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REALISTIC CORRECT SYSTEMS IMPLEMENTATION 
The present article and the forthcoming second part on Trusted Compiler Implementa-

tion address correct construction and functioning of large computer based systems. In view 
of so many annoying and dangerous system misbehaviors we ask: Can informaticians 
righteously be accounted for incorrectness of systems, will they be able to justify systems 
to work correctly as intended? We understand the word justification in the sense: design 
of computer based systems, formulation of mathematical models of information flows, and 
construction of controlling software are to be such that the expected system effects, the 
absence of internal failures, and the robustness towards misuses and malicious external at-
tacks are foreseeable as logical consequences of the models. 

Since more than 40 years, theoretical informatics, software engineering and compiler 
construction have made important contributions to correct specification and also to correct 
high-level implementation of compilers. But the third step, translation - bootstrapping - of 
high level compiler programs to host machine code by existing host compilers, is as impor-
tant. So far there are no realistic recipes to close this correctness gap, although it is known 
for some years that trust in executable code can dangerously be compromised by Trojan 
Horses in compiler executables, even if they pass strongest tests. 

 In the present first article we will give a comprehensive motivation and develop 
a mathematical theory in order to conscientiously prove the correctness of an initial fully 
trusted compiler executable. The task will be modularized in three steps. The third step of 
machine level compiler implementation verification is the topic of the forthcoming second 
part on Trusted Compiler Implementation. It closes the implementation gap, not only for 
compilers but also for correct software-based systems in general. Thus, the two articles to-
gether give a rather confident answer to the question raised in the title. 

1. Introduction 

Users of computer based systems 
are often heavily annoyed by errors, fail-
ures and system crashes. In our every day 
experience using programs we observe 
them to fail, for instance due to lack of 
memory, programming errors, compiler 
bugs, or misuses of optimizing compilers 
under wrong assumptions. Although very 
annoying, we all live with software errors, 
but we still hope that application pro-
grammers, compiler constructors, operat-
ing system designers and hardware engi-
neers have at least been sensible enough 
to detect and to signal any such error. 
Undetected errors might have harmful 
consequences, in particular if they are 
intentional, perhaps due to viruses or  
Trojan Horses. 

Often the user is accountable, us-
ing systems outside their specified do-
mains without even reading manuals or 
documentation. However, a large number 
of system misbehaviors is still due to the 
system constructors themselves, to pro-
fessionals, computer scientists, informati-
cians. It is obvious that they should take 

responsibility as any professional has to. 
But software constructors and their com-
panies hardly ever give guarantees for 
their products. And they are not even en-
forced to because customers purchase 
software products in full awareness of de-
fects. Nevertheless, informatics scientists 
and producers of computer based systems 
are responsible and not allowed to per-
manently neglect the problem of system 
misbehaviors in practice. 

1.1. Motivation and Outline. Our 
article addresses correct construction and 
functioning of large computer based sys-
tems. In view of so many annoying and 
dangerous system misbehaviors we ask 
(and positively answer) the question: Can 
informaticians be righteously accounted for 
system weaknesses, will they be able to 
justify systems to work correctly as in-
tended, to be dependable, reliable, robust? 

Since hardware turns out to be 
quite reliable, the question comes down 
to software, i.e. to abstract and mathe-
matically treatable components of sys-
tems. The rigid nature of matter educates 
hardware technologists to be extremely 
sensitive towards hardware failures; they 
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are felt as sensations. So system faults are 
mostly and increasingly caused by soft-
ware. This observation is crucial and 
matches the clear delimitation of respon-
sibilities between hardware and system 
software engineering. Software engineers 
are permitted to assume hardware to work 
correctly, and to exploit this assumption 
for equally sensitive, rigorous low level 
implementation verification of software. 
Once software engineers and application 
programmers can count on (trust in) the 
correctness of their low level machine 
implementations and integrated systems, 
an equal status of sensitivity also for 
software faults becomes justifiable. 

That is to say, at the low end, sys-
tem software engineering meets hardware 
engineering, and at the upper end, com-
piler constructors and system software 
engineers meet application programmers 
and software engineers. They want to ex-
press their software in problem-oriented 
languages and rely on machine inde-
pendent semantics. Compiler constructors 
cannot be made responsible for applica-
tion program faults. Actually, a compiler 
has to be constructed without any knowl-
edge about the intended meaning of ap-
plication programs. The contract has to 
be with respect to program semantics. As 
a return, the application programmer ex-
pects correctly implemented machine ex-
ecutables. But both, application and sys-
tem programmers have to be aware of 
what kinds of implementation correct-
nesses make sense and can realistically 
be guaranteed. We will reflect realistic 
requirements and introduce the notion of 
relative correctness and its preservation 
and variants in view of data and program 
representation and of errors which can be 
accepted or others which have to be 
avoided. 

Although an area of research and 
development since 40 years, realistic lan-
guage implementation, a central topic in 
system software engineering, is still a se-
vere gap in trustworthiness. Practical 
compiler construction proceeds in three 
steps: (1) Specification of a compiling re-
lation from source language to target 
machine code, (2) implementation of the 

compiling relation as a compiler program 
in an appropriate high level system pro-
gramming language, and (3) boot-
strapping the compiler, i.e. translation of 
the compiler source program into host 
machine code using an existing host 
compiler. Theoretical informatics, soft-
ware engineering and compiler construc-
tion have importantly contributed to-
wards correctness of the first two steps. 

1.1.1. Trusted Compiler Imple-
mentation. But how to verify the third, 
the low level step? So far there are no 
realistic recipes to close this gap, al-
though it is known for many years (at 
least since Ken Thompson's Turing 
Award lecture in 1984) that trust in ex-
ecutable code can dangerously be com-
promised by Trojan Horses in compiler 
executables, even if they pass strongest 
tests. Our article will show how to close 
this low level gap. The Deutsche For-
schungsgemeinschaft (DFG) research 
group Verifix has developed the method 
of rigorous syntactic a-posteriori code in-
spection in order to remove every source 
of crucial faults in initial compilers for 
appropriate high level system program-
ming languages. The method employs 
multi-pass translation with tightly 
neighboring intermediate languages and 
a diagonal bootstrapping technique 
which effectively is based on the above 
mentioned correctness assumptions and 
deliberations. A-posteriori result checking 
is applicable for the construction of veri-
fied compiler generators as well, and it is 
crucial to the development of strategies 
to substitute existing system software by 
proved correct modifications.  

There is a current trend for system 
software to be required open source, 
enabling source code scrutiny for operat-
ing system components, networking soft-
ware and also for compilers and other 
tools and utilities. This will definitely un-
veal a lot of bugs and even malicious 
code like Trojan Horses or so-called 
easter eggs. However, we want to stress, 
that the open source idea crucially de-
pends on trusted compilation. Source 
level scrutiny does not sufficiently guar-
antee trustworthiness of executable soft-
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ware [Thompson84, Goerigk99b, Goe-
rigk00a, Goerigk00b]. There are sophisti-
cated and intelligent techniques to com-
pletely hide Trojan Horses in binary 
compiler executables, which are not part 
of the alleged source code, but might 
cause unexpected, arbitrary, even catas-
trophic effects if target programs are 
eventually executed. No source code 
scrutiny, no source level verification, no 
compiler validation, virtually no test, not 
even the strong compiler bootstrap test 
does help. Note that in this situation it is 
also very unlikely that any of the known 
security techniques will help, because not 
even the application programmer can 
give a guarantee that her/his delivered 
application has not been compromised by 
auxiliary software utilities or compilers 
used during software construction. 

