УДК 004.424, 004.415

В.Г. Колесник

DS-ТЕОРИЯ. ИССЛЕДОВАНИЕ ФАКТОРОВ ФОРМАТИРОВАНИЯ Р-ДАННЫХ

В этой работе продолжается изложение теории схем декомпозиции как теории прикладных алгоритмов. Рассматривается механизм преобразования схемы декомпозиции в реальный прикладной алгоритм, обусловленный разнообразием способов хранения данных на носителях информации. Описана порция хранения данных как явление электронной обработки данных и предложено обобщенное понятие порции хранения. Описаны факторы, которые порождают необходимость форматирования и реформатирования данных. Описана обобщенная картина форматирования данных. Предложена группа алгоритмических конструкций, которые реализуют процедуры форматирования и реформатирования данных для общего случая. Уточняется тот факт, что в рамках теории схем декомпозиции существует значительно больше обстоятельств сочетания и взаимодействия порций хранения, чем описано в работе. Предложен механизм синтеза канонического алгоритма и алгоритмических конструкций, которые реализуют процедуры форматирования данных. Процесс внесения изменений в канонический алгоритм последовательный и методичный.

Ключевые слова: алгоритм, алгоритмическая конструкция, порция хранения, данное, узел, дерево, форматирование.

Введение

В этой работе наряду с [1-4] продолжается изложение теории схем декомпозиции как теории прикладных алгоритмов. Рассматривается еще один аспект механизма преобразования схемы декомпозиции (DS) в реальный прикладной алгоритм. В работе [2] было продемонстрирована возможность подобного преобразования. Канонический алгоритм (КА), построенный на основании дерева полной схемы декомпозиции (DPS), задает структуру программы в целом. DS имеет в качестве компонент (строительных клеток) алгоритмические конструкции узла (АКУ). АКУ преобразуется в текст программы. Одна АКУ реализуется одним параграфом. Вся DS превращается в логически завершенную программу. В работах [3, 4] рассмотрен аспект деления Р-данных (понятие введено в [1]) при хранении их на реальных носителях.

Группа алгоритмов, рассматриваемых в статье, имеют отношение к проектированию следующих алгоритмических явлений:

- отделение контента от форматирования [5];
- упаковка-распаковка данных в пакетах для передачи данных в сетях [6];

- конвертация данных [7];
- создание табличных выходных форм [8];
- стилевое форматирование вебстраниц [9] и т. п.

В настоящее время ни в практическом плане, ни на теоретическом уровне не существует обобщенной концептуальной алгоритмической модели, которая могла бы облегчить проектирование данной группы алгоритмов. Далее предпринимается попытка создать обобщенную картину этой группы алгоритмов, с последующей целью создать концептуальную алгоритмическую модель. Анализ проводится в контексте развития DS-теории.

Описание порций хранения Р-данных

Порция хранения. В DS-теории внешним носителем есть А-лента. Порция хранения Р-данных, которая записывается и считывается с А-ленты — это запись. Размер записи не оговаривается. Предполагается, что запись по размеру совпадает с размером, сохраняемого в ней Элданного или простого А-данного. Из записей на А-ленте составляются подобласти.

© В.Г. Колесник, 2016

Но "запись" и "подобласть" - это не технические, а концептуальные понятия DSтеории. В практике электронной обработки данных обмен информации между компьютером и внешними устройствами выполняется блоками или порциями. В рамках статьи будет использоваться термин "порция хранения" (ПХ). Размеры ПХ, как правило, не совпадают ни с размерами записей (понятие DS-теории) и подобластей, ни с размерами их содержимого – Эл-данных или простых А-данных. Из-за этого необходимо включать в алгоритм конструкции форматирования Р-данных. Факторы, которые учитываются при размещении форматированных Р-данных в ПХ, называются алгоритмически релевантными факторами форматирования Р-данных (АРФФ).

При выводе Р-данных на реальные носители информации записи абстрактной длины и подобласти должны быть вложены в тот формат, в котором они будут храниться на этих носителях, - должны быть форматированы¹. Если размер ПХ больше размера Р-данного, то форматирование заключается в том, чтобы собрать несколько Р-данных, чтобы укомплектовать ПХ и затем его вывести. Если размер ПХ меньше размера Р-данного, то форматирование заключается в TOM, чтобы разделить Р-данное на несколько ПХ, а потом их вывести. При вводе информации с реальных носителей должны быть восстановлены² абстрактные записи с Р-данными предна-

¹ Форматирование текста, выполняемое редакторами текстов, – это частный случай форматирования Р-данных. Генерация кода этих программ, выполняемая транслятором, содержит процедуры форматирования. Вывод сообщения на экран монитора в процессе диалога в социальной сети тоже включает процедуру форматирования в понимании DS-теории.

значенными для обработки. Если размер ПХ больше размера Р-данного, то реформатирование заключается в том, чтобы вычленить несколько Р-данных из укомплектованной ими ПХ для последующей их обработки. Если размер ПХ меньше размера Р-данного, то реформатирование заключается в том, чтобы собрать ПХ которыми укомплектовано Р-данное для последующей их обработки. Здесь очень коротко описаны процедуры форматирования-реформатирования (ФРФ) Р-данных. Основной аспект процедур ФРФ – это согласование размеров Р-данных и ПХ.

