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INTERACTIVE METHOD FOR CUMULATIVE ANALYSIS OF
SOFTWARE FORMAL MODELS BEHAVIOR

A. Kolchin

The aim of the proposed method is to simplify and improve the process of models debugging and to increase efficiency of model-based test
cases generation. Unlike existing methods of models behavior analysis, which produce as a result only one, usually first-found, path per
specified property (which is an evidence of test goal reachability or explanation of some inconsistency during debugging process), the
proposed method generates a projection of all satisfiable paths, which provokes exposure of undesired behavior. For test cases generation,
the feature plays a role of interactive path constructor, which prompts all satisfiable behavior alternatives, so user can find a desired path by
iteratively specifying points-of-interest. Appropriate novel algorithm for efficient searching is presented.
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Merta METOy — CIIPOCTHUTH Ta YIOCKOHAIHUTH MPOLIEC HAIATOHKEHHS MOJEII Ta MiABUIINTH e(EeKTHBHICTh reHepallii TeCTOBUX cieHapiiB. Ha
BiZI3HAKy BiJl iCHYIOUMX METO/IB aHAJi3y MOBEMIHKH, SIKi Y pe3ysbTaTi poOOTH [UIsl KOXKHOI BIaCTHBOCTI, IO MEPEBIPSIETHCS, MOPOIKYIOTh
TUIBKH OZWH, YacTO HEpIIMH BHSABIEHMH IUIAX (Y MATBEPIDKCHHS NOCSHKHOCTI Wil TecTy abo IS NOSCHEHHS HEBIONOBIMHOCTI IpH
HAaJIArO/UKCHHI), 3alpONOHOBAHHUI METOJ HMOPOUKYE HMPOCKLiI0 yciX IUIIXIB, 1O 3aZOBOJIBHSIOTH 3aJaHOl BJIACTHBOCTI, TAKHUM YHHOM
CIPUSIOUN BUABICHHIO HeOAdcaHo2o nosedinku. J{ns reHepaliii TeCTOBUX CLEHAPIiB, METOA CIIY)KUTh IHTEPAKTHMBHUM KOHCTPYKTOPOM Tpac,
SIKHI [I0Ka3ye BCI MOXIIMBI albTEPHATHBH IIOBEIIHKM, TaK [I0 KOPHCTYBAa4 MOXKE 3HAXOAMTH OaXKaHMI LUIIX iTepaTHBHA 3a[al04d TOYKH
3aI[iKaBICHOCTI. 3aPOMOHOBAHO BiANOBIJHUI HOBUiT aIrOPUTM A5l €(DEKTHBHOTO MOIIYKY.

Ki11040Bi €J10Ba: TECTyBaHHsI, HAJIATOHKEHHS, MEPEBIpPKa MOIEII.

Ilens MeTona — YIPOCTHUTH U YCOBEPIICHCTBOBATH NIPOLECC OTIAJKI MOJIEIH U TIOBEICHTH (G ()EKTUBHOCTh TeHEPALIU TECTOBBIX CLIEHAPHEB.
B oTnuume oT cymecTBYIOIIUX METOIOB aHANU3a MOBEJECHHs, KOTOpPBIE B pe3yibTaTe pabOThl I Ka)KAOTO IIPOBEPSAEMOro CBOMCTBA
HOPOXKAAIOT TOJNBKO OJHH, YacTO MEepBbI OOHAPY)KEHHBIH IMyTh (B IMOATBEP)KIECHHE NOCTIKMMOCTH LIEJIH TECTa MM Ui OOBSCHEHHS
HECOOTBETCTBHS IIPH OTIAZKE), IPEIIOKEHHBIH METO OPOXKAAET IPOEKIHIO cex MyTeH, YIOBICTBOPSIONINX 3aJaHHOMY CBOMCTBY, TAKHM
00pa3oM CIOCOOCTBYsl BBIBICHHUIO HedicelamenvHo2o nogedenus. s reHepallidl TE€CTOBBIX CLIEHAPHUEB, METOJ CIY)KUT MHTEPAKTHBHBIM
KOHCTPYKTOPOM Tpacc, KOTOPBII IIOKa3bIBA€T BCE BO3MOXKHBIC aJIbTEPHATHBBI MOBEJECHMS, TAK YTO IOJNB30BAaTEIb MOXKET HAXOAUTh
JKeJIaeMbIi ITyTh UTEPaTHBHO 3a/1aBasi HHTEpeCyIoIue TOUKH. [IpeyioskeH cOOTBETCTBYIOIINI HOBBIH aTOPUTM UL 9 (heKTHBHOTO ITOUCKA.
KioueBble c10Ba: TeCTUPOBaHHE, OTJIAKA, IPOBEPKA MOIEIH.

