
Методи та засоби програмної інженерії 

© A. Kolchin, 2018 

ISSN 1727-4907. Проблеми програмування. 2018. № 2–3. Спеціальний випуск 115 

UDC 004.414.23+004.415.53+004.832.23+ 004.4'233 

INTERACTIVE METHOD FOR CUMULATIVE ANALYSIS OF 

SOFTWARE FORMAL MODELS BEHAVIOR 

A. Kolchin 

The aim of the proposed method is to simplify and improve the process of models debugging and to increase efficiency of model-based test 

cases generation. Unlike existing methods of models behavior analysis, which produce as a result only one, usually first-found, path per 
specified property (which is an evidence of test goal reachability or explanation of some inconsistency during debugging process), the 

proposed method generates a projection of all satisfiable paths, which provokes exposure of undesired behavior. For test cases generation, 

the feature plays a role of interactive path constructor, which prompts all satisfiable behavior alternatives, so user can find a desired path by 
iteratively specifying points-of-interest. Appropriate novel algorithm for efficient searching is presented. 
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Мета методу – спростити та удосконалити процес налагодження моделі та підвищити ефективність генерації тестових сценаріїв. На 

відзнаку від існуючих методів аналізу поведінки, які у результаті роботи для кожної властивості, що перевіряється, породжують 

тільки один, часто перший виявлений шлях (у підтвердження досяжності цілі тесту або для пояснення невідповідності при 

налагодженні), запропонований метод породжує проекцію усіх шляхів, що задовольняють заданої властивості, таким чином 
сприяючи виявленню небажаного поведінки. Для генерації тестових сценаріїв, метод служить інтерактивним конструктором трас, 

який показує всі можливі альтернативи поведінки, так що користувач може знаходити бажаний шлях ітеративна задаючи точки 

зацікавленості. Запропоновано відповідний новий алгоритм для ефективного пошуку. 
Ключові слова: тестування, налагодження, перевірка моделі. 

Цель метода – упростить и усовершенствовать процесс отладки модели и повысить эффективность генерации тестовых сценариев. 

В отличие от существующих методов анализа поведения, которые в результате работы для каждого проверяемого свойства 
порождают только один, часто первый обнаруженный путь (в подтверждение достижимости цели теста или для объяснения 

несоответствия при отладке), предложенный метод порождает проекцию всех путей, удовлетворяющих заданному свойству, таким 

образом способствуя выявлению нежелательного поведения. Для генерации тестовых сценариев, метод служит интерактивным 
конструктором трасс, который показывает все возможные альтернативы поведения, так что пользователь может находить 

желаемый путь итеративно задавая интересующие точки. Предложен соответствующий новый алгоритм для эффективного поиска. 

Ключевые слова: тестирование, отладка, проверка модели. 

Introduction 

Formal models debugging problem. Formal models are actively used in a model-based design flow software 

development process. The quality of a model is crucial since it plays a role of requirements specification for future 

implementation. However, creating a formal model is an error-prone process and at the same time debugging is difficult 

and labor-consuming. Existing tools propose facilities for simulation, plain step-by-step path exploration [1, 2], and for 

automatic model analysis [3]. The latter essentially performs reachability checking to generate and explore the state 

space of a model in order to find a path that follows a given criterion. Such path can be interpreted as a test case or as an 

explanation of some problem during debugging. For example, approach [4] allows a designer to ask “show me a run 

that puts control at this point with x <= 0”. Accordingly to this request, a temporal logic formula will be constructed, 

and the witness (or counterexample) path will be produced [3]. In [5] authors propose a method for unrealizability and 

unsoundness checking of specifications. But in all cases, only one path (as a rule, first-found by searching algorithm) 

will be produced as a result. The single path, while serves as a reliable evidence of reachability, is unlikely to be 

sufficient: in order to understand the model one needs somehow to see the overall picture of its behavior. Moreover, it is 

well-known that it is easy to check desired behavior, but hard to check absence of undesired behavior. For example, let 

A blocks B, but the property to be checked is that C is reachable after A. The goal path may exist, and test can 

successfully pass, B may still be reachable in another way, but the design has no requirement that A shall disable B, and 

this problem is at risk to be undisclosed: while the former property (A ~ C) is specified, the latter one (A does not 

block B) is just supposed. In reality, a lot of desired properties remain unspecified explicitly, and thus, the properties are 

not verified and not tested. 

