Memoou ma 3acobu npozpamnoi inicenepii

UDC 004.415.2.045 (076.5)

FORMAL FOUNDATIONS FOR SOFTWARE MODEL TO MODEL
TRANSFORMATION OPERATION

0.V. Chebanyuk

Software model transformation operations are central operations in Model-Driven approaches. In order to represent software models,
graphical modeling notations, for example UML, are used. Quality of software model, obtained after transformation, influences on further
operations with this model. Thus, it is important to design formal approaches for model to model transformation that are grounded on
analytical and mathematical tools. These approaches should provide a background for flexible adopting software model transformational
techniques for peculiarities of specific software development lifecycle model.

Challenges to mathematical tools and transformation rules that are involved to designing of model to model transformation approaches are
formulated in this paper. The ground of mathematical tools choice that is based on these challenges is performed.

An approach for performing model to model transformation, which is based on graph transformation, is presented in this paper.
Transformational operations are considered on meta-level and concrete level. On meta-level choosing of mathematical tools for representing
of transformation stages and transformational artifacts are grounded. Software models are represented as graphs. Initial information for
transformation is represented as a set of sub-graphs. Transformation rules are composed using second and first order logics. On the level of
the first-order logic all software model elements that participate in transformation are considered. In the level of second-order logic
transformation rule considers types of software model element that are participate in the transformation.

Proposed approach is extensible and may be used for extend functionality of model to model tools that process software models. For example
in MEDINI QVT there is no direct ways to compose a model to model transformation rule that considers those software models elements
that have no direct links.

Key words: Software Model, Software Model Transformation, Graph Transformation, Model-Driven Development, First-order logic,
Second-order logic, UML.

Onepauii mepeTBOpEeHHsT MOAEIEH MPOrPaMHOro 3a0e3MeUeHHS € [IEHTPATbHIMHE OIEPALiIMU Y MOAEIbHO-OPIEHTOBAHHUX IMTIIX0AaX PO3POOKH
IporpaMHOro 3abesnedeHHs. J[nsd THpeACTaBIEHHS MoOJENel INporpamMHOro 3a0e3ledyeHHs BHKOPUCTOBYIOTHCS Tpadiui HoTamii MoB
MopenmtoBauHs, Hanpukinang UML. SIkicte oTprMaHOi MOZeni mporpamHOro 3abesnedeHHs micist Tpancdopmanii Bu3Hauae e(heKTHBHICTH
Mogenelt mporpaMHoro 3abe3nedeHHs. Taki miaxoau 3a6e3nedyioTh MiArPYHTTS IVt THYYKOI aJanTanii TeXHIK Ta MiIX0AiB TpaHcdopmManii 3
ypaxyBaHH;IM OCOOIHBOCTEH MPOLIECIB IKUTTEBOTO LIUKITY IPOrPAMHOTO PO3POOKH MPOrPAMHOIO 3a0e3MeYeHHSI.

VY crarri copMysibOBaHi BUMOTH A0 aHANITHYHHX {HCTPYMEHTIB Ta HPaBUI TpaHC(hOpMAIii sIKi 3aCTOCOBYIOTHCS ISl PO3POOKU MiAXOIIB
Tparchopmarii Mogeneii. Takox HaBeIeHO OOTPyHTYBaHHS BHOOPY aHANITHYHUX IHCTPYMEHTIB, 110 Bi/TIOBIJAIOTh IIMM BUMOTaM.

VY poboti mpeacTaBaeHo MiIXiA NPOBEIEHHS omepalii Tpancdopmanii MoJeni B MOJENb, KUK 0a3yeThcsi Ha Tpad)OBOMY MEPETBOPEHHI.
Ompeanii Tpancdopmanii pO3IIAAAIOTECS HA MeTa pPiBHI Ta Ha PIiBHI JETaJbHOrO OMKCY Mofenel. BuxigHowo iHpopmaiieo s
Tparchopmarii ciayrye MEOKHHA Tia-rpadis. [IpaBuma Tparcdopmanii 3a7ar0ThCs 3a JOMOMOTOFO JIOTIK MEPIIOro i aApyroro mopsaky. Ha
PIBHI IpEeCTaBICHHS EJIEMEHTIB MOJeNeld MPOrpaMHOro 3ade3nedeHHs I8 3aJaHHs NpaBuil TpaHcdopmarlii BUKOPUCTOBYETHCS JIOTiKa
MEPIIOTO MOPS/IKY, HA PIBHI OMKCY TUIIIB €IEMEHTIB BUKOPUCTOBYETHCS JIOTIKA APYTOro MOPSIKY.