Introduction

Formal models debugging problem. Formal models are actively used in a model-based design flow software
development process. The quality of a model is crucial since it plays a role of requirements specification for future
implementation. However, creating a formal model is an error-prone process and at the same time debugging is difficult
and labor-consuming. Existing tools propose facilities for simulation, plain step-by-step path exploration [1, 2], and for
automatic model analysis [3]. The latter essentially performs reachability checking to generate and explore the state
space of a model in order to find a path that follows a given criterion. Such path can be interpreted as a test case or as an
explanation of some problem during debugging. For example, approach [4] allows a designer to ask “show me a run
that puts control at this point with x <= 0”. Accordingly to this request, a temporal logic formula will be constructed,
and the witness (or counterexample) path will be produced [3]. In [5] authors propose a method for unrealizability and
unsoundness checking of specifications. But in all cases, only one path (as a rule, first-found by searching algorithm)
will be produced as a result. The single path, while serves as a reliable evidence of reachability, is unlikely to be
sufficient: in order to understand the model one needs somehow to see the overall picture of its behavior. Moreover, it is
well-known that it is easy to check desired behavior, but hard to check absence of undesired behavior. For example, let
A blocks B, but the property to be checked is that C is reachable after A. The goal path may exist, and test can
successfully pass, B may still be reachable in another way, but the design has no requirement that A shall disable B, and
this problem is at risk to be undisclosed: while the former property (A ~> C) is specified, the latter one (A does not
block B) is just supposed. In reality, a lot of desired properties remain unspecified explicitly, and thus, the properties are
not verified and not tested.

Test cases generation problem. The industry moves toward model-based development, and automated test
generation from the model is often considered as a form of requirements-based testing. The majority of test generation
approaches use some structural coverage criterion based on a behavioral model of the SUT to guide the selection of test
cases. However, there is some evidence [3] that simply using the coverage provision as a target for automated test
generation may be a flawed strategy: coverage metrics are intended to measure the thoroughness of human-generated
tests, and do not necessarily lead to good test sets when used in an inverted role as a specification for the tests required.
For example, in [6], authors make MC/DC coverage for a model of a flight guidance system, and then executed the tests
on implementations that had been seeded with errors. They found that the auto generated tests detected relatively few
bugs, and generally performed even worse than random testing. Another drawback of the automatic approach is that the
test case generated is not necessarily a good exercise regarding the verified property: a counterexample path is an
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artifact of search strategy, so it may terminate at the middle of some interesting behavior, may include a lot of
redundancy, cause-effect relations are obscure and intricate, and moreover, the path might even not contain a state
where antecedent of required property becomes true. Poorly designed tests are known to have a negative impact on test
maintenance [7].

Proposed solution. Unlike existing methods of models behavior analysis, which produce as a result only one
witness or counter-example path per specified property (or required coverage item), the proposed method provides
analysis of behavior in a cumulative way: it generates aggregate information about all satisfiable (with respect to
specified request) paths. This distinctive feature plays a role of interactive path constructor, which prompts all
satisfiable behavior alternatives, so user can find a desired path by iteratively specifying points-of-interest and observe
updates of the prompting on-the-fly. Visualization of the cumulative coverage assists with desired test case generation
and simplifies identification of undesired behavior among the alternatives.