Цель работы. Показать обобщенную картину форматирования Р-данных, а также описать (очертить) группу алгоритмических конструкций, которые реализуют процедуры ФРФ Р-данных. Описать группу АРФФ и то, как эти факторы влияют на канонический алгоритм. Описать те изменения, которые необходимо внести в канонический алгоритм, чтобы организовать Р-данные для реализации расчета А-зависимостей в виде одного непрерывного потока — так, как будто они в естественной для DS-теории форме.

Изменения, которые должны быть внесены в канонический алгоритм, это операторы или алгоритмические конструкции (АК). Далее они будут либо полностью приведены, либо бегло описаны. Технически в условиях статьи невозможно показать весь набор изменений, обусловленных группой АРФФ. При анализе алгоритма объединения Р-данных будет обращаться внимание на то, появляется ли синергетический эффект [3].

Структура порции хранения. В рамках DS-теории предполагается, что все P-данные состоят из знаков (цифры, буквы, знаки препинания, специальные символы). Понятие "знак" есть прототип понятия "байт". С точки зрения внутреннего закодированного представления, информацию аудио-, видео- и любого другого вида файлов можно рассматривать как состоящую из знаков. Все P-данные могут быть измерены количеством представляемых ими знаков. Аналогично могут быть измерены и ПХ количеством знаков, кото-

² Не существует термина общего плана для всех алгоритмических явлений, связанных с разделением контента и форматирования, которым можно было бы обозначить процесс восстановления Рданного — снятие или упразднение формы, в которой оно сохранялось. Наиболее близкое по смыслу понятие — "деконструкция", но это из другой сферы деятельности. Понятия "распаковка", "разархивирование", "реформатирование" или "деформатирования" (unformat) — ассоциируются с этим процессом, но не совпадают с его сутью полностью. В DS-теории с некоторой степенью условности используется понятие "реформатирование".

рые они содержат на носителе. ПХ – это обобщения таких понятий как:

- магнитная лента бобина, файл, блок;
- магнитный диск (физическая структура) диск, дорожка, сектор;
- магнитный диск (логическая структура) диск, логический диск, сектор;
- электронный документ страница, строка, знак;
- бумажный документ [книга], [раздел], страница, строка, знак и т. п.

Многообразие порций хранения порождается многообразием видов носителей (рис. 1). Различной может быть также вложенность ПХ. Так, например, страницу текста можно рассматривать состоящей из строк, но также состоящей из абзацев и наоборот. Компоненты, из которых состоят более сложные ПХ, могут быть различных видов и, возможно, различной длины. В файлах – это записи разных типов, а в документе строки различной длины. Нарялу с вложенностью Р-данных существует вложенность реальных ПХ и вложенность абстрактных ПХ. Вложенность ПХ (структура ПХ) на А-ленте изображается деревом³. В практике обработки данных могут использоваться ПХ, для измерения которых могут потребоваться и более двух координат. Если для определения размера реального носителя используются две координаты, то сложность структуры ПХ возрастает⁴.

С точки зрения длины простейшими Р-данными (ПРД) — Эл-данные и простые А-данные. Внутреннее представление числовой, текстовой информации или информации иных видов в DS-теории не рассматривается. Р-данные — это только цепочки знаков или символов. Длина их известна перед началом обработки.

Простейшие Р-данные в практике электронной обработки могут быть также

переменной и неопределенной длины. Размеры их должны быть известны перед началом работы с ними. В данной работе предполагается, что перед началом работы по ФРФ, длина Р-данного известна. Ситуация, в которой для определения Р-данных переменной или неопределенной длины, необходимо выполнять предварительный проход вдоль цепочки Р-данных на А-ленте или в А-памяти в работе не рассматривается.

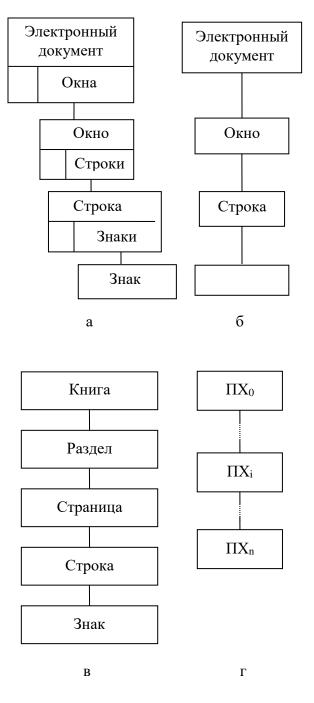


Рис. 1. Виды порций хранения (ПX)

16

 $^{^3}$ На рисунке 1, а показана структура ПХ в формате FS [1]. На рис. 1, б и 1, в показаны структуры ПХ в упрощенном виде. На рис. 1, г показана структура ПХ в общем виде для случая, когда в каждой ПХ содержится компонента только одного вида — в дереве только одна ветвь.

⁴ В работе не рассматриваются ПХ, размеры которых определяются двумя координатами.

