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PETERSON’S ALGORITHM
TOTAL CORRECTNESS PROOF IN IPCL

A.A. Zhygallo

The total correctness of the Peterson’s Algorithm has been proved. States and transitions were fixed by the program. Runtime environment
considered is interleaving concurrency with shared memory. Invariant of the program was constructed. All reasoning provided in terms of
Method for software properties proof in Interleaving Parallel Compositional Languages (IPCL). Conclusions about adequacy of the Method
usage for such a kind of tasks (thanks to flexibility of composition-nominative platform) and its practicality as well as ease of use for real-
world systems have been made based on this and other author’s works.
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JloBeneHO TOTaJIbHY KOPEKTHICT anropurMy Ilitepcona. 3a mporpamoro 3ahikcoBaHO CTaHM Ta MEPEeXOIH TpaH3HLiiHOI cuctemu. Cepeno-
BUIIC BUKOHAHHS — [IApaJielIbHE 3 TOYSPTOBHM IEPEKIIOUEHHSM 31 ClIibHOI0 mam’ aTTio. ChopMynboBaHo iHBapiaHT. CyIKEHHS POBEICHO
B paMKaxX METOAY JOBEACHHs BiacTuBocTell nporpam B Interleaving Parallel Compositional Languages (IPCL). Cniuparounce Ha naHy Ta iH-
1 poOOTH aBTOpa 3pOOIEHO BUCHOBKH LIOJ0 aIeKBAaTHOCTI 3aCTOCYBaHHS METOMY JUIS IMOAiOHUX 3a/ad 3aBASKH THYYKOCTI KOMITO3HUIHO-
HOMIHATHBHOI IIATGOPMHU Ta HOTO MPAKTHYHOCTI i JIETKOCTI 3aCTOCYBAaHHS JUIsl peabHUX CHCTEM.

Kurouosi croBa: anroputm IliTepcona, B3a€MHE BUKIIOYCHHS, TOTAIbHA KOPEKTHICTD mporpam, hopmansHa Bepubikaris, liveness property,
napaienbHa Iporpama, interleaving, IPCL, koMIIo3HIi HHO-HOMIHATHBHI MOBH.

Jokazana ToTanbHas KOPPEKTHOCTH anropurma llerepcona. 3a mporpamMmoii 3aUKCUPOBAHBI COCTOSHUS M HEPEXOAbl TPAH3ULMOHHON CH-
crembl. Cpelia BHIIIOJHEHHS — MapajieibHas ¢ HOOYEPEIHBIM MEepeKIoueHueM ¢ obmiel namsareio. ChopmynupoBaHo uHBapuant. Cyxe-
HHE IIPOHCXOAUT B PaMKaxX MeTOfla J0Ka3aTeIbCTBa CBOMCTB mporpamM B Interleaving Parallel Compositional Languages (IPCL). PykoBox-
CTBYSICh 3TO M PYrMMHU paboTaMH aBTOpaA CJIENAHO BBIBOA 00 aJIeKBATHOCTH MCIIOJIB30BaHHs METO/A JUIsl TIOXOOHBIX 3a/1a4 UCXOAs U3 THO-
KOCTH KOMITO3HIIHOHHO-HOMHHATHBHO! MIAaT(GOPMBI 1 €ro MPAaKTHYHOCTU U JIETKOCTH B UCIOJIB30BAHNY ISl PEATIBHBIX CHCTEM.

KuroueBsie cnoBa: anroput™ IleTepcoHa, B3aHMHOE HCKIIOUEHHE, TOTaIbHAsI KOPPEKTHOCTH MporpamMM, GopMmainbHas Bepudukans, liveness
property, napasiensHas nporpamma, interleaving, IPCL, kOMITO3HIIHOHHO-HOMUHATHBHBIE S3BIKH.