The paper describes properties of the cumulative analysis and appropriate efficient searching algorithm.

The cumulative analysis approach

Behavior of a model can be considered as a whole set of paths outgoing from initial state. Often the set growth
up exponentially with the model size and in general case it could be infinite due to possible loops. User-defined
property (request or test goal) considered in the proposed method stipulates a path property in form of a set of control
flow locations, optionally ordered and extended with conditions over variables and restrictions on number of location
visits (for example, zero visits means ‘do not consider paths passing through this point’). A path satisfies request if it
includes all of its check-points appropriately. The idea of the described method is to provide a designer with
information about set of all admissible paths. The naive solution — generation of all paths — is obviously unrealizable
task, and, even if the set is finite, it is not observable due to it's huge size. The described method proposes a
compromise: it proceeds from the assumption that the main interesting events are represented with different structure
items in a model design, and thus, it will be informative for a designer to observe a projection of a path on the
design's structure (flowchart). Consequently, the proposed method strongly relies on a control flow graph of a model
under analysis: it is efficient only for models with structured finite flow, in which interesting events and decisions
are distributed along individual branches. The produced paths are represented then as a projection on the graph. The
main value-added property of the method is an ability to efficiently generate a projection of all satisfiable paths, so
user may observe them all at once (by highlighting of appropriate flow graph elements in a visualization panel). It
makes feasible a complex cause-effect analysis of model behavior during debugging process and simplifies undesired
behavior identification; for test cases generation, the method allows a designer to find a desired path by iteratively
specifying points-of-interest, while projection of admissible paths will be generated and updated on-the-fly. The
proposed method develops [8], where it was used as a directed search strategy [9], and later it became [10] a test goal
specification.

Examples. Let’s consider a model with two attributes ‘x” and ‘y’, transitions are presented at the table and
control flow in fig. 1-3. Set of possible paths is the following: {init,a,c,e,g}, {init,a,c,e,h}, {init,a,c,f,h}, {inita,c,f,i},
{init,b,d,e,g}, {init,b,df,i}. Initially (when coverage criteria are not specified yet), all transitions are reachable, and
thus, highlighted.

Table. Transitions for model 1

Transition Precondition Postcondition
a - x:=1
b - x:=0
c x=1 -
d x=0 -
e - y:=1
f - y:=0
g y=1 -
h x=1 -
i y=0 -

Example in fig.1 shows a highlighting which corresponds to user-defined property ‘g’. Branch is depicted as
dashed line if there is no feasible path from the startpoint leading through the branch and ‘g’ simultaneously. In the
example, there is only two satisfiable paths: {init,a,c,e,g} and {init,b,d,e,g}, so dashed lines marks ‘f>, ‘h’ and ‘i’.

Note that property ‘f> and ‘g’ will result in empty coverage since ‘g’ has a guard ‘y=0’, while post-condition of
‘fis y=1".
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Example in fig. 2 corresponds to property ‘not a’. Lines through ‘¢’ and ‘h’ become dashed, meaning that path
leading to them is possible only after ‘a’. Example in fig.3 corresponds to property ‘b’ and ‘f*. There is only one
possible path which can satisfy this request — {init, b, d, f, i}.

The main property of the cumulative analysis is the following: a control flow element (branch or statement) will
be highlighted if and only if it is a part of some path which satisfies given request. This result could be achieved using
existing search machinery provided out-of-the-box by model checkers, for example, the global algorithm with partial
coverage items [2]. For this purpose a set of coverage items shall consist of {Ucec cov+c }, Where cov is the coverage

request and C is a set of all control flow vertices. However, such approach has efficiency shortcomings: the specified
request will include many infeasible coverage items; the algorithm will be forced to make redundant visits of model
states. To make the cumulative analysis feasible, its searching algorithm must have an ability for early recognition of
the redundancy of states exploration and to provide more efficient analysis of the state of space.