Industrial software production for 
realistic safety and security critical appli-
cations enforces immense checking ef-
forts. The amount of work is apparently 
unmanageable, and consequently, it is 
left undone. That is to say: On the one 
hand, we observe dangerous omissions in 
industrial practice. On the other hand, we 
realize how enormous the problems are. 
Thus, informatics science, in particular 
viewed at as an engineering science, has 
to attack them as problems of basic re-
search – supported by research funding 
institutions like Deutsche Forschungsge-
meinschaft (DFG) or German Federal 
Board of Safety and Security in Informa-
tion Technology (Bundesamt für Sicher-
heit in der Informationstechnik, BSI), in-
stitutions which we find in all states with 
high science and technology standards. 
We are not allowed to leave industry 
people alone with their responsibility for 
necessary efforts which are seemingly 
unsurmountable at present. It is neces-
sary to clearly identify the problems and 
to work towards methods for their rigor-
ous solution which work out in practice. 
Mathematics as the classical structure 
science helps. Again and again, mathe-
maticians invent ways of gaining and 
communicating insights, which are rigor-
ous and convincing even though or 
maybe even because they are not com-

pletely formal. We shall see that in the 
central area of correct compiler construc-
tion and implementation our techniques 
of insight can cope with realistic software 
tasks, and of course then can serve as a 
model outside the area of compilers. Ac-
tually, it is the too often neglected low 
level implementation verification of so-
called initial compilers which involves a 
certain amount of manual checking and 
proving [Goerigk/Langmaack01b]. For 
principle reasons we cannot leave all 
checking work to programmed computers 
if we do not want to run into circuli 
vitiosi. Trust in any executed program 
would furtheron dangerously and hope-
lessly depend on auxiliary software of 
uncertain pedigree [HSE01]. 

We do not want to blame or con-
demn anybody personally. The problem is 
enormous, very awkward, and in certain 
central areas it seems nearly unreasonable 
to ask for problem solutions in depth. 
However, because of potential disastrous 
consequences, informaticians must attack 
the problem and seek for solutions to 
give rigorous guarantees. And we shall 
see that in the crucial area of correct 
compiler construction, informatics sci-
ence can achieve quite a lot. There is a 
remarkable interplay of informatics as a 
foundational structure science and as an 
engineering science. 

The realistic recipe of bootstrap-
ping and syntactical a-posteriori code in-
spection, which Verifix has developed in 
order to close the low level implementa-
tion gap rigorously, and which has been 
applied to a realistic compiler executable 
for a useful systems programming lan-
guage, is the topic of the second article 
on Trusted Compiler Implementation [Go-
erigk/Langmaack01b]. 

1.2. Notions Mentioned in the  
Title. Let us briefly explain the notions 
which we mentioned in the title of this 
essay: Informatics (Computer Science in 
the Anglo-American literature) is the sci-
entific discipline of design, construction 
and networking and of application and 
programming of computers (often called 
processors). Although not the most mod-
ern one, this definition is well stressing 
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the two important areas of work: hard-
ware and software. Computer based sys-
tems (CBS) are engineering systems with 
embedded computers, programs, sensors, 
actuators, clocks and connecting chan-
nels in a physical environment [Schwei-
zer/Voss96]. Realistic computer based 
systems use to be large, complex, and 
safety and/or security critical [Laprie94]. 
The latter means that systems may cause 
heavy damages to health and economy 
by unintended (internal) failures and by 
intended (external) attacks. 

As a matter of fact, the bare exis-
tence of large computer based systems is 
justified. We need them. But what about 
correct construction and functioning of 
such systems? Can informaticians be 
made responsible, be accounted for, will 
they be able to justify systems to work 
correctly as intended? We use the term 
justification in this sense, i.e. for the de-
sign of computer based systems, the for-
mulation of mathematical models of in-
formation flows in systems and the con-
struction of software to be such that the 
expected system effects and the absence 
of failures and violations are foreseeable 
as logical consequences of the models 
alone. Not every system has such sub-
stantial delineable area which can be jus-
tified in this rigorous sense. In our opin-
ion, however, if such a rigorous treatment 
is possible, it should be required for high 
safety and security standards. If we can 
logically foresee (infer) every desired 
property, especially safety and security 
properties, then we say that the computer 
based system has been (mathematically) 
proved correct, has been verified. We use 
the word verification in this sense, 
whereas validation means finding by ex-
periments that a system fulfills our in-
tents. Validation is not our main topic in 
this essay. 

1.3. Consistent Checkability of 
Software Production Processes. Large 
computer based systems are essentially 
controlled by embedded processors and 
their software. General experience shows 
that the hardware processors actually 
work by far more reliably than software 
does and, hence, the weaknesses of com-

puter based systems are in most cases 
due to software problems. Every software 
production (implementation) process to-
day still has two major gaps in trustwor-
thiness of consistent checkability, namely 
the transitions from  

1. software design to high level 
source code (high level software engi-
neering) and 

2. from high level code to inte-
grated executable binary machine code 
(realistic compilation). 

Both gaps are under investigation 
in research and development since more 
than 30 years, but nevertheless even real-
istic compilation is still a severe gap in 
trustworthiness [BSI96]. Strictly speaking, 
realistic compilers are not correct and no 
compiler has yet sufficiently been veri-
fied. So the question arises whether in-
formatics and in particular theoretical 
computer science, programming language 
theory, compiler construction and soft-
ware engineering do not have any useful 
results to help in this situation. They 
have. And the insights are deep and also 
practical. But we have to admit that the 
results are often depending on too many 
complicated assumptions which the prac-
tical user has to check for in realistic 
situations. And unfortunately, in practice 
this so far requires many properly edu-
cated engineers and a lot of mathemati-
cal and logical skill.  

If we seriously look at informatics 
also as an engineering science, we ought 
to demonstrate solutions and to show that 
the necessary checking can be done in a 
thorough and convincing way. In particu-
lar, in this essay we will demonstrate a 
strategic solution to close the second 
gap, that of correct realistic compilation, 
which in turn is necessary for a convinc-
ing high level software engineering. 