Test cases generation problem. The industry moves toward model-based development, and automated test 

generation from the model is often considered as a form of requirements-based testing. The majority of test generation 

approaches use some structural coverage criterion based on a behavioral model of the SUT to guide the selection of test 

cases. However, there is some evidence [3] that simply using the coverage provision as a target for automated test 

generation may be a flawed strategy: coverage metrics are intended to measure the thoroughness of human-generated 

tests, and do not necessarily lead to good test sets when used in an inverted role as a specification for the tests required. 

For example, in [6], authors make MC/DC coverage for a model of a flight guidance system, and then executed the tests 

on implementations that had been seeded with errors. They found that the auto generated tests detected relatively few 

bugs, and generally performed even worse than random testing. Another drawback of the automatic approach is that the 

test case generated is not necessarily a good exercise regarding the verified property: a counterexample path is an 
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artifact of search strategy, so it may terminate at the middle of some interesting behavior, may include a lot of 

redundancy, cause-effect relations are obscure and intricate, and moreover, the path might even not contain a state 

where antecedent of required property becomes true. Poorly designed tests are known to have a negative impact on test 

maintenance [7]. 

Proposed solution. Unlike existing methods of models behavior analysis, which produce as a result only one 

witness or counter-example path per specified property (or required coverage item), the proposed method provides 

analysis of behavior in a cumulative way: it generates aggregate information about all satisfiable (with respect to 

specified request) paths. This distinctive feature plays a role of interactive path constructor, which prompts all 

satisfiable behavior alternatives, so user can find a desired path by iteratively specifying points-of-interest and observe 

updates of the prompting on-the-fly. Visualization of the cumulative coverage assists with desired test case generation 

and simplifies identification of undesired behavior among the alternatives.  

The paper describes properties of the cumulative analysis and appropriate efficient searching algorithm. 

The cumulative analysis approach 

Behavior of a model can be considered as a whole set of paths outgoing from initial state.  Often the set growth 

up exponentially with the model size and in general case it could be infinite due to possible loops.  User-defined 

property (request or test goal) considered in the proposed method stipulates a path property in form of a set of control 

flow locations, optionally ordered and extended with conditions over variables and restrictions on number of location 

visits (for example, zero visits means ‘do not consider paths passing through this point’). A path satisfies request if it 

includes all of its check-points appropriately. The idea of the described method is to provide a designer with 

information about set of all admissible paths. The naïve solution – generation of all paths – is obviously unrealizable 

task, and, even if the set is finite, it is not observable due to it's huge size. The described method proposes a 

compromise: it proceeds from the assumption that the main interesting events are represented with different structure 

items in a model design, and thus, it will be informative for a designer to observe a projection of a path on the 

design's structure (flowchart). Consequently, the proposed method strongly relies on a control flow graph of a model 

under analysis: it is efficient only for models with structured finite flow, in which interesting events and decisions 

are distributed along individual branches. The produced paths are represented then as a projection on the graph. The 

main value-added property of the method is an ability to efficiently generate a projection of all satisfiable paths, so 

user may observe them all at once (by highlighting of appropriate flow graph elements in a visualization panel). It 

makes feasible a complex cause-effect analysis of model behavior during debugging process and simplifies undesired 

behavior identification; for test cases generation, the method allows a designer to find a desired path by iteratively 

specifying points-of-interest, while projection of admissible paths will be generated and updated on-the-fly. The 

proposed method develops [8], where it was used as a directed search strategy [9], and later it became [10] a test goal 

specification. 

Examples. Let’s consider a model with two attributes ‘x’ and ‘y’, transitions are presented at the table and 

control flow in fig. 1–3. Set of possible paths is the following: {init,a,c,e,g}, {init,a,c,e,h}, {init,a,c,f,h}, {init,a,c,f,i}, 

{init,b,d,e,g}, {init,b,d,f,i}. Initially (when coverage criteria are not specified yet), all transitions are reachable, and 

thus, highlighted. 

Table. Transitions for model 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example in fig.1 shows a highlighting which corresponds to user-defined property ‘g’. Branch is depicted as 

dashed line if there is no feasible path from the startpoint leading through the branch and ‘g’ simultaneously. In the 

example, there is only two satisfiable paths: {init,a,c,e,g} and {init,b,d,e,g}, so dashed lines marks ‘f’, ‘h’ and ‘i’. 