IMpencrapienuii MiXix € PO3MIMPIOBAHAM Ta MOXK€ BUKOPHCTOBYBATHCS NPH MOAMDIKAIi iCHYIOUMX CEepeNOBHII MEPETBOPEHHS MOJIEINEH.
Hanpuknan y MEDINI QVT BigcyTHs MOXIMBICTh c(OpMyBaTu mpaBuiia TpaHcdopmariii Mozgenei, 110 BKIIOYAIOTh €IEMEHTH, sKi He
3B’s13aHi O6e3nocepeanbo Ha UML niarpami.

Kiro4oBi croBa: Mojiens MporpamHOro 3abesredeHHs, TpaHchopMallis Mojenel mporpaMHoro 3adesnedeHHs0 rpadopa TpaHchopMallis,
PpO3po0Ka, 110 KePYEThCs: MOJIEINISIMH, JIOTiKa MEPIIOro MOPSIKY, JIoTika Apyroro nopsaxky, UML.

Omnepanun mpeoOpa3oBaHMsT MOJENEH MPOrPAMMHOTO OOECIIEUECHMs SBISIOTCA KIOYEBBIMH B MOJIENBHO-OPHEHTHPOBAHHBIX MOJIX0JAX
pa3paboTku TporpaMMHOro obecnedeHus. i NpencTaBIeHHs MOJENEH MPOrpaMMHOrO OOECTIEUEHMsT HCIONb3YIOTCS TpaduyecKue
HOTallMHU sI3bIKOB MozenupoBaHus, Hanpumep UML. KadecTBo momydeHHOIT MOJENH MPOrpaMMHOrO 00ECTeYeHUs! Hocie TpaHChopMaIiH
omnpenenseT 3pHEKTHBHOCTE ee AaibHeifel 06paboTkn. DTo onmpeneNnseT akTyaabHOCTb 33a1a4n pa3paboTKN HOBEIX (POPMABHBIX MOJIX0JI0B
Juist TpaHcdopManuu Mojeneil IporpaMMHOro obecriedeHus. Takue MOAXOABI 0OECHEUHBAIOT OCHOBY JUISl THOKOHM aJanTaluy TEXHUK 1
METO/IOB TPAaHCHOPMALIIH C YIETOM 0COOCHHOCTEH MPOLIECCOB)KM3HEHHOTO IUKJIA pa3pabOTKH IPOrpaMMHOTO 00eCIIeueHHUSI.

B crarbe cdopmynnpoBaHbl TPeOOBaHMS K aHAJIUTHYECKHM HWHCTPYMEHTaM M TpaBHIaM TpaHC(OpMAIMH, KOTOPHIE MPUMEHSIOTCS UL
pa3paboTKH MOAX0J0B TpaHc(opMmanun Mozenei. Takxke mpuBeeHO 00OCHOBaHME BBIOOPA aHANTHTHYECKHX MHCTPYMEHTOB, OTBEYAFOIINX
9THM TPEeOOBAHUSIM.

IpencraBieHblii B cTaThe MOAXOA MNpeoOpa3oBaHMs W3 MOJEIM B MOJENb, OCHOBaHHBIH Ha rpadoBoii TpaHchopmarmu. Onpearun
TpaHc(OpMaIUK PacCMaTPUBAIOTCA Ha OONIEM YpPOBHE M HA YpPOBHE JeTaIbHOro omucaHusi Mopeneil. McxomHoil mH(opmamueit s
TpaHchOpPMAIUH CIIY>KHT MHOXKECTBO MOA-Tpados. [IpaBuia TpanchopManun 3a1ai0Tcsi ¢ HOMOIIBIO JIOTHK HEpBOTro U BTOpOro mopsiaka. Ha
YPOBHE 3JIEMEHTOB Mozieleil MPOrpaMMHOro 0OecTiedeH s IS 3a1aHus TIPaBHIII TPaHC()OPMAIINK HCIIONb3YEeTCsl JIOTHKA TIEPBOTO TOpsi/IKa, Ha
YPOBHE ONHCAHMUS THUIIOB 3JIEMEHTOB HCIOJIB3YETCs JJOTMKA BTOPOTO MOPSIIKA.