a c
b d

}a\ PN €

Fig. 3. Coverage example 3: required criterion is ‘b’ and ‘f’

Searching algorithm

Throughout this paper, algorithms will be presented using the model of extended finite state machine (EFSM).
Definition. An EFSM A is a tuple <C, ¢, E, V, T>, where C is a set of control flow locations, ¢, € C the initial location,
E is a set of events, V is a finite set of variables with finite value domains and T is a finite set of transitions. A transition
is of the form <c, g, t, u, ¢’ > T, where c € C is the source location and ¢’ € C — destination, g is a guard (a first-order
predicate) over V, te E is an event, and u is an update in the form of an assignment of variables in V to expressions
over V. A (model) state of an EFSM is a tuple <cfg, var> where cfge C and var is a mapping from V to values. The

initial state is <c,, Vo> where v is the initial mapping. A model state transition is of the form <c, v> —' 5 <c’, v’ >and
is possible if there is a transition <c, g, t, u, ¢’ > & T where the guard g is satisfied for the valuation of v, and the result

of updating v according to u is v’. A path is a proper sequence of states leading from initial state: <Co,Vp> —2 >

<cl,v1>L> .... A state <c;,v;> is reachable, if there is a path leading from initial state <cy,vo> to <c;,v;>, S denotes
the whole set of reachable (model) states, and P — whole set of reachable paths.

In the algorithm representation, for the description simplicity reasons, the user-defined property is considered as
just a set of control flow locations.

Definition. A path p satisfies property R if it includes all its elements, i.e., the following holds:

117



Memoou ma 3acobu npozpamnoi inscenepii

ceR = ds:sepascfg=c (path satisfiability condition)

The problem of state space traversal for reachability checking of required coverage criteria is a research topic of
increasing importance, see e.g., [1-4, 7-12]. As a rule, existing algorithms are designed for searching of one path per
each required coverage criterion [2, 4, 10]. In opposite, the proposed cumulative behavior analysis requires searching of
all paths (indeed, their projection), which satisfy given coverage criterion. A brute-force attempt to reuse and adopt
algorithms developed for systems modeled as EFSM for the cumulative behavior analysis needs is shown in fig. 4.

(01) procedure search (A, R)

(02)begin

(03) Q:=@;

(04) for all geC do

(05) VISITED:=g; WAIT:={(A.initial, {cy 1f coe{RUQg} or @ otherwise},
A.initial) };

(06) while WAIT# @ A g€Q do

(07) select (s, r, p) from WAIT;

(08) if—3(s;,ri,p;):(sSi,ri,p;) EVISITED A s;.cfg=s.cfg A s;.var=s.var A r=r;
then do

(09) for all (t, s’): s —'» s’ do

(10) if s’.cfge{RUqg} then r’':= ruUs’.cfg; else r’':= r;
(11) if r'={RuUqg} then

(12) for all x: (x € {puUs’}) Q := QuUx.cfg;

(13) add (s’, r’, puUs’) to WAIT;

(14) od

(15) od

(16) od

(17) add (s, r, p) to VISITED;

(18) od

(19) return Q;

(20)end O

Fig. 4. A reachability analysis algorithm adopted for the cumulative behavior coverage

In essence, the described algorithm is an ordinary reachability analysis algorithm, which computes a set of
control flow elements (statements) with respect to the path satisfiability condition. The search is placed into a loop at
the lines (04)—(18) which enumerates all control flow locations of a model. In the loop, it uses two data structures WATT
and VISITED to hold combined states waiting to be examined and states already examined respectively. The combined
states are represented in the form (s, r, p), where s is a current model state, r — set of required coverage items which
have already been covered along the path, and p — the current path (for description simplicity it is handled as a set of
states). Initially VISITED is empty and WATIT holds the initial combined state (so, co, s¢). The lines (07) — (17) are
repeated until WATT is empty or chosen control flow location becomes covered. At (07) a combined state is taken from
WATIT, then at the line (08) it is compared versus passed earlier states, and, if the state is a new one, then lines (09) —
(14) generate its successors. Resulting set Q is replenished at line (12) if current path satisfies the required coverage.
After the state successors are generated, in order to avoid duplicate examination, it is placed to VISITED at (17).