Note that property ‘f’ and ‘g’ will result in empty coverage since ‘g’ has a guard ‘y=0’, while post-condition of 

‘f’ is ‘y:=1’. 

Transition Precondition Postcondition 

a - x := 1 

b - x := 0 

c x=1 - 

d x=0 - 

e - y := 1 

f - y := 0 

g y=1 - 

h x=1 - 

i y=0 - 
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Example in fig. 2 corresponds to property ‘not a’. Lines through ‘c’ and ‘h’ become dashed, meaning that path 

leading to them is possible only after ‘a’. Example in fig.3 corresponds to property ‘b’ and ‘f’. There is only one 

possible path which can satisfy this request – {init, b, d, f, i}.  

The main property of the cumulative analysis is the following: a control flow element (branch or statement) will 

be highlighted if and only if it is a part of some path which satisfies given request. This result could be achieved using 

existing search machinery provided out-of-the-box by model checkers, for example, the global algorithm with partial 

coverage items [2]. For this purpose a set of coverage items shall consist of { Cc
c


cov }, where cov is the coverage 

request and C is a set of all control flow vertices. However, such approach has efficiency shortcomings: the specified 

request will include many infeasible coverage items; the algorithm will be forced to make redundant visits of model 

states. To make the cumulative analysis feasible, its searching algorithm must have an ability for early recognition of 

the redundancy of states exploration and to provide more efficient analysis of the state of space. 

 

 

Fig. 1. Coverage example 1: required criterion is ‘g’ 

 

Fig. 2. Coverage example 2: required criterion is ‘not a’ 

 

 

Fig. 3. Coverage example 3: required criterion is ‘b’ and ‘f’ 

Searching algorithm 

Throughout this paper, algorithms will be presented using the model of extended finite state machine (EFSM).  

Definition. An EFSM A is a tuple <C, c0, E, V, T>, where C is a set of control flow locations, c0C the initial location, 

E is a set of events, V is a finite set of variables with finite value domains and T is a finite set of transitions. A transition 

is of the form <c, g, t, u, c’>T, where cC is the source location and c’C – destination, g is a guard (a first-order 

predicate) over V, tE is an event, and u is an update in the form of an assignment of variables in V to expressions 

over V. A (model) state of an EFSM is a tuple <cfg, var> where cfgC and var is a mapping from V to values. The 

initial state is <c0, v0> where v0 is the initial mapping. A model state transition is of the form <c, v> 
t

<c’, v’> and 

is possible if there is a transition <c, g, t, u, c’>T where the guard g is satisfied for the valuation of v, and the result 

of updating v according to u is v’. A path is a proper sequence of states leading from initial state: <c0,v0>  0t  

<c1,v1>  1t …. A state <ci,vi> is reachable, if there is a path leading from initial state <c0,v0> to <ci,vi>, S denotes 

the whole set of reachable (model) states, and P – whole set of reachable paths. 

In the algorithm representation, for the description simplicity reasons, the user-defined property is considered as 

just a set of control flow locations. 

Definition. A path p satisfies property R if it includes all its elements, i.e., the following holds:  
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cR   s: sp s.cfg = c      (path satisfiability condition) 

The problem of state space traversal for reachability checking of required coverage criteria is a research topic of 

increasing importance, see e.g., [1–4, 7–12]. As a rule, existing algorithms are designed for searching of one path per 

each required coverage criterion [2, 4, 10]. In opposite, the proposed cumulative behavior analysis requires searching of 

all paths (indeed, their projection), which satisfy given coverage criterion. A brute-force attempt to reuse and adopt 

algorithms developed for systems modeled as EFSM for the cumulative behavior analysis needs is shown in fig. 4. 