[pencraBiaeHHBIH MOAXOM SBISETCA PACHIUPSEMBIM U MOXKET HCIOIB30BATHCS MPH MOAU(UKANK CYIMIECTBYIONIMX Cpel MpeoOpa3oBaHHs
mozeneid. Hampumep, 8 MEDINI QVT oTcyrcTByeT BO3MOXKHOCTH C(OPMHPOBATH NpaBmiia TpaHC(HOPMAIMH MOAENEH, BKIFOYAFOIINX
3JIEMEHTHI, KOTOphIE He CBsI3aHbI HenocpeacTBeHHo Ha UML nuarpamme.

KnroueBble cioBa: MoIenb HPOrPaMMHOTO OOECTICUeHHs, TpaHChOpMalus MoJeNneld IMporpaMMHOrO 3ade3mnedeHHs, rpadosas
TpaHchopmanys, pa3paboTka, yrpassieMasi MOACISIMY, JIOTHKA MEPBOTO MOPsIIKA, JIOTHKa BToporo nopsiaka, UML.

1. Introduction

Software model transformation operations are central operations in Model-Driven approaches. This is explained
by the following facts:

e the stakeholders should use information from previous software development stages;

© 0.V. Chebanyuk, 2018
124 ISSN 1727-4907. Ipo6.aemu nporpamysannsi. 2018. Ne 2-3. CneniajbHuii BUILYCK

Memoou ma 3acobu npozpamuoi indcenepit

o different types of UML diagrams (UML 2.5) for successfully performing of specific tasks of some software
development process.

Each type of UML diagram covers different scale of software project and expresses specific part of software
project (structure or behavior). Automatizing of transformation operations lets quickly obtain software model,
containing information from previously generated models. Also it can facilitate other model processing information,
namely model refactoring, merging, comparing and others, i.e. transformations with the same type of software models.

In order to achieve this goal the following model transformation activities are implemented: Model to Model
(M2M), Model to Text (M2T), and Text to Model (T2M) transformations. Text in M2T and T2M transformations
means analytical representation of software model or skeleton of program. In the first case, the role of text is to be
subsidiary artefact that saves information about model. In the second case the role of text is to be target of
transformation (Truyen, 2006).

Other transformation’ aspects are horizontal and vertical software model transformations. A horizontal
transformation is a transformation where the source and target models reside at the same abstraction level. Typical
examples are refactoring (an endogenous transformation) and language migration (an exogenous transformation). A
vertical transformation is a transformation where the source and target models reside at different abstraction levels. A
typical example is refinement, where a specification is gradually refined into a full-fledged implementation, by means
of successive refinement steps that add more concrete information. Also code generation operations are considered as
vertical software model transformation (Czarnecki and Helsen, 2006).

Many papers, proposing strong contribution in model to model transformational approach, consider
transformational tasks, relating to concrete transformational languages (for example QVT, ATL or ATLAS). Also,
transformational rules are implemented, by means of concrete transformational environments (for example MEDINI
QVT). Respectively, transformational results are visualized in concrete modeling environments (for example eclipse or
visual studio) and software models are represented in concrete formats (XML or XMI).

Such approaches depend on possibilities of concrete tools, formats or transformational languages. Variety of
transformational operations is limited by supported features of chosen practical tools.

From other side, development of analytical approaches let avoiding transformation environment limitations and
composing transformational rules with different levels of complexity. When operation with software models are
defined, proper math apparatus for performing them is chosen. If one math approach can not satisfy all requirements,
additional operations with this approach are introduced, for example, creating of new algebras of spreading existing
ones. Other way is to define rules for transforming of one analytical representation to another.

Analytical transformation approaches let to provide a background for improving existing and designing new
transformational languages, environments and tools. Also additional operations of software model processing such as
model verification, validation may be described. These operations may be integrated into transformational approaches
to estimate software model before or after transformation.

Consequence: designing foundation for software model transformation lets support flexible adoption of
transformation techniques to business needs.

The paper is organized as follows: section two represents related works, section three contains task and
challenges to transformational approach, section four describes proposed approach and choosing of analytical
background for performing transformation operation. The last, fivth section represents conclusion and further
researches.