A well-known problem with algorithms like the one described is the time consumed to explore the state space,
and the space required to represent WAIT and VISITED. State space explored by the algorithm in fig. 4 has size
defined by the number of model states |S| in product with the number of possible coverage sets 2% and with the number
of control flow locations |C|. Obvious optimization is to check inclusion r C r; rather than equality r=r; during states
comparison, but the performance remains infeasible, and thus, the algorithm is impractical for the proposed approach.

The idea of the search performance improving is to extend the path termination condition so that it can avoid
unfolding of non-perspective states with respect to the sought coverage. The improving is based on two modifications:
for each state, the novel cumulative reachability searching algorithm will store information about reachable sets of (1)
partial items of the required coverage, and (2) reached but non-covered control flow items. For this purpose the
algorithm needs auxiliary attributes of a state — special sets ‘reached’ and ‘wanted’ to store information about reachable
partial coverage items and non-covered control flow locations respectively. Note that the sets will be computed on-the-
fly, and at the moment of states comparison it is unknown whether the sets can be enlarged, but, nevertheless, the
decision about path termination shall be made. In order to resolve the contradiction, the proposed algorithm has a state
refinement option, which may resume previously terminated state and continue it’s unfolding. Thus, the state structure
is extended to a tuple <cfg, var, reached, wanted, idems> where reached and wanted stores information
about prospects of the search, it is used to prune analyzed behavior branches that will not be able to contribute to the
coverage; set idems keeps track of equivalent states, it is used for terminated paths resuming. Also the external loop
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for control flow locations enumeration is removed; their coverage is now controlled inside of the main loop. The new
algorithm consists of two procedures — search (fig. 5) and propagate (fig. 6).

(01) procedure search (A, R)

(02)begin
(02) A.initial.wanted<«@; A.initial.reachable<«@; A.initial.idems<« &;
(04) WAIT:={(A.initial, {cg 1f co€ER or @ otherwise}, A.initial.cfqg,

A.initial) };
(05) VISITED:=@; Q:=@;
(06) while WAIT# @ do

(07) select (s, r, q, p) from WAIT;

(08) if d(si;,ri,9i,pi):(si,ri,9:,pi) EVISITED A s;.cfg=s.cfg A s;.var=s.var
then do

(09) s.reached := s;.reached; s.wanted := s;.wanted;

(10) for all c: (c€s;.reached) propagate(c, p, reach mrk);
(11) for all c: (ce€{s;.wanted\Q}) propagate(c, p, want mrk);
(12) if((rcrs A {g\Q}Cai) Vv

(13) {rUs;.reached} DR Vv

(14) {s;.wantedUqg} C Q) then do

(15) add (s, r, gq, p) to s;.idems;

(16) continue;

(17) od

(18) od

(19) add (s, r, gq, p) to VISITED;

(20) if s.cfgg¢Q then propagate(s.cfg, p, want mrk);

(21) for all (t, s’): s——>s’ do

(22) s’ .reached:=@g; s’ .wanted:=@g; s’ .idems:=g;

(23) if s’ .cfgeR then

(24) do r’:= rus’.cfg; propagate(s’.cfg, p, reach mrk); od else r’:= r;
(25) q’':= qus’.cfg;

(26) if r’=R then

(27) for all x: (x € {puUs’}) Q := QUx.cfg;

(28) add (s’, r’, gq’', puUs’) to WAIT;

(29) od

(30) od

(31) return Q;

(32)end 0O

Fig. 5. The cumulative search algorithm: procedure search

(33) procedure propagate(c, p, flag)