Форматирование Р-данных

Отношения между структурами ПХ и Р-данными. Процедурам ФРФ могут подвергаться Р-данные всех видов, это: простые А-данные (рис. 2, а), расширенные А-данные (рис. 2, б), сложные А-данные (рис. 2, в), простые С-свойства, расширенные С-свойства (рис. 2, г), сложные С-свойства. ПХ, для которых применяются процедуры ФРФ, могут быть простыми (рис. 2, д), составными (рис. 2, е) а также могут быть компонентами более сложных ПХ (рис. 2, ж). Таким образом, общий вид взаимодействия Р-данных и ПХ посредством процедур ФРФ показан на рис. 2, з. Двунаправленная двойная стрелка на этом рисунке и в дальнейшем будет указывать на то, какое именно Р-данное взаимодействует с конкретной ПХ. Это значит, что это Р-данное будет при вводе изменено в соответствии с форматом указанной ПХ. При выводе

это Р-данное будет реформатировано (извлечено или освобождено от формата ПХ для последующей обработки). ПХ, на которое указывает стрелка, называется взаимодействующей порцией хранения (ПХВ). Простейшие, несоставные ПХ обозначаются аббревиатурой ПХП, — это листья в дереве, которое изображает структуру ПХ.

Все ПХ имеют свои атрибуты. Существование их связано со способом хранения информации на носителях. Иногда объем ПХ задается Р-данным и учитывая это соответствующий атрибут ПХ формируется перед началом и после форматирования Р-данного. Связь Р-данного и соответствующего ПХ обозначается аббревиатурой ПХК (порция хранения, коррелирующая с Р-данным). На чертеже такая связь обозначается двунаправленной одинарной стрелкой. ПХК всегда больше ПХВ. В терминах деревьев это значит, что

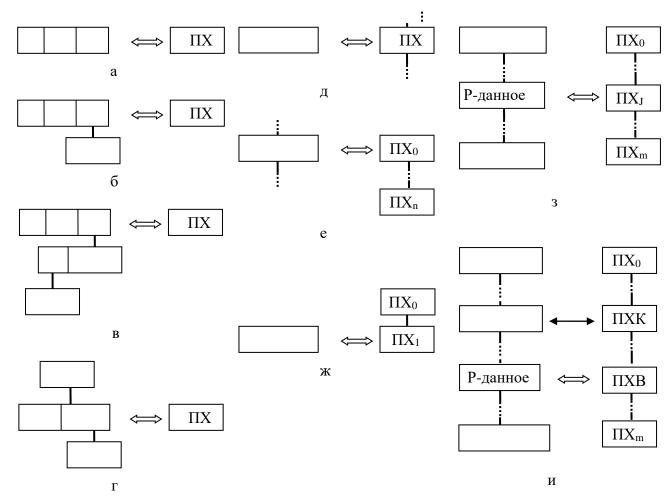


Рис. 2. Варианты взаимодействия Р-данных и ПХ

узел ПХК всегда расположен в дереве выше, чем узел ПХВ (рис. 2, и). ПХК может быть более одной.

Операторы форматирования. В работе [2] используются операторы READ и WRITE, которые являются компонентами гипотетического языка, используемого иллюстрации алгоритмичетолько для ских конструкций в рамках изложения DS-теории. Эти операторы обеспечивают ввод и вывод записей с А-ленты [2]. Но с точки зрения АРФФ, операторы READ используются для ввода ПХ (WRITE – для вывода ПХ), а для АК, которые реализуют процедуры ФРФ, вводятся операторы UNPACK – для реформатирования Р-данных и РАСК – для форматирования⁵ Р-данных.

ПХ вводится оператором READ в поименованный участок А-памяти [2]. С этим участком соотносятся три служебных Эл-данных: длина участка (префикс имени – LNC_), адрес внутри участка (префикс имени – APH_) и количество переносимых символов (префикс имени LFR_). После ввода выполняется реформатирование информации в Р-данное. Перед выводом в участок ПХ вводится форматированная информация и затем оператором WRITE выводится на А-ленту. С учетом обработки ПХ операторы READ и WRITE дополняются атрибутами INTO и FROM соответственно.

READ $uм_{_}ленты$ INTO $uм_{_}участка_{_}\Pi X$ — ввод ΠX с A-ленты $uм_{_}ленты$ в участок ΠX $uм_{_} yчастка$ ΠX ;

WRITE имя_ленты FROM имя_участка_ ΠX — вывод ΠX на A-ленту имя_ленты с участка ΠX имя участка ΠX .

Р-данное, подвергающееся процедуре ФРФ, рассматривается как строка символов. С ним соотносится два служебных Эл-данных: длина Р-данного (префикс

имени – LNR_) и адрес внутри участка занимаемого Р-данным (префикс имени – ARD_). Формат оператора РАСК следующий: РАСК имя_Р-данного INTO имя_участка_ПХ (количество_переносимых_символов) — перенос Р-данного имя_Р-данного или его фрагмента в участок ПХ имя участка ПХ.

Перед выполнением оператора РАСК должны быть определены: адрес в участке Р-данного, количество переносимых символов и адрес в участке ПХ.

Формат оператора UNPACK следующий: UNPACK имя_Р-данного FROM имя_участка_ПХ (количество_переносимых_символов) — перенос содержимого участка ПХ имя_участка_ПХ или его части в Р-данное имя_Р-данного. Перед выполнением оператора UNPACK должны быть определены: адрес в ПХ, количество переносимых символов и адрес в участке Р-данного.