2. Related papers

Papers, related to software model transformation, can be divided to two classes, namely those which make
strong contribution in transformation techniques and those that develop analytical tools for designing new and
improving existing transformational approaches and techniques.

Detail review of papers, devoting to designing transformation methods and techniques grounded on
practical tools and environments is represented in paper (Chebanyuk and Markov, 2016). The result of this review
is summarizing achievements of researches according Model-Driven Engineering (MDE) promising. List of MDE
promising is also represented in paper (Chebanyuk and Markov, 2016). Analyzing this review, the requirements to
analytical automated method for model to model transformations, that cover all MDE promising, were formulated.

Also represent review of papers, making strong contribution in development of transformational
techniques.

Paper (Greiner et al, 2016) represents a case study dealing with incremental round-trip engineering of UML
class models and Java source code.

Described approach tries to prevent information loss during round-trip engineering by using a so called
trace model which is used to synchronize the Platform Independent and the Platform Specific Models.
Furthermore, the source code is updated using a fine grained bidirectional incremental merge. Also, information
loss is prevented by using Javadoc tags as annotations. Case model and code are changed simultaneously and the
changes are contradicting, one transformation direction has to be chosen, which causes that some changes might
get lost (Greiner et al, 2016).

The contribution of the survey (Seifermann and Groenda, 2016) is the identification and classification of
textual UML modeling notations. During the survey, authors found a total of thirty one textual UML notations.

125

Memoou ma 3acobu npozpamnoi inicenepii

The classification is aimed to include the user’s point of view and support the notation selection in teams. In total,
authors found 14 new notations compared to previous surveys: Alf, Alloy, AUML, Clafer, Dcharts, HUTN,
IOM/T, Nomnoml, pgf-umlcd, pgf-umlsd, tUML, txtUML, UML/P, and uml-sequence-diagram-dsl-txl. Authors
presented each of the twenty categories in detail including objectively checkable conditions that cover the level of
UML support, the editing experience, and the applicability in an engineering team.

Paper (Wu, 2016) addresses the issue of generating metamodel instances satisfying coverage criteria.

More specifically, this paper makes the following contributions:

e A technique that enables metamodel instances to be generated so that they satisfy partition-based coverage
criteria.

e Atechnique for generating metamodel instances which satisfy graph properties.

A metamodel is a structural diagram and can be depicted using the UML class diagram notation. Thus, the
coverage criteria defined for UML class diagram can also be borrowed for metamodels. To facilitate the
transformation from class diagrams with OCL constraints to Satisfiability Modulo Theories (SMT) formulas authors
use a bounded typed graph as an intermediate representation (Wu, 2016).

Paper (Natschlager et al, 2016) presents concept for Adaptive Variant Modeling (AdaVM). AdaVM is a part
of the AdaBPM framework for advanced adaptability and exception handling in formal business process models. In
addition, AdaVM considers linking of elements, propagation of changes, and visual highlighting of differences in
process variants. Authors showed that graph transformation techniques are well-suited for process variant
management and that variants can be automatically created by a few graph transformation rules specifying concrete
variations. Authors show that the adaptable approach is less complex regarding the type graph, source graphs, and
the number of rules and application conditions. New ideas, expressed in proposed approaches, are (i) the support of
variability by restriction and by extension with graph transformation techniques, (ii) linking and propagation of
changes, (iii) individual blocking of elements/attributes, and (iv) visual highlighting of differences in process
variants.

A review of mathematical foundations for providing realization of model transformation techniques is outlined
in (Rabbi et al, 2016).

A review of metamodeling tools is represented in paper (Favre and Duarte, 2016) and several metamodeling
frameworks are described.

3. Task

To define steps to perform model to model transformational operation and provide the following analysis for
every step:

1. Propose analytical tools for describing operations that are performed in every step.
2. To involve formal tools for representation of transformational rules and software models used in this step.

Challenges for mathematical tools

For software model representation:

e support both compact and detailed software model representation;

o allow flexible choosing set of diagram notation elements that participate in transformation;
e be convenient for model proceeding (analysis of structure, comparing, merging and so on);
e provide easy machine processing;

e be convenient for cognitive human perception (Chebanyuk and Markov, 2015).

For transformational rules:
e support both compact and detailed transformational operations;
e allow matching elements of compact and detailed view;

e be compatible with representation of rules in natural language. Namely reflect all transformational
conditions and details of transformational process.