(01)procedure search(A, R) 

(02)begin 

(03)  Q:=; 

(04)  for all qC do 
(05)    VISITED:=; WAIT:={(A.initial, {c0 if c0{Rq} or  otherwise}, 

A.initial)}; 

(06)    while WAIT   qQ do 
(07)      select (s, r, p) from WAIT;  

(08)      if(si,ri,pi):(si,ri,pi)VISITED  si.cfg=s.cfg  si.var=s.var  r=ri 
then do 

(09)        for all (t, s’): s t
 s’ do  

(10)          if s’.cfg{Rq} then r’:= rs’.cfg; else r’:= r; 

(11)          if r’={Rq} then 

(12)            for all x: (x  {ps’}) Q := Qx.cfg; 

(13)          add (s’, r’, ps’) to WAIT; 

(14)        od 

(15)      od 

(16)    od 

(17)    add (s, r, p) to VISITED; 

(18)  od 

(19)  return Q; 

(20)end  □ 

Fig. 4. A reachability analysis algorithm adopted for the cumulative behavior coverage 

In essence, the described algorithm is an ordinary reachability analysis algorithm, which computes a set of 

control flow elements (statements) with respect to the path satisfiability condition. The search is placed into a loop at 

the lines (04)–(18) which enumerates all control flow locations of a model. In the loop, it uses two data structures WAIT 

and VISITED to hold combined states waiting to be examined and states already examined respectively. The combined 

states are represented in the form (s, r, p), where s is a current model state, r – set of required coverage items which 

have already been covered along the path, and p – the current path (for description simplicity it is handled as a set of 

states). Initially VISITED is empty and WAIT holds the initial combined state (s0, c0, s0). The lines (07) – (17) are 

repeated until WAIT is empty or chosen control flow location becomes covered. At (07) a combined state is taken from 

WAIT, then at the line (08) it is compared versus passed earlier states, and, if the state is a new one, then lines (09) – 

(14) generate its successors. Resulting set Q is replenished at line (12) if current path satisfies the required coverage. 

After the state successors are generated, in order to avoid duplicate examination, it is placed to VISITED at (17). 

A well-known problem with algorithms like the one described is the time consumed to explore the state space, 

and the space required to represent WAIT and VISITED. State space explored by the algorithm in fig. 4 has size 

defined by the number of model states |S| in product with the number of possible coverage sets 2
|R|

 and with the number 

of control flow locations |C|. Obvious optimization is to check inclusion rri rather than equality r=ri during states 

comparison, but the performance remains infeasible, and thus, the algorithm is impractical for the proposed approach. 

The idea of the search performance improving is to extend the path termination condition so that it can avoid 

unfolding of non-perspective states with respect to the sought coverage. The improving is based on two modifications: 

for each state, the novel cumulative reachability searching algorithm will store information about reachable sets of (1) 

partial items of the required coverage, and (2) reached but non-covered control flow items. For this purpose the 

algorithm needs auxiliary attributes of a state – special sets ‘reached’ and ‘wanted’ to store information about reachable 

partial coverage items and non-covered control flow locations respectively. Note that the sets will be computed on-the-

fly, and at the moment of states comparison it is unknown whether the sets can be enlarged, but, nevertheless, the 

decision about path termination shall be made. In order to resolve the contradiction, the proposed algorithm has a state 

refinement option, which may resume previously terminated state and continue it’s unfolding. Thus, the state structure 

is extended to a tuple <cfg, var, reached, wanted, idems> where reached and wanted stores information 

about prospects of the search, it is used to prune analyzed behavior branches that will not be able to contribute to the 

coverage; set idems keeps track of equivalent states, it is used for terminated paths resuming. Also the external loop 
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for control flow locations enumeration is removed; their coverage is now controlled inside of the main loop. The new 

algorithm consists of two procedures – search (fig. 5) and propagate (fig. 6). 

(01)procedure search(A, R) 

(02)begin 

(02)  A.initial.wanted; A.initial.reachable; A.initial.idems; 

(04)  WAIT:={(A.initial, {c0 if c0R or  otherwise}, A.initial.cfg, 

A.initial)}; 

(05)  VISITED:=; Q:=; 

(06)  while WAIT  do 

(07)    select (s, r, q, p) from WAIT;  

(08)    if (si,ri,qi,pi):(si,ri,qi,pi)VISITED  si.cfg=s.cfg  si.var=s.var 

then do   

(09)      s.reached := si.reached; s.wanted := si.wanted; 

(10)      for all c: (csi.reached) propagate(c, p, reach_mrk); 
(11)      for all c: (c{si.wanted\Q}) propagate(c, p, want_mrk); 
(12)      if((rri  {q\Q}qi)   

(13)         {rsi.reached} R    
(14)         {si.wantedq}Q)then do 

(15)        add (s, r, q, p) to si.idems; 

(16)        continue; 

(17)      od 

(18)    od 

(19)    add (s, r, q, p) to VISITED; 