Принцип работы операторов PACK и UNPACK рассматривается далее.

Описание алгоритмов форматирования **Р**-данных

Отношения между ПРД и ПХ. Есть три варианта реформатирования Р-данных при вводе. Во всех случаях оператор UNPACK переносит информацию из ПХВ в Р-данное. Во всех вариантах А1 — имя А-ленты, NP — имя участка ПХВ, NRD — имя ПРД.

1. Длина ПРД равна длине ПХВ. АК имеет вид:

LFR_NP = LNC_NP
READ A1 INTO NP
UNPACK NRD FROM NP (LFR NP)

Алгоритм 1

2. Длина ПРД больше длины ПХВ. АК имеет вид:

LFR_NP = LNC_NP
READ A1 INTO NP
ARD_ NRD = 1
PERFORM AA UNTIL (ARD_NRD ≥
LNR NRD)

{Адрес очередной части Р-данного больше размера Р-данного}

⁵ Операторы РАСК и UNPACK гипотетические и могут иметь большее или меньшее функциональное наполнение, но вложено именно такое, что позволит лучше иллюстрировать АК реализующие процедуры ФРФ.

...

AA: BEGIN
UNPACK NRD FROM NP (LFR_NP)
ARD_ NRD = ARD_ NRD + LNC_NP
END AA

Алгоритм 2

После выполнения оператора UNPACK увеличен адрес для загрузки очередной порции информации в Р-данном на размер ПХВ.

3. Длина ПРД меньше длины ПХВ. АК имеет вид:

{Перед первым выполнением UNPACK} LFR_NP = LNC_NRD READ A1 INTO NP APH NP = 1

...
UNPACK NRD FROM NP (LFR_NP)
APH_NP = APH_NP + LNC_NRD
IF (APH_NP ≥ LNC_NP)
{Адрес очередной части ПХВ больше размера ПХВ}
READ A1 INTO NP
APH_NP = 1
ENDIF

Алгоритм 3

После выполнения оператора UNPACK увеличен адрес для чтения очередной порции информации в ПХВ на размер Р-данного.

Есть три варианта форматирования P-данных при выводе. Во всех случаях оператор PACK переносит информацию из P-данного в ПХВ. Во всех вариантах A1 – имя A-ленты, NP – имя участка ПХВ, NRD – имя ПРД.

1. Длина ПРД равна длине ПХВ. АК имеет вид:

LFR_NP = LNC_NRD
PACK NRD INTO NP (LFR_NP)
WRITE A1 FROM NP

Алгоритм 4

2. Длина ПРД больше длины ПХВ. АК имеет вид:

LFR_NP = LNC_NP ARD_NRD = 1 PERFORM AA (ARD_NRD ≥ LNR_NRD) {Адрес очередной части Р-данного больше размера Р-данного}

AA: BEGIN

PACK NRD INTO NP (LFR_NP)
WRITE A1 FROM NP
ARD_NRD = ARD_NRD + LNC_NP
END AA

Алгоритм 5

После выполнения оператора РАСК увеличен адрес в Р-данном на размер ПХВ для чтения очередной порции информации.

3. Длина ПРД меньше длины ПХВ. АК имеет вид:

 $\{\Pi$ еред первым выполнением PACK $\}$ LFR_NP = LNC_NRD APH_NP = 1

...

РАСК NRD INTO NP (LFR_NP)
APH_NP = APH_NP + LNR_ARD
IF (APH_NP ≥ LNC_NP) THEN
{Адрес очередной части ПХВ больше размера ПХВ – ПХВ заполнена}
WRITE A1 FROM NP
APH_NP = 1
ENDIF

Алгоритм 6

После выполнения оператора РАСК увеличен адрес на размер ПРД в участке ПХВ для загрузки очередной порции информации.

Форматирование С-данного при выводе⁶. При форматировании с последующим выводом простого или расширенного С-данного нет смысла сопоставлять его размер с размером ПХВ, так как размер С-данного не постоянный. Кроме того, обработка С-данного происходит последовательным перебором его компонент — простейших Р-данных (Эл-данных и простых А-данных) и, соответственно, последовательно форматируются его компоненты. Именно их размеры и следует сопостав-

⁶ Далее в работе рассматриваются только процедуры форматирования при выводе.

лять с размерами ПХВ. Далее рассматриваются пять вариантов (алгоритмов) форматирования. Во всех вариантах A1 — имя A-ленты, NP — имя участка ПХВ, NRD — имя ПРД — компоненты C-данного, NRC — имя C-данного.

1. Длина ПРД (компоненты Сданного) равна длине ПХВ. АК имеет вид:

AA: BEGIN

 $LFR_NP = LNC_NRD$

PERFORM BB ({до конца С-данного})

...

END AA

BB: BEGIN

PACK NRD INTO NP (LFR_NP)

WRITE A1 FROM NP

END BB

Алгоритм 7

2. Длина ПРД больше длины ПХВ. АК имеет вид:

AA: BEGIN

 $LFR_NP = LNC_NP$

PERFORM BB ({до конца С-данного})

...