4. Proposed approach

This work continues investigations, started in papers (Chebanyuk, 2014; Chebanyuk and Markov, 2016). In
paper (Chebanyuk, 2014) the method for behavioural software model synchronization was proposed. This method is
grounded on software model transformation.

To perform successfully software model to model transformation operation it is proposed to use the principle of
graph transformation (IBM, 2016). The idea of this principle is that elements of entire software model should be linked
between each other. Other words if software model is a graph then parts for transformation should be expressed as sub-
graphs. After applying transformation rules set of sub-graph is obtained.

126

Memoou ma 3acobu npozpamuoi indcenepit

To develop this approach it is necessary to propose:

. software model representation approach that is based on graph representation;
o formal representation of transformation rules, that is based on first and second order logics.
. set of rules, related to performing of transformational operations, in every transformation stage, namely:

e defining sub-graphs for transformation from initial software model;
o performing transformation operation, forming a set of resulting sub-graphs.

4.1 Software Model Representation Approach

Denote software model(SM) as: SM(O,L), where

O — a set of software model objects. Objects are elements of software model (SM) notations that can be
expressed as graph vertexes.

L — a set of links between O, that can be expressed as graph edges. Links are elements of software model
notation that can be expressed as edges.

As in transformation operation there are two software models define them as initial (SM,;;;,,) and resulting (
SM quiting): SMipiiar is a software model from which transformation is started. This model contains initial

information for transformation. SM is the model which is obtained after transformation. Thus:

resulting

SMiiia = (01, 1);0, ={o;; i =1,...,n.};

Lo={l; 1i=2em¥in =10, m L] O
SM equiing = (05, L,);0, ={0,, [k =1,...,n,}

L, :{|2,p |p :1,...,m2}; n, :loz I m, =| L, |

where O, —set of SM, ., objects, O, — set of SM objects.

resulting

L, —setof SM, s links, L, —set of SM links.

resulting

Initial and resulting are types of software models. For example if transformation performed from use case to
collaboration diagram we write transform SM to SM

Graph representation of software model is not new approach. Contribution of proposed one consists in allowing
forming parts of graph, namely sub-graphs that are important for particular transformation operation.
Thus, propose general representation of sub-graphs for some software model:

use_case collaboration *

SMSUb :(Osub1Lsub);O CO;L (- L
Osub :{Osub,i | i =1.., nsub}; Ngup :l Osub | J 2)

Lsub :{Isub,j | J :1""' msub};msub :| Lsub |

sub sub

where O, —setof SM,,;, objects, O, —set of SM
L, —setof SM,;y links, L,-setof SM

resulting objects.

resulting links.

Where: O, — a set of objects that are chosen from SM . Respectively Ly, — a set of links between elements

Oy €O, Denote SMI, - sub-graphs of SM respectively SMR,, — sub-graphs of SM

initial resulting *
Thus:
SMI_, = (OI, LI);
Ol ={ol, |i=1,...,nl}; 3

LI =11, | j=1..,ml}

127

Memoou ma 3acobu npozpamnoi inicenepii

SMR,, = (OR, LR);
OR={0R |i=1...,nR}; 4
LR={IR,| j=1...mR}

The purpose for designing SMlSub is the forming sub-graphs for further transformation. They are formed by

rules of choosing proper sub-graphs from SM(O,L) for concrete transformation operation. Denote these rules as initial
selecting rules.

SMR_,, are sub-graphs obtained after transformation operation.

4.2 Formal representation of transformation rules

Denote transformation operation as — . Thus:

SMI, —> SMR,,, . (5)

sub

(Ol,LI) - (OR, LR);

Ol €0, 0RO, Ll L, LRcL, ©

Representation of transformation rule in details:

((Oll’lll)""i(OIn’“n))_)((ORl’IRi)""v(ORm’IRm));
OlieOI,IlieLI,ORJ—eOR,IRjeLR; (7)

i=1....n; j=1...m; n=0OIl |, m=|OR|

To represent transformation rules transformational grammar (Chomsky, 1957) is used.

Transformation rules are syntax of this grammar (Chebanyuk and Markov, 2016). They explain how to generate
new sub-graphs from initial software model. Initial and resulting transformation information is represented as sub-
graphs of software models. Second order logic is used for representation of transformation rules in high level
(Chebanyuk and Markov, 2016) as it is written in (6). Also, such representation can be described in details (7) using
first-order logic (Chebanyuk and Markov, 2016).