Introduction

Almost every day while operating on up-to-date computers or working with modern software products we have
to deal with systems which are based on shared memory concurrency [1]. Those are supercomputers with UMA and
NUMA memory architecture, SMP-based computer hardware architectures, operating systems, database management
systems (DBMS), centralized databases, server-side software in client-server environments, etc. At the same time, due
to the power wall in silicon technology all state of the art computing devices have multiple processing units and the
transition to chip multiprocessors is happening very fast. Therefore, these days parallel programming becomes a neces-
sity while the problem of software verification is still acute and open to debate.

Although there is a broad range of approaches to handle this issue most of them have remarkable disadvantages
in terms of using them on practice as they are too complicated or too theorized. Moreover, some of them are not appli-
cable for coping with real tasks in general. For instance, without specifying the details, original Owicki-Gries method
[2] requires the quadratic number of verifications relating to the program operators amount. While the extended version
of the rely-guarantee Owicki-Gries method [3] needs the implementation of additional variables as well as non-evident
formulating of rely- and guarantee- conditions in order to tackle this task. In TLA [4] (Temporal Logic of Actions)
Lamport offers to construct a model which is not much easier than the two previous ones. Moreover, TLA is character-
ized with a big difference between the program and its proving formula. In such a way Interleaving Parallel Composi-
tion Language (IPCL) [5] might be one of the most efficient solutions. While IPCL is up to solve the verification prob-
lem of the parallel software it describes the so-called serializability mechanism. Though ultimately, we will work with
sequential processes which steps will be interrupted by parallel running programs in an unpredictable way.

Total Correctness Proof in IPCL. Problem Statement

In this particular work the total correctness of Peterson’s algorithm will be proven with a help of Method for
program properties proof in IPCL. Paterson’s algorithm is a concurrent programming [6] algorithm for mutual exclu-
sion (i.e. no two concurrent processes are in their critical section at the same time [7]) that allows two processes to share
a single-use resource without conflict, using only shared memory for communication.

The partial correctness (the safety) was proved in the other author’s paper [8]. The aim of this work is to prove
the total correctness (the liveness) of the mentioned algorithm. That is to show that the algorithm will stop for sure.

We will do the reasoning based on IPCL [5] — the class of compositional [9-11] languages, which provide an ad-
equate model for interleaving concurrency with shared memory [12]. We will also use the Method for software proper-
ties proof in IPCL (including safety and correctness ones) [12].

IPCL Syntax
The syntax of such languages is defined as follows:
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P::=P1;P2 |

if b then P1 else P2 |

while b do P |

x:=e|

P1|| P2,

where x:=e is an atomic, vector assigning and P1 || P2 implies interleaving parallelism.

IPCL Semantics

Let us define compositional semantics of IPCL. The semantics of the first three compositions is standard while
semantics of interleaving parallelism is defined through its arguments semantics and syntactic context in traditional way
with its algebraic and semantic properties. An Index-parameter of the semantics function is a syntactic context - piece of
the program or the program itself. So:

Semantics of *“;””:

sema.g(d) =d V’sema(d) V> semg(d V’ sem a(d))
where V’ — component-wise superposition of Cartesian product of nominative data:
d1 V' dz = (Pri(d1) V Pri(dy), Pra(d1) V Pra(dy))

Pri(d) is a projection of the Cartesian product d by the i-th component, di, d, € DxD,
This small modification is due to the fact that data is considered as two-component one — such that contains

"global" and "local" parts and V — is a simple operation of the data superposition (two nominal or nominative sets) in
accordance with [9-11] here.
Semantics of “:="":

seMy=¢(d) =d VvV’ f (d),

where f € Oper — is a (semantic) fucntion, which complies with syntactic operator x ;= e. An assignment (the result of f)
provides two-component result, as global and local data are evaluated, and superposition is occurring to the relevant
components of d data: global variables — to the first component, local variables — to the second; x and e are the vectors
of names and values (expressions) respectively,

semantics of “if”:

SeMifp then peise o (d) = semp (d), iff b(d) = True,
semifp then peise o (d) = sem g (d), iff b(d) = False,

semantics of “while”:

SeM while b do p (d) = SEM p . while b do p (d), iff b(d) = True,
sem while b do p (d) = d, iff b(d) = False,

semantics of “||”:
|| is associative and commutative:

sem(aje)jc(d) =semay(sjc)(d)
semajg(d) = semga(d)

on the syntactic level it means respectively:

(AIB)IC) (@)= (Al (B C)) (d)
(AlIB)(@d)=@BIA) (d)

|| relatively to “if”:

SeMifp then Pelse @ || R (d) = Semp r (d), iff b(d) = True,
SeMifp then pelse @ || R (d) = Sem g r (d), iff b(d) = False,

SeMitpthenpelse@; P’ || R (d) = semp; p- r (d),
iff b(d) = True,
SeMifpthen Pelse @ ; p* || R (0) = Semq; p’ | r (d),
iff b(d) = False,

|| relatively to “while”:
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SeMwhile b do p || R (d) = SEM p ; while b do P R (d),
iff b(d) = True,

SeMwhile b do P || R (d) = semr (d),

iff b (d) = False,

SeMwhilebdop; P’ (R () = SEMp; whilebdor;p | R (d),
iff b (d) = True,

SeMuwhilebdop; P’ R (d) = semp- ) r (d),

iff b (d) = False,

[ZILIN

|| relatively to “;”:

sem (a;g) | p(d) =sema; s p)(d),
semajp(d) = sema;p(d),

where A, B, C, P, P’, Q, R € Terms — programs in IPCL (terms in IPCL Algebra), b is a syntax notation of an appropri-
ate condition of the predicate pred from Pred that is b (d) = sem (d) = pred (d) and d € DxD.

In all the above definitions if the value of b (d) is undefined then the value of the left side of the relevant equality
will also be undefined. Similarly, if any of the definitions of the right side of equality is undefined then the value of the
left side is undefined.

Fis a set of functions for the data conversion, C is the compositions over functions from F. F=OperuPred,
where Oper=DxD — DxD and Pred=DxD — {True, False}, where the first occurrence of D to the Cartesian product is
“global data” while the second is “local data” for the current process; functions which return values from the set
{True, False} (predicates) do not change the current state (i.e. does not have “side effect”) of data DxD — they are used
as conditions in branching and cycle operators; D=ND(V,W) in the usual sense (as simple nominative data [9-11]).

The specific IPCL class language is formed by fixing F.

The functions from F are atomic transactions which are indivisible in the sense of parallelism — their execution
cannot be interrupted. Thus, the conditions in compositions are also atomic.

Peterson’s algorithm notation in IPCL

The main idea of the Peterson’s algorithm is to use three variables, flagl, flag2 and turn. flagl or flag2 value of
1 indicates that the process n wants to enter the critical section. Entrance to the critical section is granted for process T1
if T2 does not want to enter its critical section or if T2 has given priority to T1 by setting turn to 1. Also entrance to the
critical section is granted for process T2 if T1 does not want to enter its critical section or if T1 has given priority to T2
by setting turn to 2.

According to the method for program’s properties correctness proof [1, 5, 12] the sources of T1 and T2 programs
with labels will have the form:

T1=[M11] flagl-=1;
[M12] turn=2;

while [M13] (flag2 = 1 && turn =2) do
skip;

[M14] r:=do_critical_operations(); //critical section
[M15] flagl= 0;[M16]

2= [M21] flag2=1;
[M22] turn=1;

while [M23] (flagl = 1 && turn = 1) do
skip;

[M24 ] r-=do_critical_operations(); //critical section
[M25] flag2 = 0;[M26]

In this work while-cycle condition (for instance in T1 program: flag2 = 1 && turn = 1) is considered as an
atomic operation while we may as well use the method dividing this process into three independent stages, like:

varsap = flage,
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varwm= Lurn,
whildvarsun =1 && varws»= 1) do
begin
varfagp = flag?,
vartum= turmn,
end;