1.4. DFG-Research Project Verifix- 
Correct Compilers. Correct realistic 
compilation is the major goal of the 
German joint project Verifix on Correct 
Compilers of the universities of Karlsruhe 
(G. Goos, W. Zimmermann), Kiel (W. 
Goerigk, H. Langmaack) and Ulm (A. 
Dold, F.W. von Henke). Verifix is a DFG-
funded research group since 1996. The 
goal is to develop repeatable engineering 
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repeatable engineering methods for con-
structing correct compilers and compiler 
generators 

• for realistic, industrially applica-
ble imperative and object-oriented source 
programming languages and 

• real world target and host proc-
essors 

• which, by help of mechanical 
proof support (e.g. by PVS [Owre+92] or 
ACL2 [Kaufmann/Moore94]) and by ex-
ploiting the idea of a-posteriori result 
checking are rigorously verified as execu-
table host machine programs and  

• which nevertheless generate ef-
ficient code that compares to unverified 
compilers. 

• Verifix uses practically and in-
dustrially approved compiler construction 
methods 

• and the proof methodology sup-
plements compiler construction, not vice 
versa. 

Compiler construction is crucial to 
the construction of (large) computer 
based systems, and correct realistic com-
pilers are necessary for a convincing con-
struction process of correctly working 
systems. Systems consist of hardware and 
controlling software, and software splits 
in system and application software. Com-
piler programs are system software, and 
even compilers like any other piece of 
systems or applications are executable by 
compiling into binary processor code. 
There is no doubt that it is reasonable to 
require compiling to be correct. 

 
Fig 1. The central role of correct compilers 

Sometimes we use the termini fully 
correct or fully verified if we want to em-
phasize that not only a mathematically 
specified compiling relation CSL

TL between 
source language SL and target language 
TL is proved correct, but that also an ex-
ecutable compiler version implementing 

this relation and implemented in binary 
HML-machine code of a real world host 
processor HM is proved correct without 
depending on any auxiliary unchecked 
tool execution. Note that the term fully 
correct makes sense for arbitrary software 
as well, which is mathematically specified 
on the one hand, and implemented on a 
machine on the other. 

We will make a difference between 
the terms proved correct and provably 
correct. We use provably correct in order 
to indicate that we are interested to de-
velop methods which generate proof 
documents, often aided by computers. 
These documents can rigorously be 
checked to be proofs1. If the documents 
are checked, for instance for a concrete 
compiler, we use the term proved correct. 
Of course, we have to admit that check-
ing might bear errors. So proved does not 
claim absolute truth. But it claims a rig-
orous attempt to gain mathematical cer-
tainty, which is much more than many 
other research areas can achieve. 

It is not true, that investigation 
into correct realistic compilation does not 
pay off just because software design and 
high level software engineering probably 
show up many more faults than compila-
tion. Unless we close the lower level gap 
with mathematical certainty, a major goal 
of Verifix, potential incorrect compilation 
will always critically disturb the recogni-
tion of certainties resp. uncertainties in 
high level software engineering. Correct 
realistic compilation establishes a trust-
worthy execution basis for further soft-
ware development. 

Informatics is well responsible for 
compilers with their program semantics 
and machines. Full verification of com-
pilers is manageable and feasible. Com-
pared to programming language theory 
and compiler construction practice, no 
other discipline of practical computer 
science is so well equipped with theory. 
Investigations in Verifix have brought up 
ideas and methods to incrementally re-
place compilers and to replace or encap-
                                                           

1 by more or less skilled informaticians. The 
required skill varies. Not every checking work 
requires trained mathematicians or logicians. 
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sulate system software components by 
fully verified software. 

1.5. Levels of Trustworthiness and 
Quality. The lower level gap due to real-
istic compilation has been made public 
by governmental boards like the German 
BSI, but also in other countries. In 1989, 
BSI published IT-safety and security lev-
els (of trustworthiness or IT-quality) 
[ZSI89]. In Germany, there are eight lev-
els from Q0 (unsufficiently checked) up 
to Q7 (formally verified, proofs and im-
plementation are performed by officially 
admitted tools). 

However, an "officially admitted" 
tool (like a compiler or theorem prover) 
is not necessarily fully verified. So for in-
stance a compiler just needs to pass an 
official validation test suite. It is well-
known, that such tests do not suffice nor 
replace correctness proofs [Dijkstra76]. 
Official IT-certification prescriptions like 
those published by BSI in 1989/90/94 
[ZSI89, ZSI90, BSI94] require: 

"The compilers employed must be offi-
cially validated and be admitted as 
implementation tools for Q7-systems 
by an official evaluation board." 

The terminus validated reveals that 
for tools like compilers the evaluation 
boards at present can only validate for 
instance by applying official test suites. 
The boards do not see any other rigorous 
checking or proof technique and hence 
suspect that one is not allowed to trust in 
the correctness of generated machine 
code and hence of any compiler. Thus, 
consequently BSI added the following 
additional requirement: 

“The transformations from source to 
target code executed by a compiler 
program on a host machine must be a-
posteriori checkable (“nachvollzieh-
bar”, “inspectable”).” 

For this reason certification au-
thorities still do not trust in any existing 
realistic compiler. Instead, they often per-
form parallel semantical inspections of 
both high level code and low level ma-
chine code [Pofahl95], i.e. they check a-
posteriori that the target code will work 
as expected from the source code. 

Such a code-inspection is a rigor-
ous a-posteriori checking of the target 
program πTL to perform as expected from 
the source program πSL, where the target 
program is the result of a successful 
compilation of the (well-formed) source 
program. The hope is that this is feasible 
if the mapping CSL

TL (the specification of 
the transformation) from source to target 
programs is “inspectable”, and hence that 
it is sufficient to check  

(πSL, πTL) ∈ CSL
TL. 

However, as long as CSL
TL is not 

proved correct, the checking involves 
semantical considerations. 

Inspection resp. a-posteriori result 
checking is an old idea [Blum+89]. And 
we know the method from school 
mathematics: since for instance integer 
division is felt more error prone than 
multiplication, we double-check the re-
sults of division by multiplication. We 
also use to double-check the results of 
linear equations solutions by simpler ma-
trix-vector-multiplication. By code inspec-
tion with respect to compilers we mean 
the a-posteriori result checking of com-
piler generated code. Result checking is 
often much easier than (a-posteriori) veri-
fication. Moreover, it is an interesting ob-
servation, that industrial software engi-
neers and certification boards trust the 
technique of a-posteriori result checking. 
Although there is a well-established and 
reasonably developed program verifica-
tion theory, it is often not well-applicable 
to large systems or even large amounts of 
low level code. Therefore it is so interest-
ing to observe, both from a theoretical 
and from a practical point of view, that 
realistic scientifically founded fully veri-
fied compiler construction has to reach 
back also to a-posteriori checking to a 
small, but decisive extent. 

We will see this later while proving 
low level compiler implementation 
correctness [Goerigk/Langmaack01b] and 
hence full compiler correctness. Conse-
quently, since this is possible and feasi-
ble, already in 1989/90 one of the authors 
proposed to introduce an even higher IT-
safety and security level of quality Q8 
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(Production, proof and checking tools are 
fully verified, not only at high level, but 
also down to implementations in execu-
table binary machine code). Otherwise, 
the low level gap of realistic compilation 
will remain open forever. 