4.3 Formal representation of initial selecting rules

Initial selecting rules define how to choose SMI, from SM, .., for performing transformational operation.

Denote initial selecting rule as R(SM, ..,) . Thus, operation of selecting SMI, applying R on SM is written

as follows:

initial

R(SMinitial) = SMlsub : (8)

Usually initial selecting rules are composed as conditional statements, defining which parts of SM, .., form

SMI

sub *

Denote sub-graph for selecting pairs from SM, ..., as S. Thus:

S = (0S, LS)

05 ={0S, [i=1,...n.},n, 4O, | LS ={IS || j=L...m},m, =| L, |’ ©

S — is a mask which is applied to every pair (0,,1,); 0, € O, 1, € L, . A mask may contain more than one graph pair.
Graph SMI, is formed by the next: every pair (0,,l,); 0,€0,,l, €L of SM,,;, is compared with

(0S,1S); 0S €O, IS € L, . If considered pairs are the same, then (0,,;); 0, € O,,l; € L is added to SMI, .
Thus statement (5) can be written as follows:

128

Memoou ma 3acobu npozpamuoi indcenepit

selectS from(SM, .,)=SMI, . (10)

Analogously with transformation rules also first and second logics for representation of initial selecting rules are
used.

5. General description of model to model transformation according to proposed formalization Describe steps of
model to model transformation approaches, that is based on formalisms, proposed above in Chapter 4.

1. Transformation rules for transforming SM,...,to SM
rules as TRANS.

resulting &€ cOMposed. Denote a set of transformation

TRANS :{—>i) |[i=1,..,t}; tTRANS]|. (17)
Formal representation of transformation rules is proposed in (6) and (7).

2. A set of initial selecting rules is formed. Denote it as RULES. Thus:

RULES ={R (SM,) |i =1....q}; q= RULES]|. (12)

3. RULES are applied to SM, ., to form set of SMI, for further transformation.

initial

Every R;(SM,) forms graph SMI ;. Denote a set of received SMI, as SMI .o . Thus:
SMIseIected = {SMlsub,i | I = 11 e q}v (13)
|SM|seIected |:| RULES |
SIv“selected,i = (14)

={(OSMIJ’ISMI i) | J =l""'nselectted,i}.

where g — is the number of sub-graphs in SMI — is a number of pairs of sub-graph SMI

sub,i ! nselected,i selected i *

4. SMI g is verified by deleting duplicated chains of pairs, that were obtained applying different initial
selecting rules. One chain can be considered as path of sub-graph.

5. SMI ;.ceq is transformed to set of sub-graphs in SM notation applying TRANS. Denote all obtained

resulting

sub-graphs in SM notation as SMR. Thus:

resulting

TRANS(SMI,....s) = SMR. (15)
SMlgy,; = SMR 5 5

. ') (16)
i=1..,0;,9=|SMI |

SMR,,, ={(0SMR,,ISMR,)

. 17)
|i=1...ng }
where Ngyp — is @ number of pairs of sub-graph SMR

6. From SMR SM
further works.

sub,i -

resulting is composed. Analytical approach for performing this operation will be proposed in

5. Conclusions

Formal foundations and corresponded approach for model to model transformation is proposed in this paper.
They are grounded on analytical representation of software models, transformation and initial selecting rules. It is
proposed to represent software models as graphs. Expressions (1) and (2) let describing software model both in general

129

Memoou ma 3acobu npozpamnoi inicenepii

and detailed view. In comparison with other approaches, for example (Chebanyuk, 2014), such representation allows
easily separating any part of software model for further analysis. Using the first and second order logics for expressions
of initial selecting and transformation rules given in (5)-(14), also let to consider transformation operations involving
necessary amount of details.

Representation of transformation rules, proposed in other papers for instance (Favre and Duarte, 2016) and
(Varro and Pataricza, 2003), often use predicate calculus for expression of transformation operations. It causes to using
complex expression for performing difficult transformations, including several conditions. Also operations of adopting
such analytical representation to transformation environments are expensive.

From the other side, methods of performing transformation tasks involving concrete transformation languages
(for instance ATLAS, QVT, QVT-R and others) and environments (MEDINIQVT, WEBDBF) are limited by
possibilities of considered modeling language and transformation environment.