END AA

BB: BEGIN

 $ARD_NRD = 1$

PERFORM CC (ARD NRD ≥ LNR NRD)

{до конца Р-данного адрес очередной части Р-данного больше размера Р-данного}

WRITE A1 FROM NP

END BB

CC: BEGIN

PACK NRD INTO NP (LFR_NP)

ARD NRD = ARD NRD + LFR NP

END CC

Алгоритм 8

3. Длина ПРД меньше длины ПХВ. АК имеет вид:

AA: BEGIN

{Перед первым выполнением РАСК}

 $LFR_NP = LNC_NRD$

APH NP = 1

PERFORM BB ({до конца С-данного})

. . .

END AA

BB: BEGIN

PACK NRD INTO NP (LFR_NP)

 $APH_NP = APH_NP + LNR_ARD$

IF $(APH_NP \ge LNC_NP)$ THEN

{Адрес очередной части ПХВ больше

размера ПХВ – ПХВ заполнена}

WRITE A1 FROM NP

 $APH_NP = 1$

ENDIF

END BB

Алгоритм 9

В следующем варианте учитывается то, что размер ПРД может быть не кратный размеру ПХВ, но последний фрагмент ПРД заполнит ПХВ частично.

4. Длина ПРД больше длины ПХВ. PRIZN – рабочее Р-данное. АК имеет вид:

AA: BEGIN

 $APH_NP = 1$

 $ARD_NRD = 1$

PERFORM ВВ ({до конца С-данного})

WRITE A1 FROM NP

. . .

END AA

BB: BEGIN

PRIZN = 0

{Р-данное не упаковано}

PERFORM CC ({до конца С-данного})

OR (PRIZN = 1)

{Р-данное упаковано}

END BB

CC: BEGIN

IF $(LNR_NRD - ARD_NRD + 1 > LNC_NP)$

 $-APH_NP + 1) THEN$

{Остающееся количество символов Р-

данного больше свободного участка ПХВ} LFR_NP = LNC_NP - APH_NP + 1

ELSE

{Остающееся количество символов Рданного меньше или равно свободному участку ПХВ}

 $LFR_NP = LNR_NRD - ARD_NRD + 1$

ENDIF

PACK NRD INTO NP (LFR NP)

APH NP = APH NP + LFR NP

IF (APH NP \geq LNC NP) THEN

{ПХВ заполнена}
WRITE A1 FROM NP
APH_NP = 1
ENDIF
ARD_NRD = ARD_NRD + LFR_NP
IF (ARD_NRD > LNR_NRD) THEN
PRIZN = 1
ARD_NRD = 1
ENDIF
END CC

Алгоритм 10

Если форматируется С-данное (NRC), но с ПХ взаимодействует компонента С-данного – Р-данное (NRD), то в параграфе АА нужно убрать операторы:

 $APH_NP = 1$ $ARD_NRD = 1$

. . .

WRITE A1 FROM NP

А параграф ВВ будет иметь вид:

BB: BEGIN
 APH_NP = 1
 ARD_NRD = 1
 PERFORM CC (ARD_NRD ≥ LNR_NRD)
 {Адрес очередной части Р-данного больше размера Р-данного − Р-данное упаковано}

WRITE A1 FROM NP END BB

Алгоритм 11

Длина Р-данного меньше длины ПХВ и, что размер Р-данного может быть не кратный размеру ПХВ. Данный случай – это частный случай ситуации в п. 4.

С-данное в последних пяти ситуациях — это FS двух уровней. АКУ-обусловленность для этих алгоритмов сохранялась бы в том случае, если бы DA тоже была бы двух уровней. Но в п. 4 появляется параграф СС — это вследствие того, что размер Р-данного превосходит размер ПХВ. АЗ-параграфом здесь есть параграф ВВ.

Алгоритм форматирования будет сохраняться и в том случае, если в ПХВ будут форматироваться и перемещаться более одного ПРД и хотя бы одно из них

будет отличаться размером от остальных. При этом хотя бы одно из ПРД имеет размер не кратный размеру ПХВ.

Форматирование FS в простых ПХ. Если форматированию подлежит сложное С-свойство (FS трех уровней – рис. 3, а), то на каком бы уровне не находились ПРД, в АЗ-параграфах будут АК реализующие процедуры ФРФ. При этом не имеет значения соотношения размеров между ПРД и ПХ, так как применяется одна и та же АК – параграф СС алгоритма 10. Так как каждый из таких параграфов сочленяется с DA иерархическим сочленением, то АКУ-обусловленность программы отсутствует. Соответствующий DA показан на рис. 3, б.

Произвольная FS может содержать в каждом узле на каждом уровне произвольное количество ПРД. Кроме того, во всех узлах кроме листьев могут отсутствовать ПРД. Лист должен содержать хотя бы одно ПРД. Пример, на рис. 3, в

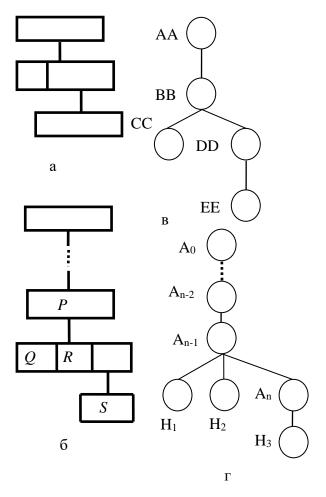


Рис. 3. Форматирование FS

узел уровня n-1 содержит два ПРД – Q и R; узлы нулевого и n-2 уровней не содержат ПРД; узел уровня n содержит одно ПРД – S. DA программы реализующей процедуры ФРФ при выводе для соответствующей FS будет содержать в каждом A3-параграфе цикл для форматирования ПРД. Тело цикла – это вышеупомянутый параграф СС алгоритма 10. DA для форматирования FS на рис. 3, в показана на рис. 3, г.