2. Code Inspection in Compiler Con-
struction Processes 

The Verifix-thesis is that after 40 
years compiler construction and more 
than 30 years software engineering it 
should no longer be necessary to inspect 
low level generated code, not even for 
safety and security critical software. The 
new higher quality level Q8 should be 
introduced which is reaching beyond Q7. 
It should be desirable and required for 
industrial software construction, in par-
ticular for realistic compilers. We cannot 
entirely avoid manual low level code in-
spection [Fagan86], however, it is only 
necessary for initial compiler executables 
which cannot be implemented on behalf 
of a verified bootstrapping compiler ex-
ecutable. The requirement for low level 
code inspection only make sense in this 
respect. In principle, it should suffice to 
perform this work exactly once. However, 
realistic industrial correct compiler engi-
neering additionally needs repeatable 
methods for constructing correct initial 
compiler implementations from the 
scratch whenever necessary. 

The goal of correct realistic com-
piler construction in the view of Verifix is 
that compiler executables on real world 
host machines have to be provably cor-
rect, and if they are to be used for safety 
and security critical software implementa-
tion, they have to be proved correct. That 
means, that any executable binary ma-
chine program successfully generated 
from a well-formed source program is 
provably or proved correct with respect 
to the source program semantics. Ma-
chine program correctness may only de-
pend on 

• the correctness of source level 
application programs with respect to their 
specifications, 

• hardware, i.e. target and host 
processors to work correctly as described 
in their instruction manuals,  

• correct rigorous (mathematical, 
logical) reasoning 

Application programmers are re-
sponsible for the first assumption and 
hardware designers for the second. Hence, 
the compiler constructor only needs con-
sider the semantics of well-formed source 
programs and processors and needs not 
respect any further intention of system or 
application programmers. 

Since correctness of a compiler is 
defined by correctness of ist resulting 
target programs, we only depend on this 
property which equally well can be estab-
lished by a-posteriori result checking. In 
that case we sometimes use the term veri-
fying compiler. Suppose we have a given 
unverified compiler τHL from SL to TL 
written (or generated) in some high level 
host programming language HL. Suppose 
that τHL compiles via intermediate lan-
guages  

SL = IL0, IL1, ..., ILm = TL, m ≥ 1, 
by compiler passes  

τ1
HL; τ2

HL; ...; τm
HL = τHL 

which for a well-formed source program 
πSL may successfully generate intermedi-
ate programs 

πSL = πIL0, πIL1, ..., πILm = πTL. 

For all passes τi
HL we assume that 

we are able to write a-posteriori code in-
spection procedures γi

HL which we insert 
into τHL: 

τ1
HL; γ1

HL; τ2
HL; γ2

HL; ...; τm
HL; γm

HL = τ´HL. 

Syntax and static semantics of τHL 
has to make sure that the unverified 
passes τi

HL are safely encapsulated such 
that their semantics cannot interfere with 
the inspection procedures nor with any 
other passes. This method is obviously 
relying on the existence of an initial cor-
rect and correctly implemented compiler 
from HL to the compiler host machine 
code, because it is by no means realistic 
to assume HL to be a binary machine 
language. 
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In practice, there is no way around 
an initial correct compiler executable on 
some host machine. Moreover, HL should 
at least be usable, if not comfortably us-
able, for systems programming and writ-
ing compilers. 

Since programming languages, 
their semantics, hardware processors and 
their binary machine codes can accep-
tedly be modeled using mathematics, 
correct compiler specification and im-
plementation are in principle mathemati-
cal tasks. Perhaps they are not that deep, 
however, they require an exorbitant or-
ganization which is to be convincing and 
without any logical gap. 

Hardware engineering has, for 
good money reasons, developed an error 
handling culture by far better than soft-
ware engineering [Goerke96]. Hardware 
errors are sensations, whereas software 
errors are commonplace. Since hardware 
errors cannot easily be repaired, they 
bear the risk of high economic damage. 
Thus, hardware engineers seek even for 
small gaps where faults could creep in. 
Seemingly, software errors can easily be 
repaired. But often bug fixes make things 
even worse, and also software errors bear 
a high risk. 

If we assume hardware correct, 
then we can rely on hardware processors 
programmed by correct and correctly im-
plemented software. However, if a proc-
essor is endowed with verified high level 
programs, but additionally with some 
non-verified compilers, then it generally 
will not work failure-free for the time be-
ing. But the goal of fully reliable systems 
software is not hopeless. We will come 
back to this.  

3. Related Work on Compiler Verification 

Let us ask if literature does help in 
order to prove the three compiler imple-
mentation steps correct. Actually, we find 
intensive work on steps 1 and 2, although 
often under unrealistic assumptions so 
that the results have to be handled with 
care. Step 3 has nearly totally been ne-
glected. If the phrase ``compiler verifica-
tion´´ is used, then most of the authors 
mean step 1. There is virtually no work 

on full compiler verification. Therefore, 
the ProCoS project (1989—1995) has 
made a clear distinction between compil-
ing verification (step 1) and compiler im-
plementation verification (steps 2 and 3). 

Compiling verification is part of 
theoretical informatics and program se-
mantics and work on it has been started 
by J. McCarthy and J.A. Painter in 1967 
[McCarthy/Painter67]. Proof styles are 
operational [McCarthy/Painter67, Boer-
ger/Rosenzweig92, Boerger/Schulte98] or 
denotational [Milne/Strachey76] depend-
ing on how source language semantics is 
defined. If a source language has loops or 
(function) procedures, then term rewriting 
or copy rule semantics is employed 
throughout [Langmaack73, Loeckx/Sie-
be87]. Other operational styles split in 
natural [Nielson/Nielson92] or structural 
[Plotkin81] operational or state-machine-
like [Gurevich91, Gurevich95]. Denota-
tional semantics has started with D. Scott's 
work [Scott70, Scott/Strachey71], and 
typical compiling correctness proofs can 
be found in [Milne/Strachey76]. The au-
thors in [Hoare+93, Sampaio93, Mueller-
Olm96, Mueller-Olm/Wolf00] use an al-
gebraic denotational style for clearer 
modular proofs, based on state transfor-
mations resp. predicate transformers. 

Mechanical proofs are often based 
on interpreter semantics, a further variant 
of the operational style [Stoy77], and 
sometimes include high level compiler 
implementation verification (step 2) with 
e.g. HL = Stanford-Pascal [Polak81] or 
Boyer/Moore-Lisp [Moore88, Flatau92, 
Moore96] or Standard-ML [Curzon93a, 
Curzon94]. M. Broy [Broy92] uses the 
Larch-prover [Garland/Guttag91]. One 
should keep in mind, however, that the 
running theorem prover implementations 
are, strictly speaking, not completely 
verified. Their correctnesses again de-
pend on existing correct initial host com-
pilers, which are not available up to now. 

Recalling section 1, hackers might 
have intruded Trojan Horses [Thomp-
son84, Goerigk99b] via unverified start 
up compilers. Hence, we are left on hu-
man checkability of mechanical proof 
protocols (a-posteriori-proof checking). 
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High level compiler implementa-
tion verification (step 2) is a field within 
software engineering. Correct implemen-
tation rules have been worked out in 
many formal software engineering meth-
ods and projects like VDM [Jones90], 
RAISE [George+92], CIP [Bauer78, 
Partsch90], PROSPECTRA [Hoffmann/-
Krieg-Brueckner93], Z [Spivey92], B [Ab-
rial+91], and also the PVS-system 
[Dold00]. 