(20)    if s.cfgQ then propagate(s.cfg, p, want_mrk); 

(21)    for all (t, s’): s t
s’ do  

(22)      s’.reached:=; s’.wanted:=; s’.idems:=; 

(23)      if s’.cfgR then 
(24)        do r’:= rs’.cfg; propagate(s’.cfg, p, reach_mrk); od else r’:= r; 

(25)      q’:= qs’.cfg; 

(26)      if r’=R then 

(27)        for all x: (x  {ps’}) Q := Qx.cfg; 

(28)      add (s’, r’, q’, ps’) to WAIT; 

(29)    od 

(30)  od 

(31)  return Q; 

(32)end  □ 

Fig. 5. The cumulative search algorithm: procedure search 

(33)procedure propagate(c, p, flag) 

(34)begin 

(35)  for all x: xp do 
(36)    if flag = want_mrk  cx.wanted   flag = reach_mrk  cx.reached then 

do 

(37)      for all v:vx.idems  add v to WAIT; 
(38)      x.idems:=; 

(39)    od 

(40)    if flag = reach_mrk then x.reached := x.reachedc; 

(41)    if flag = want_mrk then x.wanted := x.wantedc; 

(42)  od 

(43)end 

Fig. 6. The cumulative search algorithm: procedure propagate 

The main change is at the extension of the combined states comparison decision: the current searching state is 

now considered as non-perspective (and thus, it will be terminated) if it can not contribute to the sought coverage 

because (1) it can not reach the required items or (2) everything it can cover is already covered. The extension is 

formulated at the lines (13) and (14). However, as it was mentioned before, the decision is not irrevocable: the idem-

state can be refined later by the propagate procedure at the lines (40) or (41), and the terminated state will be placed 

to the set WAIT again at the line (37). 
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Let’s consider an example of a model and a progress of the searching algorithm. The model with appropriate 

control flow graph and cumulative coverage highlighting is shown in fig. 7. Points-of-interest, which form the coverage 

criterion, are ‘a’ and ‘e’ (encircled); in this and subsequent examples there are no variables and the guards are trivial. 

 

Fig. 7. Coverage example 4 

In this example, path {init,a,b,c,b} will be terminated by condition at the line (13), because the ‘reach’ set of a 

state at the point ‘b’ is empty, but during processing of the path {init,a,b,e} it will be refined because the propagate 

procedure will add the element ‘e’ to the ‘reach’ set, and then path {init,a,b,c,b,e} will be constructed and the element 

‘c’ will be added to Q. Paths {init,f,g,i,j,b}, {init,f,g,i,k,b}, {init,f,h,i} will be terminated by condition at the line (13), 

because appropriate ‘reach’ sets will miss ‘a’; paths {init,a,b,e,w,x} and {init,a,b,c,b,e} by condition at the line (12) 

because r-sets are equal and the set {q\Q} is empty due to the earlier paths {init,a,b,e,v,x,y} and {init,a,b,e,v,x,z}. 

The next example (fig. 8) shows state space reducing which is inspired by the condition at the line (14). Here the 

required coverage criterion is R={f}. During traversal, after exploring paths {init,a,b,d,f,e} and {init,a,c,d,f,e}, the 

subsequent path {init,f,a} will be terminated is spite of the conditions r ri and r R do not hold at the state ‘a’ 

(ri={}, while current r={f}), because the earlier paths leave nothing to cover (‘wanted’ set of the state ai is empty), 

and thus, the condition {ai.wantedq}Q at the line (14) holds. 

 

Fig. 8. Coverage example 5 

Theorem. The cumulative search algorithm has the following main properties: 

1. Termination. Its asymptotic time is O(max(|T|, |S|)  |C|  2|R|
). 

2. Soundness. The set Q will consist only of control flow locations, which are on satisfiable paths: 

cQ    p, s: pP   sp   s.cfg = c   (rR    x: x.cfg = r   xp) 

3. Completeness. After completion, the set Q will include all control flow locations, which are on satisfiable paths: 

 p, s, c: pP   sp   s.cfg = c   (rR    x: x.cfg = r   xp)   cQ 

 

Proof sketch. 