ПХВ может соотносится с С-данными не только предпоследних, но любых уровней FS. Узел, который соотносится с ПХВ, где бы он не находился в FS, повлечет в DA изменения только в АЗ-параграфе. Это начало и завершение работы с ПХВ — те действия, что выполняют операторы APH_NP = 1, ARD_NRD = 1 и WRITE A1 FROM NP в параграфе AA алгоритма 10.

Описание алгоритмов взаимодействия с составными ПХ

Форматирование Р-данных с составными ПХ. Как упоминалось выше, ПХ могут быть составными. Этот фактор тоже рассматривается при построении АК, реализующих процедуры ФРФ. Анализ АК проводится в следующих ситуациях.

ПРД переносится в ПХВ. Размеры Р-данного и ПХВ совпадают. ПХВ состоит из кратного количества ПХП меньших размеров (рис. 4, а). Во всех вариантах А1 – имя А-ленты, NP – имя участка ПХВ, NPP – имя участка ПХП, NRD – имя ПРД. ПХВ содержит кратное количество ПХП. АК имеет вид:

AA: BEGIN
LFR_NPP = LNC_NPP
ARD_NRD = 1
APH_NP = 1
PERFORM BB (ARD_NRD ≥ LNR_NRD)
{До конца Р-данного}
WRITE A1 FROM NP

...

END AA
BB: BEGIN
PACK NRD INTO NP (LFR_NPP)

ARD_NRD = ARD_NRD + LNC_NPP ARD_NP = ARD_NP + LNC_NPP END BB

Алгоритм 12

Параграф ВВ необходим для того, чтобы заполнять ПХВ фрагментами ПРД равными по длине размерам ПХП. Эта ситуация отличается параграфом алгоритма 12 от ситуации реализуемой алгоритмом 4. Соответственно, в алгоритмах 5 и 6 тоже появится параграф, который выполняет туже функцию форматирование ПХП. То есть, то обстоятельство, что ПХВ составная, влечет в DA дополнительный параграф. Этот дополнительный параграф наряду с фактором несовпадения размеров ПРД и ПХ тоже влечет нарушение АКУ-обусловленности.

Анализ АК для форматирования С-данного показывает, что необходимо учитывать размеры компонент Р-данного и размеры ПХП. Прежде всего эти размеры определяют содержимое АК. Далее рассматриваются три ситуации форматирования С-данных в сложных ПХ.

