users payoffs are forming a 

structure of evolutionary game known as 

Hawk-Dove game. Also there were identified 

conditions under which equilibrium is 

evolutionary stable. 

Considering distributed network of 

selfish players (e.g. the Internet) we meet 

problem of efficiency measuring. It is obvious 

that centralized planning could optimize 

overall performance of the system. 

Unfortunately, there are many reasons why it 

is not possible to construct centralized control 

over the Internet. However, game theory 

paradigm generated unexpected idea for 

dealing with such complex decentralized 

systems [15]. If game has unique NE and 

users are rational players then network will 

operate near this point even without 

coordination. Game structure, defined by 

utilities and strategies determine network 

evolution toward equilibrium point. So it is 

important to characterize the equilibrium 

efficiency and to find conditions of existence 

and uniqueness. A well-known way of 

characterizing the efficiency of the NE is to 

calculate whether or not it is Pareto-optimal. 

However, it is not uncommon for non-

cooperative game to have not Pareto-optimal 

NE. In the work [14] of Papadimitriou was 

introduced a concept of Price of Anarchy 

measure. Price of Anarchy (PoA) is equal to 

the ratio of the highest value of the social 

optimum to the lest optimal NE of the game. 

Another important metric is the Price of 
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Stability which is defined similarly by 

replacing the denominator of the PoA with the 

best NE of the game. 

We propose a concept for improving 

security through developing a game theoretic 

model for better understanding of processes in 

networks. On the first stage we build 

comprehensive network model with definite 

static game structure, which could be 

dependent on different parameters. Nash 

equilibriums determine possible dynamic of 

associated repeated game, so we could 

calculate metrics and characteristics. Based 

on this calculation IDS make decisions about 

anomalies and intrusions. 

3. Network dynamic model 

We start with notation of network 

modeling. All propositions in this and 

following chapters could be found in [16, 17] 

with detailed explanation.  

Consider a network with M nodes. 

Every node has at least one service link with 

limited overall capacity ip , Mi ,...,1  (e.g. 

processing rate, CPU time or network 

bandwidth). Let },...,1{ MI  , },...,1{ LK   

be sets of indexes of nodes and service links 

respectfully. There are N  users, connected to 

this network. Let )(tx j  be the transmission 

rate of j  user, where },...,1{ NJj  . There 

is natural assumption about vector of rates 

 Nxxx ,...,1 : 
NRx  . Users choose their 

rates )(tx j  at moment t . This means that 

packets streaming through link Kk  with 

summary rate 



)(

)(
ksj

jk txy , where )(ks  is 

a set of indexes of users, which use this link. 

In our simplified model there are no queues 

and information delays. If sum of transfer 

rates ky  less then node capacity kp , then all 

packets are served. If summary rate of flows 

using the node’s links is equal or bigger than 

the node capacity then overload event occurs 

(overload here is a synonym of packet loss). 

We will assume that routing is deterministic 

and uncontrolled and information about 

overload delivers to users momentarily. Let us 

fix the following notation throughout this 

paper. Denote )(tuk , Kk  as the service 

rate of k ’s link. The constituency matrix is 

the LM   matrix C whose ijc  element is 

equal to 1 if i ’s link belongs to j ’s node and 

otherwise is 0. Now we define a control set 
KRU  , which contains all possible service 

rates for the system. Let U  be a convex 

compact set from KR  and for any Uu  the 

inclusion  Uu  holds for any ]1,0[ .Let 

P  be },...,{ 1 Mppdiag  – diagonal matrix. 

The routing matrix R  is the MM   matrix 

defined for Pji , . Element ijr  is equal to 1 

if the output of i ’s link is the input of j ’s 

link and otherwise is 0. The input matrix A  is 

the NL  matrix defined for JjKi  , . 

Element ija  is equal to 1 if j ’s user uses i ’s 

link and otherwise is 0. 

Overload conditions. When the 

system produces overload and how one can 

analytically predict it? This is important 

problem of network modeling.  

Proposition 3.1. (Stability condition) 

If for )(tx , ],[ 10 ttt  there exist Uu , 

)1,0[ , such that  

  utxARP
M

k

kT 




 )(
1

0

1 , 

then the system doesn’t produce any overload 

events.  

If rates x  satisfy stability condition 

then network will be lossless. But from 

practical point of view, there are many 

problems with applicability of this condition. 

First, in real network each user doesn’t have 

information about system’s current state and 

about rates of other users so he cannot 

calculate proper rate. Second, user cannot 

choose any rate he wants (at least in TCP 

scheme). Instead he chooses protocol, 

controlling his rate.  