Literature on low and machine 
level compiler implementation verifica-
tion (step 3) is by far too sparse. There 
are only demands by some researchers 
like Ken Thompson [Thompson84], L.M. 
Chirica and D.F. Martin [Chirica/Mar-
tin86] and J S. Moore [Moore88, Mo-
ore96], no convincing realistic methods. 
Here is the most serious logical gap in 
full compiler verification. Unfortunately, 
a majority of software users and engi-
neers – as opposed to mathematicians 
and hardware engineers – do not feel 
logical gaps to be relevant unless they 
have been confronted with a counter-
example. So we need 

A. convincing realistic methods 
for low level implementation verification 
(step 3) 

B. striking counter-examples (fail-
ures) in case only step 3 has been left out. 

Let us first step into B and hence 
go on with an initial discurs on the po-
tential risk of omitting the low level ma-
chine code verification step for compilers: 

It is possible to construct a mali-
cious compiler executable which cor-
rectly compiles any but exactly two 
source programs [Goerigk99b, Thomp-
son84]. One exception can be chosen ar-
bitrarily, and the compiler can be con-
structed to generate arbitrary, perhaps 
catastrophic target code – for instance a 
security relevant back door in the Unix 
login procedure. The second exception is 
the compiler's own source code. The ex-
ecutable will reproduce itself if applied to 
this source code. If such a compiler gets 
used by accident as the pre-initial auxil-
iary tool for compiler implementation, 
without checking its result, it will pro-
duce an executable which still behaves 

maliciously, generates incorrect code for 
two programs, and one of them might 
eventually cause a catastrophe. It is very 
unlikely to find this program and thus 
such a hidden Trojan Horse by classical 
testing or compiler validation. Even 
Wirth's bootstrap test is passed, because 
the incorrect executable is constructed to 
reproduce itself in that case, and of 
course arbitrarily often, no matter if the 
compiler has been verified on source 
level or not. 

Additional low-level implementa-
tion verification guarantees correctness 
and the absence of such malicious behav-
ior. The initial compiler executable then 
provides a trusted execution basis neces-
sary in particular also for achieving secu-
rity. This is the topic of the companion 
paper [Goerigk/Langmaack01b]. 

4. Towards Trusted Realistic Compilation 

Experience in realistic compiler 
construction shows that in order to con-
struct correct compilers we are allowed to 
restrict ourselves to sequential imperative 
programming languages. For compilation 
we need no process programming nor any 
reactive or real-time behavior; compilers 
are sequential (and transformational) and 
we only depend on the correctness of 
their resulting target programs. This in-
sight crucially facilitates the foundational 
investigation in full compiler correctness 
proofs including the essential (and so far 
missing) implementation correctness 
proofs for executable compiler host ma-
chine code. Implementations of realistic 
compilers are constructed 

• in sequential, mostly in impera-
tive languages, 

• even if concurrent process or 
real-time languages are to be compiled. 

Consequently, we will study cor-
rect realistic compilation for sequential 
imperative programming languages, and 
in particular we restrict ourselves to 
transformational programs (cf. Section 5), 
because we are mainly interested in the 
input/output relations defined by pro-
gram semantics. We need full compiler 
correctness proofs only 
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• for one initial compiler per 
processor family with identified target 
and host machine language TML = HML 

• and for one sufficiently high-
level source language SL which allows for 
formulating compilers and system pro-
grams. 

All further compilers, e.g. optimiz-
ing compilers or those for more expres-
sive system programming languages SL1, 
compiler generators, any further systems 
software like provers, proof assistants and 
proof checkers need no further correct 
implementation steps below SL or SL1. In 
particular, no further machine code in-
spection is necessary, and executable bi-
nary versions of these programs can be 
generated purely mechanically following 
N. Wirth [Wirth77]. The resulting code is 
proved to be correct due to a bootstrap-
ping theorem [Goerigk/Langmaack01b], 
also found in [Langmaack97a, Goe-
rigk99a, Goerigk/Langmaack01, Goerigk-
/Langmaack01a]. As a conclusion we 
want to stress, that the second software 
production process gap (cf. [Goerigk/-
Langmaack01b]) can be closed if the 
Verifix-recipes of correct initial compilers 
and a-posteriori program-checking [Goe-
rigk/Langmaack01b] are obeyed. 

In the context of the Verifix-project 
we will furthermore demonstrate how to 
develop correct compiler generating tools 
and how to incorporate even unverified 
existing tools in a fully trusted and rigor-
ously proved correct manner [Heber-
le+98, Gaul+99, Gaul+96]. Moreover, 
the specification and verification system 
PVS [Owre+92] is used for mechanical 
proof support, in particular for the for-
malization and verification of the compil-
ing specifications, and for providing sup-
port for high level compiler implementa-
tion verification using a transformational 
approach. 

In the following we want to focus 
on how to develop a proved correct and 
hence trustworthy initial compiler im-
plementation which we believe is the 
foundational basis for the practical con-
struction of safe and secure, i.e. trustwor-
thy executable software. 

4.1. Three Steps towards Fully 
Correct Compilers. In his work on Piton's 
verified translation [Moore88, Moore96] J 
S. Moore recommends three steps in or-
der to present a convincing correctness 
proof of a compiler written (or imple-
mented) in executable binary host ma-
chine code HML: 

1. Specification of a compiling re-
lation C between abstract source and tar-
get languages SL and TL, and compiling 
(specification) verification w.r.t. an ap-

propriate semantics relation ⊑ between 
language semantics [[٠]] SL, [[٠]] TL.  

2. Implementation of a correspond-
ing compiler program τHL in a high level 
host language HL close to the specifica-
tion language, and high level compiler 
implementation verification (w.r.t. C and 
to program representations φSL

SL‘ and φTL
TL‘). 

3. Implementation of a correspond-
ing compiler executable τHML written in 
binary host machine language HML, and 
low level compiler implementation verifi-
cation (with respect to [[ τHL ]] HL and pro-
gram representations φSL‘

SL‘‘ and φTL‘
TL‘‘ ). 

If we work through every step, 
then τHL resp. τHML is a correct or verified 
compiler (implementation). If we want to 
stress that a correctness proof has been 
achieved even for a compiler executable 
like τHML on a real processor, then we 
sometimes call it fully correct (verified) as 
informally explained before. Figure 2 in-
formally outlines the three essential steps 
that we have to work through for the 
construction and verification of fully cor-
rect compilers, and in particular of fully 
correct initial compiler executables. We 
will make everything shown in this dia-
gram precise in the following sections 5 
and 6, and in particular we refer to sec-
tion 6.3.1, which discusses Figure 2 pre-
cisely. 