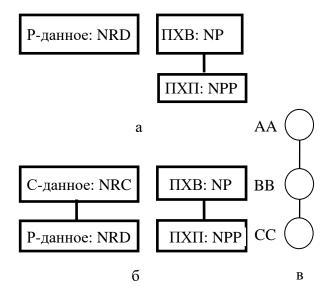


Рис. 4. Форматирование составных ПХ

1. С-данное форматируется и переносится в составную ПХВ (рис. 4, б). Компонента С-данного — ПРД имеет длину больше длины ПХП. Прототипом алгоритма необходимого для этой ситуации есть алгоритм 8. После внесения соответствующих изменений АК имеет вид:

```
AA: BEGIN
                                                Параграф ВВ здесь появляется для
                                           того, чтобы форматировать и объединить
LFR NP = LNC NP
                                           ПРД (NRD). Этот параграф нарушает
PERFORM BB ({до конца С-данного –
                                           АКУ-обусловленность алгоритма.
NRC})
                                                 3. В этом варианте учитывается то,
 . . .
END AA
                                           что размер ПРД может быть не кратный
                                           размеру ПХП, но последний фрагмент
BB: BEGIN
                                           ПРД заполнит ПХВ частично. АК имеет
ARD NRD = 1
 PERFORM СС ({до конца С-данного –
                                           вид:
NRC})
                                           AA: BEGIN
        OR (ARD NRD \ge LNR NRD)
                                            APH_NP = 1
        {до конца P-данного – NRD}
                                            ARD_NRD = 1
 WRITE A1 FROM NP
                                            PERFORM BB ({до конца С-данного})
END BB
                                            WRITE A1 FROM NP
CC: BEGIN
                                            . . .
PACK NRD INTO NP (LFR NP)
                                           END AA
 ARD_NRD = ARD_NRD + LFR_NP
                                           BB: BEGIN
END CC
                                            PRIZN = 0
             Алгоритм 13
                                            {ПРД не отформатировано}
                                            PERFORM CC ({до конца С-данного})
     Параграф ВВ здесь появляется для
того, чтобы разделить на части и формати-
                                                 OR (PRIZN = 1)
ровать ПРД (NRD). Этот параграф нару-
                                            {ПРД отформатировано}
шает АКУ-обусловленность алгоритма.
                                           END BB
Дерево алгоритма не совпадает с деревом
                                           CC: BEGIN
FS.
                                           IF (LNR_NRD - ARD_NRD + 1 > LNC_NP
     2. С-данное форматируется и пере-
                                           - APH NP + 1) THEN
носится в составную ПХВ (рис. 4, б). Ком-
                                            {Остающееся количество символов Р-
понента С-данного – ПРД имеет длину
                                           данного больше свободного участка ПХВ}
меньше длины ПХП. АК имеет вид:
                                             LFR NP = LNC NP - APH NP + 1
AA: BEGIN
                                            ELSE
                                             LFR_NP = LNR_NRD - ARD_NRD + 1
LFR_NP = LNC_NRD
PERFORM BB
                                            ENDIF
       ({до конца С-данного – NRC})
                                            PACK NRD INTO NP (LFR NP)
                                            APH_NP = APH_NP + LFR_NP
. . .
END AA
                                            IF (APH_NP > LNC_NP) THEN
BB: BEGIN
                                            {Адрес очередной части ПХВ больше
 ARD NRD = 1
                                           размера ПХВ – ПХВ заполнена}
PERFORM CC
                                             WRITE A1 FROM NP
       ({до конца С-данного – NRC})
                                             APH_NP = 1
    OR (APH NPP \geq LNC NPP)
                                            ENDIF
           {до конца ПХП – NPP}
                                            ARD NRD = ARD NRD + LFR NP
 WRITE A1 FROM NP
                                            IF (ARD_NRD > LNR_NRD) THEN
END BB
                                            PRIZN = 1
CC: BEGIN
                                             ARD_NRD = 1
PACK NRD INTO NP (LFR NP)
                                            ENDIF
 APH_NPP = APH_NPP + LFR_NP
                                           END CC
END CC
```

Алгоритм 14

Алгоритм 15

В процессе построения алгоритмов 13 и 14 сопоставлялись размеры двух совокупностей: размер ПРД и размер ПХП. Большая из них порождала параграф (и, соответственно, дополнительный цикл). Этот цикл должен был заполнить большую из совокупностей компонентами меньшей совокупности. В алгоритме 15 дополнительный параграф (и цикл) порожден тем, что в процессе форматирования компонентами, заполняющими ПХП, становятся фрагменты ПРД независимо от размеров ПРД и ПХП. 2, 3 и 2, и).

Форматирование FS в сложных ПХ. Как упоминалось выше как FS, так и структуры ПХ, в которые форматируются Р-данные, могут иметь произвольное количество уровней. При этом необходимо учитывать размеры между узлами дерева последовательно всех уровней (рис. 2, 3 и 2, и).

Общий подход рассматривается на примере (рис. 5). FS имеет три уровня и структура порций хранения имеет три уровня. С-данные А и В имеют состоят из произвольного количества компонент. ПХ М состоит из 30 компонент. Длина ПРД С – 200 знаков, а ПХП N может содержать 400 знаков. Параграф нулевого уровня содержит цикл который будет работать до завершения обработки С-данного нулевого уровня FS – А. Вместе с завершением

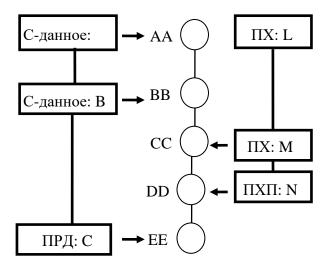


Рис. 5. Форматирование FS в многоуровневых структурах ПХ

этого цикла будет завершено форматирование исходной FS. Параграф первого уровня тоже содержит цикл. Управлять этим циклом будет большая из совокупностей — С-данное В (на первом уровне FS) или ПХ М на первом уровне структуры хранения ПХ. Здесь возможны следующие варианты:

- 1. B > M;
- 2. B < M;
- 3. B = M.

В первом случае цикл будет выполняться до завершения обработки С-данного В. В примере имеет место именно эта ситуация. Построение DA продолжается построением очередного параграфа на уровне 2. Для этого сопоставляются очередные совокупности или ПРД. В данном случае сопоставляются ПРД С и ПХ М.

Во втором случае цикл будет выполняться до завершения обработки ПХ М. Построение DA продолжается построением очередного параграфа на уровне 2. Для этого сопоставляются очередные совокупности или ПРД. В данном случае сопоставляются С-данное В и ПХ N.

В третьем случае (Р-данное полностью форматируется в ПХ) цикл будет выполняться до завершения обработки Сданного В. Для построения очередного параграфа сопоставляются очередные совокупности или ПРД, которые до этого шага не сравнивались. В данном случае сопоставляются ПРД С и ПХП N.

При сравнении ПРД и ПХ (не ПХП), учитывается, что ПРД представляется как одна компонента. Соответственно, при сравнении С-данного и ПХП, учитывается, что ПХП представляется как одна компонента. Третий случай предполагает, что количество компонент в С-данном равно количеству компонент в ПХ или ПХ определяется количеством компонент С-данного.

На рис. 5 показано как построена DA для конкретного примера. Стрелки указывают на то, какой объект порождает соответствующий параграф.