Geometric approach. Let 0x  be an 

initial vector of rates and  ,   vectors of 

parameters. According to original AIMD 

scheme user rates are increasing between 

overloads with rate  . When overload occurs 

rate drops to x . Now we will put into 

formal definitions.  
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Denote W  as a set  

 












 





 UwARPRw

M

k

kTN
1

0

1| . 

Let us define function 

}:0max{),( XxXx    and set 

 vvUvUvV  ),(: . Set V  is a subset 

of boundary of U , which belongs to 
NRint  

(V  is “active” in the sense that in these and 

only in these points overload are happened).  

Define it , 1i  as a first moment of 

time 1 ii tt , such that Vtx i )( . We will 

assume that the RTT (round trip times) are the 

same for all connections and losses are 

synchronized: when the combined rates attain 

capacity, all connections suffer from a loss. 

Consider following equation 





tN

i
ii tttxBItx

1

)()()()(  ,        (1) 

where   is delta-function, B  

},...,{ 1 Ndiag  , }:max{ ttnN nt  . 

Equation (1) is well-defined Caratheodory 

equation with discontinuous right-hand side, 

differential equations with impulses have 

been examined in many papers, which cannot 

all be referenced here. It is known that there is 

an almost continuous solution (continuous in 

all points except a set of measure zero) 





tN

i
ii tttxBIttx

1

)()()()(  ,      (2) 

where   is the Heaviside step function. 

Explicit formula (2) is not very practical but 

gives us important information about solution 

existence and its continuity in almost all 

points.  

Condition 3.1. For any Wx , such 

that VxARP
M

k

kT 





1

0

1 )(  it is true that 

WBx . 

Let us explain Condition 2.1 

informally. W  is the vector set of possible 

users rates. W  is convex compact set and 

Wtx )(  for 0tt  0tt  . As mentioned )(tx  

is an almost continuous function, and drops 

only happened when Vtx )( . After drop 

event users rates equal to )(tBx . The 

condition 2.1 means that after applying 

decreasing operator B  user rate still will be in 

the admissible set W .  

Main result. Now we can formulate 

the main result of this section – existence and 

uniqueness of the limit solution. 

Proposition 3.2. Let us consider 

admissible pair  ,  . If Condition 3.1 holds 

then for any Wx 0  solution of (1) exists and 

is converging to unique periodical solution 

)(ˆ tx . 

Using this property, we can calculate 
*x  directly  TTBIxc  1* )( . 

Now we consider a competition 

between users which use AIMD version of 

TCP with different parameters. Their 

connections are sharing a common network. 

We will assume that users send their packets 

exactly the same way, so we can reduce 

network topology to single link type with 

capacity c , calculated from the solution (2). 

4. NETWORK GAME MODEL 

In order to formulate game for our 

dynamic system in strategic form we must 

specify the players, their strategies, and their 

potential payoffs. We assume that there are 

N  AIMD strategies is  with control 

parameters ),( ii  , Ni ,...,1 . Denote S  as 

a set of all possible strategies. We consider 

payoff of the form  

)()()( sRsThpsJ ii  , 

where ),...,( 1 Nsss   – vector of strategies; 

iii xsThp )1(5.0)(   – average throughput 

of i ’s player; 0  – tradeoff parameter 

(sensitivity to losses); 
)(

1
)(

sT
sR   – loss 

rate.  

Example. Let us calculate payoffs for 

two strategies: 

,
2

4

)1(
),(),( 21

c
cssJssJ ii

iiii









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),(),( 121212 ssJssJ  , ).,(),( 211122 ssJssJ   

Equilibrium in N protocols game. 

Consider game with N AIMD strategies. We 

assume that all is  are ordered lexicogra-

phically, Nsss  ...21 , where ji ss   

means that ji    and ji   . In other 

words protocols are sorted by aggressiveness 

ordering.  

Proposition 4.1. If   is sufficiently 

small than the most aggressive protocol is 

dominant strategy.  

Proof. Suppose i 1 , i 1  for 

all Ni ,...,2 . Consider payoffs for the first 

player ),( 111 ssJ  and ),( 11 ssJ j . Let us find 

period for both strategy profiles: 

,),(
1

11
A

c
ssT





 

where 
k

kA   is sum, defined by strategy 

set 1s , 
A

c
ssT

j
j





),( 1 . Note, that 

),(),( 111   ssTssT j . 

Calculate throughputs: 
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Calculate payoffs: 
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Condition of dominating of first 

strategy is  
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And since expression in right side is 

positive we obtain the result. 

For more subtle results about 

equilibrium’s characteristics see [16]. 