(34)begin

(35) for all x: xe€p do

(36) if flag = want mrk A cé¢x.wanted v flag = reach mrk A c¢€x.reached then
do

(37) for all v:vex.idems add v to WAIT;

(38) X.ldems:=@;

(39) od

(40) if flag = reach mrk then x.reached := x.reachedUc;
(41) if flag = want mrk then x.wanted := x.wantedUc;
(42) od

(43)end

Fig. 6. The cumulative search algorithm: procedure propagate

The main change is at the extension of the combined states comparison decision: the current searching state is
now considered as non-perspective (and thus, it will be terminated) if it can not contribute to the sought coverage
because (1) it can not reach the required items or (2) everything it can cover is already covered. The extension is
formulated at the lines (13) and (14). However, as it was mentioned before, the decision is not irrevocable: the idem-
state can be refined later by the propagate procedure at the lines (40) or (41), and the terminated state will be placed
to the set WATT again at the line (37).
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Let’s consider an example of a model and a progress of the searching algorithm. The model with appropriate
control flow graph and cumulative coverage highlighting is shown in fig. 7. Points-of-interest, which form the coverage
criterion, are ‘a’ and ‘e’ (encircled); in this and subsequent examples there are no variables and the guards are trivial.
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Fig. 7. Coverage example 4

In this example, path {init,a,b,c,b} will be terminated by condition at the line (13), because the ‘reach’ set of a
state at the point ‘b’ is empty, but during processing of the path {init,a,b,e} it will be refined because the propagate
procedure will add the element ‘e’ to the ‘reach’ set, and then path {init,a,b,c,b,e} will be constructed and the element

¢’ will be added to Q. Paths {init,f,g,i,j,b}, {init,f,g,i,k,b}, {init,f,h,i} will be terminated by condition at the line (13),
because appropriate ‘reach’ sets will miss ‘a’; paths {init,a,b,e,w,x} and {init,a,b,c,b,e} by condition at the line (12)
because r-sets are equal and the set {g\Q} is empty due to the earlier paths {init,a,b,e,v,x,y} and {init,a,b,e,v x,z}.

The next example (fig. 8) shows state space reducing which is inspired by the condition at the line (14). Here the
required coverage criterion is R={f}. During traversal, after exploring paths {init,a,b,d,f,e} and {init,ac,d,f,e}, the
subsequent path {init,f,a} will be terminated is spite of the conditions r C r; and r > R do not hold at the state ‘a’
(r;={ @}, while current r={f}), because the earlier paths leave nothing to cover (‘wanted’ set of the state a; is empty),
and thus, the condition {a; .wantedwu g} < Q at the line (14) holds.

init e —]

No<

Fig. 8. Coverage example 5

Theorem. The cumulative search algorithm has the following main properties:
1. Termination. Its asymptotic time is O(max(|T|, |S|) - |C| - 2.

2. Soundness. The set @ will consist only of control flow locations, which are on satisfiable paths:
ceQ = dp,S:peEP ASEP AScEg=CA (reR = IXiX.cfg=r A XEP)
3. Completeness. After completion, the set Q will include all control flow locations, which are on satisfiable paths:

3p,S,C:PEP ASEP AScEg=CA (FER = IX:Xcfg=r A XEpP) = CEQ

Proof sketch.

Statement 1. In order to prove termination, it is necessary to show that set WATT should eventually become
empty during evaluation of the procedure search. The set consists of combined states presented as (s, r, q,p); in the
path termination decision at the lines (08) and (12) possible sets of compared elements s €S, re 2R and g C are
finite and path p is ignored at all, that is why the WATT set will not contain similar states which differs by p only. The
WATIT set is extended at the lines (28), where a new combined state is reached, and (37), where idem-state is refined.
Number of model transitions and states is finite, and the number of refinements, according to condition at the line (36)
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and updates of the sets at (40) and (41), at worst is |S|-|C|. Summary time of other computations, including the
propagate procedure, is obviously no more than O(max(|T], |S]) - |C| - 2.