Более сложная ситуация – это когда количество уровней как в дереве FS, так и в дереве структуры ПХ – произвольное. В этом случае DA формируется в результате последовательного перебора и сравнения объектов соотносящимися с узлами дерева FS с одной стороны и объектов соотносящимися с узлами дерева структуры ПХ, с другой стороны. Завершается перебор и сравнение в тот момент, когда сопоставляются ПРД с одной стороны и ПХП, с другой стороны. В результате сравнения порождается один или два параграфа в зависимости от соотношения значений ПРД и ПХП. Алгоритмы для возможных вариантов описаны выше.

Общий случай предполагает следующее. Количество уровней в деревьях FS и структуры ПХ может не совпадать. ПХ могут быть различных типов и размеров. Как дерево FS, так и дерево структуры ПХ могут иметь произвольное количество ветвей. ПХ могут быть сгруппированы на А-ленте в подобласти.

Может быть более одной структуры ПХ в которые форматируются FS.

Совмещение дерева FS и дерева структуры ПХ, порождает DA. Другими словами производится синтез дерева FS и дерева структуры ПХ или просто – производится синтез деревьев.

Выводы

Описаны порции хранения Р-данных как явление электронной обработки данных и предложено обобщенное понятие порции хранения. Описаны факторы, которые порождают необходимость форматирования и реформатирования Р-данных. Описана обобщенная картина форматирования Р-данных. Предложена группа алгоритмических конструкций, которые реализуют процедуры ФРФ Р-данных для некоторого уровня обобщения. Несоответствие размеров Р-данных и ПХ порождает дополнительные параграфы в программе (узлы в DA), что нарушает АКУ-обусловленность канонического алгоритма. Процесс внесения изменений в канонический алгоритм обусловленный результатами целенаправленных исследований.

- 1. *Колесник В.Г.* DS-теория как прототип теории прикладных алгоритмов // Проблеми програмування. 2012. № 1. С. 17–33.
- 2. *Колесник В.Г.* DS-теория. Представление канонического алгоритма с помощью алгоритмического языка // Проблеми програмування. 2015. № 1. С. 3–18.
- 3. *Колесник В.Г.* DS-теория. Исследование факторов деления Р-данных с целью генерации прикладных алгоритмов. Первая часть // Проблеми програмування. 2015. № 3. С. 3–12.
- 4. *Колесник В.Г.* DS-теория. Исследование факторов деления Р-данных с целью генерации прикладных алгоритмов. Вторая часть // Проблеми програмування. 2015. № 4. С. 3–13.
- 5. *Mark Baker*. Algorithms in Structured Writing: Processing Structured Text [Electronic resource] Mode access: http://techwhirl.com/16098-2/
- 6. *Основы* локальных сетей: Пакеты, протоколы и методы управления обменом. [Электронный ресурс] // Режим доступа: http://www.intuit.ru/studies/courses/57/57/lecture/1678?page=2
- 7. *Data* Translation. 1 EDI Source. [Электронный ресурс] // Режим доступа: http://www.ledisource.com/what-is-editranslation
- 8. System Analysis and Design. Input/Output and Form Design [Электронный ресурс] // Режим доступа: http://www.systemanalysisanddesigns.com/inputoutput-and-form-design/
- 9. Справочник CSS. WebReference.ru. [Электронный ресурс] // URL: https://webref.ru/css

References

- 1. *Kolesnyk V.G.* DS-theory as a prototype of the theory of applied algorithms // Problems in programming. 2012. № 1. P. 17–33. (In Russian).
- 2. *Kolesnyk V.G.* DS-theory. Presentation of canonical algorithm by means of algorithmic language // Problems in programming. 2015. № 1. P. 3–18. (In Russian).

Теоретичні та методологічні основи програмування

- 3. *Kolesnyk V.G.* DS-theory. Research of r-data division factors in order to generate applied algorithms. Part 1 // Problems in programming. 2015. № 3. P. 3–12. (In Russian).
- 4. *Kolesnyk V.G.* DS-theory. Research of rdata division factors in order to generate applied algorithms. Part 2 // Problems in programming. 2015. № 4. P. 3–13. (In Russian).
- 5. Mark Baker. Algorithms in Structured Writing: Processing Structured Text [Electronic resource] Mode access: http://techwhirl.com/16098-2/
- 6. Fundamentals of LANs: Packages, protocols and exchange management. [Electronic resource] Mode access: http://www.intuit.ru/studies/courses/57/57/lecture/1678?page=2 (In Russian).
- 7. Data Translation. 1 EDI Source. [Electronic resource] // Mode access: http://www.1edisource.com/what-is-editranslation
- 8. System Analysis and Design. Input/Output and Form Design [Electronic resource] // Mode access: http://www.systemanalysisanddesigns.com/i nputoutput-and-form-design/

9. CSS Reference. WebReference.ru. [Electronic resource] // URL: https://webref.ru/css (In Russian).

Получено 29.12.2015

Об авторе:

Колесник Валерий Георгиевич, старший научный сотрудник кафедры АПП. Количество научных публикаций в украинских изданиях — 24. http://orcid.org/0000-0002-2313-9852.

Место работы автора:

Донбасская государственная машиностроительная академия. г. Краматорск, ул. Академическая, 72, п/я 13.