Nash Mixed and Pure in Two 

Protocols Game. Here we investigate the 

game for two protocols and find conditions 

for Nash equilibrium. From definition it is 

clear that ),(),( kkjkki ssJssJ   – we will 

write just  

),( kk ssJ , ),(),( kpjpki ssJssJ  , 

ij \}2,1{ . 

Using standard techniques for calculating 

Nash we obtain: 

),()1(),()( 211111 ssJpsspJsJ  ,  

),()1(),()( 221221 ssJpsspJsJ   

assuming the probability of player 2 using the 

first strategy is p . In Nash equilibrium the 

payoff can’t be further increased, so these two 

values should be indistinguishable, which 

leads to the following equation 

),()1(),( 2111 ssJpsspJ  = 

).,()1(),( 2212 ssJpsspJ   

Or, after solving it for p : 

p  

.
)),(),(()),(),((

),(),(

11122221

2221

ssJssJssJssJ

ssJssJ






 

Taking into account that p  is a probability, 

we impose a natural restrictions on it: 

10  p , where cases with 1p  or 0p  

result in game having a pure-strategy 

equilibrium (with dominant strategy 1s  and 
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2s , respectively), and 10  p  corresponds 

to the case of mixed-strategy Nash 

equilibrium. 

Should we investigate the conditions 

for the former, we get 

 ),(),( 2221 ssJssJ  







)1)(1(

))1()1((

12

2112





c
 

+
))1()1((2

)1)(1(

2112

211







c
+

)1(

2

2

2





c
+ 

)1(
4

1
2 C . 

 ),(),( 1112 ssJssJ  

)1)(1(

))1()1((

12

2112










c
+ 







))1()1((2

)1)(1(

2112

122



c
 

+
)1(

2

1

1





c
+ )1(

4

1
1C . 

Consequently,  
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Considering the case where game has pure-

strategy equilibrium, we get two possible 

conditions: 1p  or 0p . 

Solving the equations, we find the 

values of   that correspond to the case of 

dominant strategy: 

  

,
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c
. (3) 

Now, for the game to have mixed-strategy 

equilibrium the following system of 

inequalities must hold: 

1p  and 0p . 

After solving this system for   we get 






)(4

))12()1((
2

1
2
2

2
2

2
1

211212121
2



C
 

   

)(4

))1()21((
2

1
2
2

2
2

2
1

212212121
2










C
.(4) 

Proposition 4.2. If   satisfies (4) 

then there is Nash equilibrium in mixed 

strategies. If   satisfies (3) then there is Nash 

equilibrium in pure strategies. 

Extension for Protocols Parameters. 

The game settings in previous sections were 

limited by aggressive ordering of protocols. In 

this section we weaken this condition to cover 

protocol parameters relation that falls beyond 

the “aggressive-peaceful” scheme, namely 

situation when 21    and 21   .  

Applying the same considerations as 

above, we get the same results for pure-

strategy Nash equilibria, but for mixed-

strategy equilibrium an additional constraint 

emerges. 

Since we’re looking for cases with 

10  p , we get the following conditions for 

0p : 



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Similarly, 1p  holds when  

 )),(),(()),(),(( 11122221 ssJssJssJssJ
 

).,(),( 2221 ssJssJ   

(It can be shown that other case with 

0),(),( 2221  ssJssJ  results 0 , which 

has no physical sense, recalling that   is an 

error weight). 

So, in the end we have the following 

system of inequalities: 
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Or, after replacement of J  and 

transformations 
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We get two possible solutions to the system 

above: 
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Since 21    and 21    then 12   , the 

actual solution is  
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Proposition 4.3. If 21    and 

21    and  

1

21
21

1

)1(









 , 21   , 

then there is evolutionary stable equilibrium 

in mixed strategies. 

Formulated conditions are consistent 

with the previous result with regards to 

protocol parameters specifics. 

5. NETWORK ATTACKS 

SIMULATIONS 

We study in this section numerically 

dynamic system (1) and equilibriums of 

defined game with replicator dynamics. The 

practical value of these results could be 

divided on two parts. Firstly, this is analytical 

tool for predicting shares of network 

resources for given set of AIMD protocols. 

Secondly, we can model users’ behavior 

(taking into account usual game theory 

assumptions about rationality, common 

knowledge etc.) using replicator dynamic 

equation. This equation is rather quality 

solution tool that show a dynamic and shares 

of network resources for each users group. 