The approach, proposed in this paper, allows considering transformation process both on metalevel and model
level (IBM, 2016). General transformation ideas and software models notations can be analyzed on metalevel.

Considering of sub-graphs and software models at level of elements lets analyzing transformations in details.
Doing this existing rules can be refined and new transformation rules also can be designed.

5. Further work

Develop a full analytical approach of model to model transformation that is grounded on collaboration of
mathematical tools, used for transformation operations. In order to accomplish this goal to do the following:

e propose an algorithm for designing of SM that is grounded on ontology analysis. This algorithm

resulting
should consider possibilities of human cognitive abilities for perception of software models (Chebanyuk and Markov,
2015);

o define operations that are used for analysis of software model before and after transformation, namely
software model verification and semantic checking. Propose and analytical tool for performing these operation;

e verify collaboration of proposed approaches with model of problem domain “Model-Driven Architecture
formal methods and approaches” proposed in paper (Chebanyuk and Markov, 2016).

Referencies

1. Chebanyuk Elena and Krassimir Markov. 2015. Software model cognitive value. International Journal “Information Theories and Applications”,
Vol. 22, Number 4, ITHEA 2015 http://www.foibg.com/ijita/vol22/ijita22-04-p04.pdf

2. Chebanyuk Elena and Krassimir Markov. 2016. Model of problem domain “Model-driven architecture formal methods and approaches”
International Journal “Information Content and Processing”, Vol. 22, Number 4, ITHEA 2016. P. 202-222.

3. Chebanyuk ELena.2014. Method of behavioural software models synchronization. International journal Informational models and analysis. —
2014, Ne 2. P 147-163. http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf

4. Chomsky, Noam. 1957. Syntactic Structures. Mouton publishers, Eilenberg: Mac Lane The, Hague, 1945 - 1957. ISBN 90 279 3385 5. p.107.
http://ewan.website/egg-course-1/readings/syntactic_structures.pdf

5. Czarnecki, Krzysztof and Simon Helsen. 2006. Feature-based survey of model transformation approaches. IBM Systems Journal Vol. 45 N 3:
2006. P. 621-645. ISSN :0018-8670, DOI: 10.1147/sj.453.0621.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5386627

6. Favre Liliana and Daniel Duarte. 2016. Formal MOF Metamodeling and Tool Support. In: MODELSWARD 2016, Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.
Desfray. SCITEPRESS - Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 99-110.
DOI1:10.5220/0005689200990110, http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=j1i7qrX33Ns=&t=1

7. Greiner Sandra, Thomas Buchmann, Bernhard Westfechtel. 2016. Bidirectional Transformations with QVT-R: A Case Study in Round-trip

Engineering UML Class Models and Java Source Code. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-

Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and

Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 15-27. DOI:10.5220/0005644700150027

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=efZXth7Zbbg=&t=1

IBM, 2016. http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf

Natschlager Christine, Verena Geistl, Christa lllibauerl and Robert Hutter. 2016. Modelling Business Process Variants using Graph

Transformation Rules In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-Driven Engineering and Software

Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications, Lda.

Portugal, 2016. ISBN: 978-989-758-168-7. P. 65-74. DOI:10.5220/0005686900870098.

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1

10. Rabbi Fazle, Yngve Lamo, Ingrid Chieh Yu, Lars Michael Kristensen. 2016. WebDPF: A Web-based Metamodelling and Model
Transformation Environment. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-Driven Engineering and
Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications,
Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 87-98. DOI:10.5220/0005686900870098,
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

11. Seifermann, Stephan and Henning Groenda. 2016. Survey on Textual Notations for the Unified Modeling Language In: MODELSWARD 2016,
Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires,

© ©

130

http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf
http://ewan.website/egg-course-1/readings/syntactic_structures.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5386627
http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=j1i7qrX33Ns=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=efZXth7Zbbg=&t=1
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1

Memoou ma 3acobu npozpamuoi indcenepit

B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 28-39.
DOI:10.5220/0005686900870098, http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

12. Truyen Frank. 2006. The Fast Guide to Model Driven Architecture. The Basics of Model Driven Architecture (MDA). Cephas Consulting Corp,
2006. http://www.omg.org/mda/mda_files/Cephas_ MDA _Fast_Guide.pdf