Statement 1. In order to prove termination, it is necessary to show that set WAIT should eventually become 

empty during evaluation of the procedure search. The set consists of combined states presented as (s,r,q,p); in the 

path termination decision at the lines (08) and (12) possible sets of compared elements sS, r2
|R|

 and qC are 

finite and path p is ignored at all, that is why the WAIT set will not contain similar states which differs by p only. The 

WAIT set is extended at the lines (28), where a new combined state is reached, and (37), where idem-state is refined. 

Number of model transitions and states is finite, and the number of refinements, according to condition at the line (36) 
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and updates of the sets at (40) and (41), at worst is |S|  |C|. Summary time of other computations, including the 

propagate procedure, is obviously no more than O(max(|T|, |S|)  |C|  2|R|
). 

Statement 2. The control flow locations are added to the resulting set only at the line (27), according to the lines 

(23), (24) and to the condition at (26), only from satisfiable paths. 

Statement 3. By induction on the number of iterations of the loop at the lines (6)–(30) that have completed their 

work (at the lines (16), (30)), it is sufficient to show that if some supposed flow element X shall be covered on the path 

reachable from the current state (selected from WAIT at the line (07)), then the following alternatives only are possible: 

1) X is already covered (i.e., XQ), 

2) there exist a sequence {p,sw,ts}, where p is a current path leading to sw, swWAIT, ts is a finite path leading 

from sw to a state, where all required coverage items become covered, i.e., the whole path becomes satisfiable, and there 

is state sx, such that sx.cfg=X and sx ts or sxp or sx= sw. 

3) X is on a path, which is reachable from the current state, but it was terminated by condition at the line (12), 

4) current path p is terminated at the state s by condition at the line (13), and there exist a finite sequence 

{p,s1,s
i
1,t1,…,sn,s

i
n,tn,sw,tw,sc}, where sk is a terminated state, s

i
k – its corresponding idem-state (i.e. sks

i
k.idems), tk – 

finite paths leading from s
i
k to sk+1, swWAIT, s1=s, n 1, and there is a state sc which is reachable from sw via finite 

path tw, such that sc.cfgR sc.cfg  s
i
1.reach. 

5) current path p is terminated at the state s by condition at the line (14), and there exist a finite sequence 

{p,s1,s
i
1,t1,…,sn,s

i
n,tn,sw,tw,sc}, where sk is a terminated state, s

i
k – its corresponding idem-state (i.e. sks

i
k.idems), tk – 

finite paths leading from s
i
k to sk+1, swWAIT, s1=s, n 1, and there is a state sc which is reachable from sw via finite 

path tw, such that sc.cfgQ  sc.cfg  s
i
1.wanted. 

Really, each case can lead to the desired goal, i.e., to XQ: 

Case 1. Trivial. 

Case 2. Since swWAIT, its immediate successors, according to the lines (06), (07) and (21) will be eventually 

generated and placed to the set WAIT at the line (28) or, in case ts= , accordingly to the lines (23), (24), (26), the X 

will be added to the resulting set Q at the line (27). 

Case 3. The condition of the line (12) supposes existence of another state, which has the same or even larger set 

of reachable paths, consequently, path termination by this condition does not affect coverage of the element. 

Case 4. Since the supposed state swWAIT, it will be eventually selected at the line (07) and processed by the 

main loop of the search procedure. Here only the following cases are possible: 

a) tw  . In this case line (28) will add all immediate successors of the sw to the WAIT, and the assumed by 

the case 4 path will remain in the form {p,s1,s
i
1,t1,…,sn,s

i
n,tn’,sw’,tw’,sc}, where tn’= {tn,sw} and tw={sw, tw’}. 

b) tw= . Then there exits an immediate successor sc, and execution of the line (24) will lead to propagation of 

the element sc.cfg and to consequent refinement of the state s
i
n, and thus, state sn, regarding to the line (40), will be 

added to the WAIT set, and the path assumed by the case 4 will take the form {p,s1,s
i
1,t1,…,sn-1,s

i
n-1,tn-1,sw’,sc’} for 

n 2, otherwise (for n=1) the case under consideration will lead to the case 2, i.e., s1 is placed to the WAIT again and 

existence of {p,s1,ts} remains. 

Case 5. Similar to case 4, the case can lead to the case 2. Proof omitted. 

The induction shows (due to the space limitation, the proof is omitted) that the listed cases will remain the only 

possible. Since at the first iteration of the loop the set WAIT will contain initial state, and the supposed element X is 

reachable, and after the last iteration of the loop the set WAIT will be empty (and thus, the only possible case remained 

is 1), then at the end of the algorithm work the X will be in Q. 