Solution for dynamic system. Nume-

rical simulations were made using Wolfram 

Mathematica environment. On the picture 

below we show convergence of AIMD 

scheme for 2 and 3 dimensions. 
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Fig. 1. Simulations results for 2-d 

and 3-d systems 



Математичне моделювання об’єктів та процесів 

126 

Attack modeling. To test theoretic 

model described above, a simulation model 

was developed under NS-3 Network 

Simulator package. The specifics of the 

model, as well as simulation results, are 

described below. 

For the purposes of testing, a simple 

topology consisting of four nodes was built 

(fig. 2) – the nodes represent sender, router, 

receiver and attacker. 

Node A
10.1.2.2

Node E
10.1.3.2

Node B
10.1.1.0

100 Mbps

100 Mbps

Node C

10 Mbps

 

Fig. 2. Testbed topology 

The basic workflow is as follows: the 

sender (Node A) uploads a large file to some 

storage, controlled by file server (Node B), 

that resides in a different subnet. Thus, a large 

volume of traffic is generated and routed 

between the adjacent subnets by router (Node 

C). Then an attacker from the sender’s subnet 

steps in (Node E). His goal is to disrupt a 

client-server operations by performing a 

denial-of-service attack, but, as router comes 

equipped with basic flood-detection 

capabilities, attacker won’t be able to perform 

a full-scale UDP or ICMP DoS attack, and 

has to resort to different means. 

He chooses a particularly stealthy 

approach known as low-rate TCP denial-of-

service attack, which exploits the weakness of 

TCP retransmission mechanism to cause a 

significant service degradation or even a full 

outage. The idea is the following: as TCP 

employs an exponential backoff technique for 

retransmission of packets presumed to be lost, 

it is enough for an attacker to cause a short-

term service outage with traffic spike and then 

maintain this state by sending the same spikes 

on the exact moments the client attempts to 

retransmit a packet. In more detail, if the 

client detects a packet loss at time t, it is 

enough for an attacker to perform short-term 

DoS in moments t+RTO, (t+RTO)+2*RTO, 

((t+RTO)+2*RTO )+4*RTO and so on, where 

RTO is a value of TCP retransmission 

timeout. Moreover, lots of TCP 

implementations have the default RTO value 

of 1 second, which makes the described attack 

feasible even for networks with large amount 

of clients, as they are likely to have close 

RTO values. 

The setup of NS-3 model is as 

follows: at time 0 the client at Node A 

establishes the connection with the server at 

Node B and starts sending data using TCP. 

Then, at 20 seconds from the beginning of a 

simulation, an attacker at Node E kicks in, 

periodically sending 30 traffic spikes of 

predefined length, separated by periods of 

silence. We denote the period between traffic 

spikes as T, and the length of the spike itself as 

τ. Obviously, different values and ratio 

between T and τ would yield different results 

in terms of attack success, with most 

prominent being achieved as T nears RTO. 

Depicted on fig. 3 are sample graphs of client 

congestion windows dynamics under different 

values of T with τ being the same value of 0.1.  

 

 

Fig. 3. Congestion window 

dynamics at T = 0.9 and T = 1 
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As shown on graphs, the least goodput 

(and the most successful denial-of-service) is 

achieved with T being equal to default RTO 

value, which is consistent with theoretically 

predicted results. 

Further, we investigate a client 

throughput change during attacks with 

different T values. The resulting graph, 

presented at fig. 4, shows the performance 

degradation of client on 10 Mbps link under 

different attacks with the same total amount 

of traffic sent. 

 

Fig. 4. Client throughput 

depending on attack parameters 

CONCLUSIONS 

In this paper, we have presented an 

overview of approaches to deal with security 

problems using a game-theoretic framework. 

The general objective was to identify and 

address the security and efficiency problems, 

where game theory can be applied to model 

and evaluate security problems and 

consequently used to design efficient network 

control solution. The application of game 

theory is an emerging field in network 

security, with only a few papers published so 

far.  

Game theory provides a (parametric) 

model, which is refined and calculated using 

statistical data from real network. This model 

is actually a set of three layers of models, 

discovering system’s dynamic and users’ 

behavior from different angles. The first layer 

is a game between user and network. Solution 

is the protocol – strategy of user data flow. 

The second later is a game among users. Each 

user tries to receive maximal resource. This is 

non-cooperative game. Rational behavior 

leads to the Nash equilibrium (through its 

computing can be very complex). Network 

tries to balance users and achieve effective 

NE. System allocation algorithms efficiency 

is measured by PoA or PoS metrics. The last 

layer is a game with attacker. Attacker wants 

to disrupt network and prevent users from 

receiving any resources. This is game with 

pure conflict (zero-sum game). Analysis of 

resulting NE gives us metric to measure 

strength of attack and detect weaknesses of 

system.  
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