5. Transformational Programs 

We model the semantics of trans-
formational programs by partial relations 
(or multivalued partial functions) f be-
tween input domains Di and (not neces-
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Fig 2. Three steps for correct compiler implementation τHML 

sarily different) output domains Do. Thus, 
a program semantics is a subset  

f ⊆ Di × Do 

which we often will write as f ∈ Di ⇀Do  

(= 2 Di × Do) or as Di ⇀f Do; sometimes we 

also use f : Di ⇀ Do. In case f is single-

valued, we may also use → instead of ⇀. 
We use ";" to denote the well-known se-
mantical relational composition, i.e. if f1: 
D1 ⇀ D2 and f2: D3 ⇀D4, then f1 ; f2 =def  

=def{ (d1,d4) | ∃ d2 ∈ D2 ∩ D3 s.t. (d1,d2) ∈ f1 

and (d2,d4) ∈ f2 } ∈ D1⇀D4. Data or ele-
ments are often program or memory 
states or pairs of program and memory 
states (sometimes called configurations 
with control and data flow components) 
which we simply call states as well. 

Data in Di and Do are considered 
regular or non-erroneous. In order to han-
dle irregular data, i.e. finite and infinite 
errors, we assume that every data domain 
D is extended by an individually associ-
ated disjoint non-empty error set Ω, i.e.  

DΩ =def D ⊎ Ω 

and D ∩ Ω = ∅. For every transforma-
tional program semantics f we assume an 
extended version  

f ∈ Di
Ω ⇀ Do

Ω 

which we denote by the same symbol f 
unless this will cause ambiguities. We 

have Di
Ω = Di ⊎ Ωi and Do

Ω = Do ⊎ Ωo. 

Errors are final. No computation 
will ever recover from an error2. Thus, we 
require (the extended) f to be error strict, 
i.e. f to be total on Ωi and f (Ωi) ⊆ Ωo. 
However, we have to respect a further 
phenomenon. Errors are of essentially dif-
ferent types. They are either unavoidable 
and we have to accept them, like for in-
stance machine resource violations, or 
they are unacceptable and thus to be 
avoided. We will allow unacceptable er-
rors to cause unpredictable (or chaotic) 
consequences. In order to model this 
phenomenon, we partition Ω in a non-
empty set A ⊆ Ω of acceptable and a non-
empty set U =def Ω \ A of unacceptable or 
chaotic errors. So we require 

Ωi = A i ⊎ Ui and Ωo = A o ⊎ Uo 

and a strong error strictness, namely that f 
is total on Ωi (and thus on Ai and Ui) and  

f (A i) ⊆ A o and f (U i) ⊆ Uo . 

The error sets Ω are supposed to 
contain a particular standard error ele-
ment ⊥ which is to model infinite compu-
tation (divergence). So in particular we 
have ⊥o ∈ Ωo, and for extended program 
semantics f we additionally require  
(d, ⊥o) ∈ f or equivalently ⊥o ∈ f(d) when-
ever there is a non-terminating (infinite) 
computation of f starting with d ∈ Di

Ω. 

                                                           
2 Note that exceptions are not errors in 

our sense. We think of exceptions as special 
cases of non-local regular control flow. 
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Thus, we model transformational 
program semantics by strongly error strict 
extended relations between extended in-
put and output domains, and we addi-
tionally require them to meet the above 
condition for infinite computations. 

5.1. Correct Implementation. Let fs 
be a source and ft a target program se-
mantics. In the following we will explain 
when ft correctly implements fs. This re-
quires data representation relations ρi ∈ 

Di 
s Ω ⇀ D i

t Ω and ρo ∈ Do
s Ω ⇀ Do

t Ω between 
source and target input and output data. 
Both relations, ρi and ρo, and their in-
verses ρi

-1 and ρo
-1, have to be strongly 

error strict (we sometimes call such ρ's 
strongly error strict in both directions). 

 
Fig 3. Source and target program semantics 

fs, ft and data representations ρi, ρo 

Definition 5.1. (Correct implemen-
tation or refinement) ft is said to be a cor-
rect implementation or refinement of fs 
relative ρi and ρo and associated error 
sets, iff 

( ρi ; ft ) (d) ⊆ ( fs ; ρo) (d) ∪ Ao
t  

holds for all d ∈ Di
s where fs (d) ⊆ Do

s ∪ Ao
s 

(which is equivalent to ( fs ; ρo) (d) ⊆ Do
t ∪ 

∪Ao
t , because ρo is strongly error strict in 

both directions). 
For any target program computa-

tion, the outcome d'' in Do
t Ω is either an 

acceptable error output in Ao
t, or there 

exists a source program computation that 
either ends in a (regular) d' correspond-
ing to d'' or with an unacceptable (cha-
otic) error output in Uo

s.  
That is to say: If ft is a correct im-

plementation of fs, then ft either returns a 
correct result, or an acceptable error, or, 
if fs can compute an unacceptable error, ft 
may (chaotically) return any result, be-
cause we do not require anything in that 
case. 

If ft correctly implements fs relative 

ρi and ρo, we will write ρi ; ft ⊒ fs ; ρo or 

even shorter just ft ⊒ fs (with a boldface 

⊒). We indicate this diagram commuta-

tivity by the diagram in Figure 4 and we 
will later see that we can compose cor-
rect implementation diagrams both verti-
cally and horizontally, which is a very 
important fact for practical software en-
gineering and compiler generation. 

 
Fig 4: Commutative diagram expressing  

correct implementation 

There are some variations of cor-
rect (relative) implementation as of Defi-
nition 1, which we would like to discuss: 
We speak of correct acceptable imple-
mentation resp. of correct regular imple-
mentation or refinement, iff 

∅ ≠ ( ρi ; ft )(d) ⊆ ( fs; ρo)(d) ∪ Ao
t acceptable 

∅ ≠ ( ρi ; ft )(d) ⊆ ( fs ; ρo)(d) regular 

holds for all d ∈ Di 
s where ∅ ≠ fs (d) ⊆ Do

s ∪ 
∪Ao

s resp. ∅ ≠ fs (d) ⊆ Do
s. But note that – 

in contrast to the different program cor-
rectness notions (cf. Section 5.1.1) – all 
three implementation correctness notions 
are independent; neither one implies the 
other. It is remarkable, however, that 
concrete correctness proofs turn out to be 
of less complexity if ⊥ is supposed to be 
unacceptable, i.e. if we prove variants of 
correct regular implementation [Mueller-
Olm/Wolf00, Wolf00]. If ⊥ is supposed 
acceptable, then our experience shows, 
that we have to characterize greatest 
fixed points exactly and to additionally 
use computational or fixed point induc-
tion in order to prove variants of correct 
acceptable implementation, e.g. preserva-
tion of partial correctness [Goerigk00a, 
Goerigk00b]. 

5.1.1. Preservation of Relative 
Correctness. It is an important observa-
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tion, that we can exactly characterize cor-
rect implementation by preservation of 
relative correctness [Wolf00], which gen-
eralizes Floyd's and Hoare's notions of 
partial respectively total program cor-

rectness. Let f ∈ Di
 Ω ⇀ Do

 Ω be a program 
semantics and let Φ ⊆ Di and Ψ ⊆ Do be 
predicates, i.e. subsets of regular data. 