13. Wu Hao. 2016. Generating Metamodel Instances Satisfying Coverage Criteria via SMT Solving In: MODELSWARD 2016, Proceedings of the
4th International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.
Desfray. SCITEPRESS — Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 40-51.
DOI:10.5220/0005686900870098, http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1

Jlireparypa

1. Chebanyuk Elena and Krassimir Markov. 2015. Software model cognitive value. International Journal “Information Theories and Applications”,
Vol. 22, Number 4, ITHEA 2015 http://www.foibg.com/ijita/vol22/ijita22-04-p04.pdf

2. Chebanyuk Elena and Krassimir Markov. 2016. Model of problem domain “Model-driven architecture formal methods and approaches”
International Journal “Information Content and Processing”, Vol. 22, Number 4, ITHEA 2016. P. 202-222.

3. Chebanyuk ELena.2014. Method of behavioural software models synchronization. International journal Informational models and analysis. —
2014, Ne 2. P 147-163. http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf

4. Chomsky, Noam. 1957. Syntactic Structures. Mouton publishers, Eilenberg: Mac Lane The, Hague, 1945 - 1957. ISBN 90 279 3385 5. p.107.
http://ewan.website/egg-course-1/readings/syntactic_structures.pdf

5. Czarnecki, Krzysztof and Simon Helsen. 2006. Feature-based survey of model transformation approaches. IBM Systems Journal Vol. 45 N 3:
2006. P. 621-645. ISSN :0018-8670, DOI: 10.1147/sj.453.0621.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5386627

6. Favre Liliana and Daniel Duarte. 2016. Formal MOF Metamodeling and Tool Support. In: MODELSWARD 2016, Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.
Desfray. SCITEPRESS - Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 99-110.
DO01:10.5220/0005689200990110, http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=j1i7qrX33Ns=&t=1

7. Greiner Sandra, Thomas Buchmann, Bernhard Westfechtel. 2016. Bidirectional Transformations with QVT-R: A Case Study in Round-trip
Engineering UML Class Models and Java Source Code. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-
Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and
Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 15-27. DOI:10.5220/0005644700150027
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=efZXth7Zbbg=&t=1

8. IBM, 2016. http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf

9. Natschlager Christine, Verena Geistl, Christa Illibauerl and Robert Hutter. 2016. Modelling Business Process Variants using Graph
Transformation Rules In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-Driven Engineering and Software
Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications, Lda.
Portugal, 2016. ISBN: 978-989-758-168-7. P. 65-74. DOI:10.5220/0005686900870098.
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

10. Rabbi Fazle, Yngve Lamo, Ingrid Chieh Yu, Lars Michael Kristensen. 2016. WebDPF: A Web-based Metamodelling and Model
Transformation Environment. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-Driven Engineering and
Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications,
Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 87-98. DOI:10.5220/0005686900870098,
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

11. Seifermann, Stephan and Henning Groenda. 2016. Survey on Textual Notations for the Unified Modeling Language In: MODELSWARD 2016,
Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires,
B. Selic and P. Desfray. SCITEPRESS — Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 28-39.
DOI:10.5220/0005686900870098, http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

12. Truyen Frank. 2006. The Fast Guide to Model Driven Architecture. The Basics of Model Driven Architecture (MDA). Cephas Consulting Corp,
2006. http://www.omg.org/mda/mda_files/Cephas_ MDA _Fast_Guide.pdf

13. Wu Hao. 2016. Generating Metamodel Instances Satisfying Coverage Criteria via SMT Solving In: MODELSWARD 2016, Proceedings of the
4th International Conference on Model-Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.
Desfray. SCITEPRESS - Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. P. 40-51.
DOI1:10.5220/0005686900870098, http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?1D=lzjjeczBZuA=&t=1

About author:

Chebanyuk Elena,

PhD, accosiate professor of software engineering departement.
Number of publications approaximatelly 65:

in foreign journals — approximately 25, in Ukrainian 35.
ttps://orcid.org/0000-0002-9873-6010

Affiliation:

National Aviation University,
03680, Ukraine, Kyiv, Kosmonavta Komarova ave. 1.
Phone: (044) 406 7641,

E-mail: chebanyuk.elena@gmail.com,

chebanyuk.elena@ithea.org

131

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf
http://ewan.website/egg-course-1/readings/syntactic_structures.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5386627
http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=j1i7qrX33Ns=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=efZXth7Zbbg=&t=1
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
mailto:chebanyuk.elena@gmail.com