This case could be researched as a separate question in further works.
The whole program system will have the following structure:

program = T1||7T2.
States and Transitions
The state of this program will be as follows:
State = (81,82, flagl ~ A,[lag? » fo,turn = £,d1,42),

where S1 € {M11, M12, M13, M14, M15, M16} — labels of T1; S2 € {M21, M22, M23, M24, M25, M26} —
labels of T2; [flagl = f1, flag2 = f», turn— t] — global data; d1 and d2 are the local data of T1 and T2 respectively.
States will denote the set of all possible states.

The transition system will have the following scheme of transitions:

Transitions={$5 — 5 | 51, € States /
(7r11(81,8) V 7712(51,.52) V 7713(51,.5) V
77114(81,52) V 7715(51,52) V 7716(S51,.52) V
7721(51,52) V 7722(51,82) V' 7723(51,52) V
7724(51,82) V 7725(51,52) V' 7726(51,52)}

where each predicate 77; i = 1:2, j = 1.6 describes the possible program step between states.
For program T1 we have 6 different steps:
1. Move M11 —M12 (assigning variable flagl to 1):

Tr11(S1,S2) = (Pr1(S1) = M11) A (Pra(S2) = M12) A (Pra(S1) = Pra(Sz2)) A (Pr3(S1) =d) A (Prs(S) = dV [flagl—1]) A
(PI’4(51) = PM(SQ)) A (Pr5(81) = Prs(Sz))

2. Move M12 — M13 (assigning variable turn to 1):

Trlz(Sl,Sz) = (Prl(Sl) = M12) A (Prl(Sz) = M13) A (Prz(Sl) = PI’Q(Sz)) A (Prg(Sl) = d) A (Pr3(52) =dVv [turn|—>2]) A
(Pr4(81) = Pr4(82)) A (Pr5(81) = Pl's(Sz))

3. Move M13 — M13 (true value of while-cycle condition):

Tri3(S1,S2) = (Pr1(S1) = M13) A (Pri(S2) = M13) A (Pra(S1) = Pra(S2)) A (Pr3(S1) = Prs(Sz) = [flagle fi, flag2e f, turn
= 1]) A (Pra(S1) = Pra(S2)) A (Prs(S1) = Prs(S2)) A (f2=1) A (t=2)

4. Move M13 — M14 (false value of while-cycle condition):

Tr14(S1,S2) = (Pr1(S1) = M13) A (Pri(S2) = M14) A (Pra(S1) = Pra(S2)) A (Pr3(S1) = Prs(Sz) = [flagle fi, flag2e f, turn
= t]) A (Pra(S1) = Pra(S2)) A (Prs(S1) = Prs(S2)) A (fa #1 VE£2)

5. Move M14 — M15 (execution of the critical section as ‘atomic’ operation):

Tri5(S1,S2) = (Pru(S1) = M14) A (Pri(Sz) = M15) A (Pra(S1) = Pra(Sz)) A (Pra(S1) = Pra(S2)) A (Pra(Su) = da) A (Pra(S2) =
funcai(di)) A (Prs(S1) = Prs(S2))

6. Move M15 — M16 (assigning variable flagl to 0):

Trle(Sl,Sz) = (Prl(Sl) = M15) N (Prl(Sz) = MlG) A (Prz(Sl) = Pl’z(Sz)) A (Prg(Sl) = d) A (Prs(SZ) =dv [flagln—>0]) A
(PI’4(81) = PM(SQ)) A (Pr5(81) = Prs(Sz))

Similar transitions could be fixed for program T2.
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The set of the fixed Starting states will have the following structure:

StartStates = {S € States |
Pri(S) = M11 A Pry(S) = M21}

The Final states are:

FinalStates = {S € States |
Pri(S) = M16 A Pry(S) = M26}

Invariant

In these terms the mutual exclusion condition for the algorithm, that no two concurrent processes are in their crit-
ical section at the same time, can be formulated as:

— (Pry(S) € {M14, M15} A Pry(S) € {M24, M25})
The invariant of the program system is:
InV(S)=11(S) A 12(S) A 13(S) A 14(S),
where
11(S) = Pri(S) € {M12, M13, M14, M15} — flagl = (Prs(S)) = 1,

12(S) = Pri(S) € {M14, M15} —
(Pra(S) ¢ {M24, M25} A
Pra(S) = M23 — turn = (Pr3(S)) = 1),

15(S) = Pr(S) € {M22, M23, M24, M25} — flag2 = (Prs(S)) = 1,

14(S) = Pry(S) € {M24, M25} —
(Pry(S) ¢ {M14, M15} A
Pri(S) = M13 — turn = (Pr3(S)) = 2)

The idea of invariant Inv(S) is clear and follows from the definition of critical section. If T1 is located previously
to while-cycle {M12, M13} or is inside its critical section {M14, M15}, then flagl = 1, namely it wants to enter critical
section (getting access to the resource). If T1 “goes through” while-cycle {M14, M15}, that means it comes out of the
cycle (entrance to critical section and getting access to the resource), then the other process (T2) is outside critical sec-
tion (i.e. not in {M24, M25}), and also if T2 is located previously to critical section {M23} — then it does not have an
access, because it is T1's turn to entrance now: turn = 1.

The proof that invariant holds true over all transitions is rather technical and will not be presented here [8].

It is obvious, that Inv(S) implies that

Pri(S) € {M14, M15} — Pr,(S) € {M24, M25} A Pr2(S) € {M24, M25} — Pr(S) ¢ {M14, M15}
which is equal to:
— (Pry(S) € {M14, M15} A Pry(S) € {M24, M25})

namely, the mutual exclusion condition: for any state S it is not possible to appear in critical section (marks M14, M15
for T1 and marks M24, M25 for T2) for both processes (T1 and T2) at the same time.

Total Correctness. Proof

Let us prove that that the program system program = T1||T2 will stop in the shown model.

According to the algorithm structure the only problem space is a cycle. We have to prove that as soon as the pro-
cess T2 has finished its work (flag2 = 0), the process T1 will leave the cycle (we will not observe the infinite cycle).

Proof by contradiction: let us suppose that the process T1 after the label M13 will get into the label M13 which
means the true value of the while-cycle condition. According to the transition Tri3(S1,S2) flag2 = 1. From the fact that
none of transitions of T1 will influence the global variable flag2 and from the condition that the process T2 has finished
and thus due to Tr16(S1,S2), we have that flag2 = 0. Got contradiction.

The same proof is applicable to show that if the process T1 has ended then we will not have the infinite cycle in
the process T2.

Let us consider the situation where both processes T1 and T2 have infinite cycles at the same time. This situation
is only possible when we observe the transitions in the following order: Tri3(S1,S2) -> Trs(S1,S2) -> Tri3(S1,S2) ->
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Tr23(S1,S2) and so on. Due to Tri3(S1,S2) global variable turn = 2 while due to Tr3(S1,Sz2) turn = 1 # 2. That means that
the situation where both processes have infinite cycles is impossible.
We have proved that the infinite cycle is impossible and that both processes will end their work.

Conclusion

Together with the other results (besides this work) total correctness of well-known Peterson’s Algorithm was
proved. Namely, we have:

1) noted the algorithm in IPCL terms,

2) provided semantics in terms of states and transitions,

3) formulated invariant of the program,

4) proved the liveness correctness (impossibility of the infinite cycles).

According to the wide range of difficulties of total correctness proofs in parallel environments, we may state that
the IPCL method is well adapted to parallel software verification. Moreover, this method let us make the proof shorter
by choosing an adequate level of abstraction of the problem due to the universality of composition-nominative lan-
guages.
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