Definition 5.2. (Relative program 
correctness) f is called (relatively) correct 
with respect to (pre- and post-conditions) 
Φ and Ψ (<Φ> f <Ψ> for short), iff 

f (Φ) ⊆ Ψ ∪ Ao . 
If there is no ambiguity, and if the 

implicit parameters are clear from the 
context, we will sometimes leave out the 
word relative and simply speak of pro-
gram correctness. The following theorem 
says that ft correctly implements fs if and 
only if relative correctness of fs implies 
relative correctness of ft for all pre- and 
post-conditions Φ and Ψ. 

Theorem 5.1. (Preservation of rela-
tive correctness) ft correctly implements fs 

(ρi ; ft ⊒ fs ; ρo) if and only if, for all Φ ⊆ Di
s 

and Ψ ⊆ Do
s, 

<Φ> fs <Ψ> ⇒ < ρi(Φ) > ft < ρo(Ψ) >. 

Proof. Only if: Let fs (d) ⊆ Do
s ∪ Ao

s imply 
(ρi ; ft ) (d) ⊆ ( fs ; ρo ) (d) ∪ Ao

t for all d ∈ Di
s 

and let fs (Φ) ⊆ Ψ ∪ Ao
s. Claim: ft (ρi(Φ)) ⊆  

⊆ ρo(Ψ) ∪ Ao
t. In order to show this, let  

d ∈ Φ. Then fs (d) ⊆ Ψ ∪ Ao
s ⊆ Do

s ∪ Ao
s. 

Hence, 

ft (ρi (d)) ⊆ ρo( fs (d)) ∪ Ao
t 

 ⊆ ρo(Ψ ∪ Ao
s) ∪ Aot 

 = ρo(Ψ) ∪ Ao
t . 

If: Let fs(Φ) ⊆ Ψ ∪ Ao
s imply  

ft (ρi (Φ)) ⊆ ρo(Ψ) ∪ Ao
t for all Φ ⊆ Di

s and  
Ψ ⊆ Do

s, and let fs (d) ⊆ Do
s ∪ Ao

s. Claim:  
(ρi ; ft ) (d) ⊆ ( fs ; ρo) (d) ∪ Ao

t. For this, let  
Φ =def {d} and Ψ =def fs (d) ∩ Do

s. Then  
fs(Φ) = fs (d) = ( fs (d) ∩ Do

s ) ∪ ( fs (d) ∩ Ao
s ) ⊆ 

⊆Ψ ∪ Ao
s . So  

(ρi ; ft )(d) ⊆ ρo( fs (d) ∩ Do
s ) ∪ Ao

t ⊆  
⊆ ( fs ; ρo)(d) ∪ Ao

t . �  

Note that this theorem remains 
valid even if we relax strong error strict-
ness; we actually need not require ρi and 
ρo and their inverses to be total on error 
sets. We only need that they respect the 
partition in acceptable and unacceptable 
errors. However, we still prefer data rep-
resentation relations to be total on error 
sets (in both directions). 

Again, we may discuss variations of 
the notion of relative program correct-
ness, i.e. acceptable program correctness 
resp. regular program correctness with 
respect to pre-conditions Φ ⊆ Di and post-
conditions Ψ ⊆ Do: 

<Φ> f <Ψ>acc iff ∅ ≠ f(d) ⊆ Ψ ∪Ao (acceptable) 
<Φ> f <Ψ>reg iff ∅ ≠ f (d) ⊆ Ψ  (regular) 

respectively hold for all d ∈ Φ. Note that 
regular program correctness implies ac-
ceptable program correctness, which im-
plies relative program correctness. Fur-
thermore, correct acceptable resp. regular 
implementation is equivalent to preserva-
tion of acceptable resp. regular program 
correctness, i.e. ft correctly acceptably 
resp. regularly implements fs if and only if 

<Φ> fs <Ψ>acc ⇒ <ρi (Φ)> ft <ρo (Ψ)>acc 
(acceptable) 

<Φ> f <Ψ>reg ⇒ <ρi (Φ)> ft <ρo (Ψ)>reg (regular) 

respectively holds for all Φ ⊆ Di
s and  

Ψ ⊆ Do
s. 
5.1.2. Classical Notions of Correct 

Implementation. In which sense does 
relative or acceptable or regular program 
correctness generalize the classical no-
tions of partial or total program correct-
ness? Let f be an original, i.e. unextended 
program semantics 

f ∈ Di ⇀Do 

and let Φ ⊆ Di and Ψ ⊆ Do be pre- and 
post-conditions, respectively. f is called 
partially correct w.r.t. Φ and Ψ ({Φ} f {Ψ} 
for short), if f (Φ) ⊆ Ψ. f is called totally 
correct w.r.t. Φ and Ψ ([Φ] f [Ψ] for short), 
if f is partially correct w.r.t. Φ and Ψ, i.e.  
f (Φ) ⊆ Ψ, and additionally the domain 
dom f of f comprises Φ, i.e. if additionally 
dom f ⊇ Φ. 
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Let us now choose the same par-
ticular error sets A = Ai = Ao =def {a} and  
U = Ui = Uo =def {u} for both domains Di 
and Do with ⊥ ∈ {a,u} and Ω = Ωi = Ωo =def 
=def A⊎U, and extend f to f ext∈ Di

Ω⇀Do
Ω by  

f ext =def f ∪ ((Di \ dom f ) × {⊥}) ∪ idΩ 

f ext is strongly error strict, regardless of ⊥ 
being considered acceptable (Ai = Ao =def 
=def {⊥}, Ui = Uo =def {u}) or unacceptable 
(A i = Ao =def {a}, Ui = Uo =def {⊥}). dom(f ) =def 
=def dom f is the domain of f. 

Partial and Total Program Correct-
ness. Relative and acceptable correctness 
are equivalent to partial correctness 

<Φ> f ext <Ψ> ⇔ <Φ> f ext <Ψ>acc ⇔  {Φ} f {Ψ} 

if ⊥ = a is considered acceptable, and 
relative, acceptable and regular correct-
ness are equivalent to total correctness, if 
⊥ = u is considered unacceptable: 

<Φ> f ext <Ψ> ⇔ <Φ> f ext <Ψ>acc ⇔  
⇔ <Φ> f ext <Ψ>reg ⇔ [Φ] f [Ψ] 

Preservation of Partial and Total 
Program Correctness. It is not only that 
relative program correctness generalizes 
classical partial and total program correct-
ness. Our notion of correct (relative) im-
plementation also generalizes well-known 
implementation correctness notions. 

 

 
Fig 5: Classical correct implementation  

versus preservation of relative correctness. 
Consider a classical unextended implementa-
tion diagram (a). If we extend fs and ft as ex-
plained before, and if we extend the data 

representation relations ρi and ρo by ρi
ext =def 

=def ρi ∪ idΩ respectively ρo
ext =def ρo ∪ idΩ as 

well, then we get the extended diagram (b). 