Statement 2. The control flow locations are added to the resulting set only at the line (27), according to the lines
(23), (24) and to the condition at (26), only from satisfiable paths.

Statement 3. By induction on the number of iterations of the loop at the lines (6)—(30) that have completed their
work (at the lines (16), (30)), it is sufficient to show that if some supposed flow element X shall be covered on the path
reachable from the current state (selected from WAIT at the line (07)), then the following alternatives only are possible:

1) xisalready covered (i.e., X € Q),

2) there exist a sequence {p,Sw,ts}, where p is a current path leading to s, S,y € WAIT, t; is a finite path leading
from s,, to a state, where all required coverage items become covered, i.e., the whole path becomes satisfiable, and there
is state sy, such that sy.cfg=X and s, € t; Or Sy € p Or Sy= Sy.

3) Xxisonapath, which is reachable from the current state, but it was terminated by condition at the line (12),

4) current path p is terminated at the state s by condition at the line (13), and there exist a finite sequence
{P,51,S 1t -+ ,SmS s Sws b Sc}, Where s, is a terminated state, s' — its corresponding idem-state (i.e. sk € S'.idems), t —
finite paths leading from s' to S.1, Sw € WAIT, $;=s, n>1, and there is a state s, which is reachable from s,, via finite
path t,, such that s.cfg ERAS.cfg & Si.reach.

5) current path p is terminated at the state s by condition at the line (14), and there exist a finite sequence
{p,51.S Lt ., SmS s Sws s Sc}, Where s, is a terminated state, s' — its corresponding idem-state (i.e. sy € S'x.idems), t —
finite paths leading from s t0 Sy, Sw EWATT, $;=5, N> 1, and there is a state s, which is reachable from s,, via finite
path t,, such that s.cfg € Q A Sc.cfg & Si.wanted.

Really, each case can lead to the desired goal, i.e., to X € Q:
Case 1. Trivial.

Case 2. Since s, € WAIT, its immediate successors, according to the lines (06), (07) and (21) will be eventually
generated and placed to the set WATIT at the line (28) or, in case t=, accordingly to the lines (23), (24), (26), the x
will be added to the resulting set Q at the line (27).

Case 3. The condition of the line (12) supposes existence of another state, which has the same or even larger set
of reachable paths, consequently, path termination by this condition does not affect coverage of the element.

Case 4. Since the supposed state s,,€ WAIT, it will be eventually selected at the line (07) and processed by the
main loop of the search procedure. Here only the following cases are possible:

a) ty=d. Inthis case line (28) will add all immediate successors of the s,, to the WATT, and the assumed by
the case 4 path will remain in the form {p,s;,5'1,t1,...,5n,S mtn” ,Sw” »tw” S}, Where t,” = {t,,Sw} and t,={Su, tw’ }.

b) t,=. Then there exits an immediate successor s, and execution of the line (24) will lead to propagation of
the element s..c£g and to consequent refinement of the state s',, and thus, state s,, regarding to the line (40), will be
added to the WATT set, and the path assumed by the case 4 will take the form {p,sl,sil,tl,...,sn_l,sin_l,tn_l,sw' S’ } for
n =2, otherwise (for n=1) the case under consideration will lead to the case 2, i.e., s; is placed to the WAIT again and
existence of {p,sy,ts} remains.

Case 5. Similar to case 4, the case can lead to the case 2. Proof omitted.

The induction shows (due to the space limitation, the proof is omitted) that the listed cases will remain the only
possible. Since at the first iteration of the loop the set WATT will contain initial state, and the supposed element X is
reachable, and after the last iteration of the loop the set WATT will be empty (and thus, the only possible case remained
is 1), then at the end of the algorithm work the x will be in Q.