□ 

The new searching algorithm summary. The proposed algorithm fulfills a projection of all satisfiable paths on 

the control flow graph. The state space traversal is improved: a state will not be explored until it cannot increase the 

sought coverage, however, the exploration of a postponed state may be resumed due to the state refinement option. This 

feature allows to avoid unnecessary exploration and to speed up termination, in many practical cases the state space 

reducing is exponential. Let’s consider a demonstrable example (see fig. 9). Let the required coverage items set R is 

{w,a1,…,an}. While the asymptotic complexity is O(|S|  |C|  2|R|
)=O(n

2  2n
), the algorithm will terminate in O(n

2
) steps: 
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the ‘reach’ sets of examined states will not contain coverage element ‘w’, and thus (by condition at the line (13)), paths 

{init,a1,…,an-2,bn-1,cn-1}, {init,a1,…,an-3,bn-2,cn-2}, …, {init,b1,c1} will be terminated. 

 

Fig. 9. Coverage example 6 

Note that number of steps to termination remains O(n
2
) even without w in R, i.e., for the case R={a1,…,an}, 

because paths {init,a1,…,an-2,bn-1,cn-1}, {init,a1,…,an-3,bn-2,cn-2}, …, {init,b1,c1} will be terminated due to lack of an-1, an-2, 

…,a1 in the ‘reach’ sets of corresponding states cn-1, cn-2, …,c1, i.e., ak{rk ck.reached}. 

The traversal can be easily tuned to BFS or DFS strategy: for this reason, the path depth shall be taken into 

account in the operator select. 

The algorithm can be used for test cases generation since the combined state structure already includes the 

needed path; also it is easy to tune the search for branch coverage criteria – the specified coverage items should be 

defined as pairs of points instead of single statements. 

Implementation notes.  

1. For models with well-structured control flow graph, organization of the ‘wanted’ and ‘reached’ sets 

could be computed statically, e.g., before actual state space traversal. 

2. In order to avoid duplication of identical ‘vars’, ‘wanted’ and ‘reached’ sets in different combined 

states structures appropriate pointers can be used. 

3. It is useful to distinguish elements of set Q, which lies on slices (backward/forward) w.r.t. given property R, 

such technique significantly reduces model size to be observed. 

4. The ‘wanted’ set can be replaced with a Boolean flag, which will only indicate the presence of 

‘something uncovered’ instead of storing a complete set of individual wanted items. This replacement is a kind of 

classic time/memory tradeoff – the memory saving may lead to redundant searching time. 

5. In order to reduce the number of visited checking procedure calls, prioritize refined states lower than new 

ones during the selection from WAIT. 

6. The described method is compatible with the dynamic abstraction method [11] which reduces a state-space 

of the model behavior analysis using relaxed checking of the states equivalence.  

7. Experiments with the implementation of the algorithm demonstrate that for a model, which contains ~1000 

transitions, the cumulative coverage computation time is less than one second. The high performance plays crucial role 

for the interactive operation and makes the proposed approach usage really practical. 

Conclusions 

The proposed interactive strategy suggests a change of the human role in test cases generation: from step-by-step 

exploration of one path to observation of all admissible paths w.r.t. specified property and choosing from the proposed 

alternatives. While such strategy simplifies the searching process, increases the level of descriptive adequacy between 

desired behavior and test case obtained, and thus, enhances quality of test cases, it also assists in model debugging and 

revealing of undesired behavior. The approach shows its usefulness for legacy code analyzing and its behavior 

understanding [12]. However, the proposed approach results are informative only for models with structured control 

flow, in which points-of-interest are distributed along individual branches. 

It is well known that the ability to handle the exponential growth of the search space is the most critical feature 

of space exploration based methods [2, 4, 8, 11]. In this respect, the new efficient searching algorithm specialized for 

the cumulative analysis is proposed. It stores and dynamically refines knowledge about sought coverage items reached 

from each state to prune the remaining exploration; an early-terminated path can later be resumed upon the refinement 

in order to hold completeness of the search. While the asymptotic complexity is not improved and memory 

consumption is even increased, in many practical cases the algorithm terminates much earlier; the analyzed state space 

potentially can be reduced exponentially, and thus, it significantly increases the maximum size of models for which the 

proposed analysis can be algorithmically computed. 
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