O

The new searching algorithm summary. The proposed algorithm fulfills a projection of all satisfiable paths on
the control flow graph. The state space traversal is improved: a state will not be explored until it cannot increase the
sought coverage, however, the exploration of a postponed state may be resumed due to the state refinement option. This
feature allows to avoid unnecessary exploration and to speed up termination, in many practical cases the state space
reducing is exponential. Let’s consider a demonstrable example (see fig. 9). Let the required coverage items set R is
{w,ay,...,a,}. While the asymptotic complexity is O(|S| - |C|- 2R)=0(n?- 2"), the algorithm will terminate in O(n) steps:
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the ‘reach’ sets of examined states will not contain coverage element ‘w’, and thus (by condition at the line (13)), paths
{init,ay,...,an2,bn.1,Cn1}, {init,ay,...,a03,b0.2,Cn0}, ..., {init,bs,c1} will be terminated.

W 1
init @ Cl~ eeoe A
bi b ’

Fig. 9. Coverage example 6

Note that number of steps to termination remains O(n?) even without w in R, i.e., for the case R={a,,....a.},
because paths {init,ay,...,an2,0n.1,Cn.1}, {iNit,ay,...,a5.3,b02,Ch 2}, ..., {init,bs,c1} will be terminated due to lack of a1, a,.2,
...,a1 in the ‘reach’ sets of corresponding states C,.1, Cy.2, ...,C1, I.€., &€ {rk\U C.reached}.

The traversal can be easily tuned to BFS or DFS strategy: for this reason, the path depth shall be taken into
account in the operator select.

The algorithm can be used for test cases generation since the combined state structure already includes the
needed path; also it is easy to tune the search for branch coverage criteria — the specified coverage items should be
defined as pairs of points instead of single statements.

Implementation notes.

1. For models with well-structured control flow graph, organization of the ‘wanted’ and ‘reached’ sets
could be computed statically, e.g., before actual state space traversal.

2. In order to avoid duplication of identical ‘vars’, ‘wanted’ and ‘reached’ sets in different combined
states structures appropriate pointers can be used.

3. Itis useful to distinguish elements of set Q, which lies on slices (backward/forward) w.r.t. given property R,
such technique significantly reduces model size to be observed.

4. The ‘wanted’ set can be replaced with a Boolean flag, which will only indicate the presence of
‘something uncovered’ instead of storing a complete set of individual wanted items. This replacement is a kind of
classic time/memory tradeoff — the memory saving may lead to redundant searching time.

5. In order to reduce the number of visited checking procedure calls, prioritize refined states lower than new
ones during the selection from WATIT.

6. The described method is compatible with the dynamic abstraction method [11] which reduces a state-space
of the model behavior analysis using relaxed checking of the states equivalence.

7. Experiments with the implementation of the algorithm demonstrate that for a model, which contains ~1000
transitions, the cumulative coverage computation time is less than one second. The high performance plays crucial role
for the interactive operation and makes the proposed approach usage really practical.

Conclusions

The proposed interactive strategy suggests a change of the human role in test cases generation: from step-by-step
exploration of one path to observation of all admissible paths w.r.t. specified property and choosing from the proposed
alternatives. While such strategy simplifies the searching process, increases the level of descriptive adequacy between
desired behavior and test case obtained, and thus, enhances quality of test cases, it also assists in model debugging and
revealing of undesired behavior. The approach shows its usefulness for legacy code analyzing and its behavior
understanding [12]. However, the proposed approach results are informative only for models with structured control
flow, in which points-of-interest are distributed along individual branches.

It is well known that the ability to handle the exponential growth of the search space is the most critical feature
of space exploration based methods [2, 4, 8, 11]. In this respect, the new efficient searching algorithm specialized for
the cumulative analysis is proposed. It stores and dynamically refines knowledge about sought coverage items reached
from each state to prune the remaining exploration; an early-terminated path can later be resumed upon the refinement
in order to hold completeness of the search. While the asymptotic complexity is not improved and memory
consumption is even increased, in many practical cases the algorithm terminates much earlier; the analyzed state space
potentially can be reduced exponentially, and thus, it significantly increases the maximum size of models for which the
proposed analysis can be algorithmically computed.
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