If we consider ⊥ acceptable, then 

ρi
ext ; ft 

ext ⊒ fs 
ext ; ρo

ext ⇔ ρi ; ft  ⊆ fs ; ρo 

exactly expresses preservation of partial 
program correctness. On the other hand, 
if we consider ⊥ unacceptable, then 

ρi
ext ; ft 

ext ⊒ fs 
ext ; ρo

ext ⇔  
⇔ (ρi ; ft ) | dom( fs ; ρo) ⊆  fs ; ρo  
and dom ρi ; ft ⊇ dom fs ; ρo 

expresses exactly the classical preserva-
tion of total correctness. 

Hence, it is justified to transfer the 
terms total and partial to extended func-
tions or relations f ext, and we may use the 
words ``correct total (resp. partial) imple-
mentation'' instead of "correct regular 
(resp. relative) implementation". Also, we 
may replace "regular (resp. relative) pro-
gram correctness" again by "total (resp. 
partial) program correctness". 

The classical software engineering 
notion of correct implementation as 
propagated in many (also formal) soft-
ware engineering approaches like for in-
stance in VDM (Vienna Development 
Method) is preservation of total program 
correctness. We should, however, keep in 
mind that resources might well exhaust 
while machine programs are executed on 
real target machines, so that a compiled 
program semantics ft can in general not 
be proved to meet the requirements of 
correct implementation in the latter 
sense. Preservation of relative correctness 
gives us the necessary means to define 
adequate notions of correct implementa-
tion also for realistic correct compilation. 

5.2. Composability. We men-
tioned that composability (transitivity) of 
correct implementation is crucial for 
modular software construction and verifi-
cation, and in particular for stepwise 
compilation and compiler construction 
and implementation. In the following we 
prove vertical and horizontal transitivity, 
i.e. that we may (vertically) decompose 
correct implementations into steps (or 
phases), and that correct implementation 
distributes (horizontally) over sequential 
(relational) composition. In both cases we 
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will prove a more generally applicable 
transitivity result as well. 

 
Fig 6: Vertical composition expressed by 

commutative diagrams: If the inner diagrams 
are commutative, then so is the outer one. 

Theorem 5.2. (Vertical transitivity 
of correct implementation) If ft correctly 
implements fs, and if ft‘ does so for ft , 
then ft‘ correctly implements fs. 

Proof. Let Φ ⊆ Di
s, Ψ ⊆ Do

s and let 
<Φ> fs <Ψ> . Then, due to Theorem 5.1, 
we have <ρi(Φ)> ft <ρo(Ψ)> (commutativity 
of the upper diagram) and <ρi' (ρi(Φ))> ft‘ 
<ρo' (ρo(Ψ))> (commutativity of the lower 
diagram for pre-condition ρi (Φ) and post-
condition ρo(Ψ)). But the latter just means 

<(ρi ; ρi') (Φ)> ft‘ <(ρo ; ρo') (Ψ)> 
which completes the proof due to equiva-
lence of correct implementation and 
preservation of (relative) correctness 
(Theorem 5.1). �   

Theorem 5.3 (Horizontal transitivity 
of correct implementation) If ft correctly 
implements fs, and if ft‘ does so for fs‘, 
then ft ; ft‘ correctly implements fs ; fs‘. 

 
Fig 7: Horizontal composition expressed by 
commutative diagrams: If the inner diagrams 
are commutative, then so is the outer one. 

Proof. Let 

(1) ρi ; ft ⊒ fs ; ρo  and 

(2) ρo ; ft ⊒ fs ; ρo'  and 

(3) (fs ; fs‘ ) (d) ⊆ Do
s‘ ∪ Ao

s‘  

Claim: (ρi ; ft ; ft‘)(d) ⊆ ( fs ; fs‘; ρo')(d) ∪ 
∪ Ao

t‘. Note that (f ; g)(d) = g(f (d)) and that 
'';'' is associative and monotonic in both 
arguments. By (3) we have fs‘(fs(d)) ⊆ Do

s‘ ∪ 
∪Ao

s‘ and by ((2), commutativity of the 
right diagram) and associativity of '';'' we 
get (ρo; ft‘)(fs(d)) ⊆ (fs‘ ; ρo') (fs(d)) ∪ Ao

t‘ and 
hence 

(4) ft‘((fs ; ρo)(d)) ⊆ (fs ; fs ; ρo')(d) ∪ Ao
t‘ 

 and also 
(5)   ft‘((fs ; ρo)(d) ∪ Ao

t ) ⊆ ( fs ; fs‘; ρo')(d) ∪ Ao
t‘. 

The latter holds by strong error 
strictness of ft‘, i.e. ft‘ (Ao

t) ⊆ Ao
t‘, from (4). 

By strong error strictness of fs‘ and (3) we 
have fs(d) ⊆ Do

s ∪ Ao
s. Thus, by ((1), com-

mutativity of the left diagram) we get 

(6) (ρi ; ft) (d) ⊆ ( fs ; ρo)(d) ∪ Ao
t 

and finally, by monotonicity of relation 
composition, (6) and (5) we get 

(7) ft‘((ρi ; ft ) (d)) ⊆ ( fs ; fs‘ ; ρo')(d) ∪ Ao
t‘  

which is nothing but our claim. An alter-
native equivalent calculation would be 

(ρi ; ft ; ft‘)(d) = ft‘ ((ρi ; ft)(d)) ⊆ ft‘((fs ; ρo)(d) ∪ 
∪ Ao

t) ⊆ ft‘ ((fs ; ρo)(d)) ∪ Ao
t‘= 

= (ρo ; ft‘)(fs (d)) ∪ Ao
t‘ ⊆ (( fs‘ ; ρo')( fs (d)) ∪ 

∪ Ao
t‘) ∪ Ao

t‘ = (fs ; fs‘ ; ρo')(d) ∪ Ao
t‘. �  

Unfortunately, we have to prove 
horizontal transitivity in a different style. 
A proof as elegant as for vertical com-
posability would require program seman-
tics, in particular ft‘, to be error strict in 
both directions, which is of course not 
the case in general. Note also that both 
theorems would not hold if we would re-
lax the strong error strictness conditions 
for data representations. 

In practice we need more generally 
applicable versions of both the vertical 
and horizontal transitivity theorem. We 
will often find intermediate input and 
output data domains not to be exactly 
the same.  

Let, for vertical composition, com-
mutative inner diagrams and the outer 
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diagram with its data representations  
ρi ; ρi' and ρo ; ρo' be as in Figure 8. 

 
Fig 8. Weak vertical composability: If the  

inner diagrams are commutative and ft and ft‘‘ 
appropriately coincide, then the outer  

diagram is commutative as well. 

In order to ensure that ρi ; ρi' and  
ρo ; ρo' are error strict in both directions, 
we require the intermediate error sets to 
agree, i.e. Ai

t = Ai
t‘‘, Ui

t = Ui
t‘‘, Ao

t = Ao
t‘‘, and 

Uo
t = Uo

t‘‘. Furthermore, let 

Ii
 =def ρi(Di 

s Ω) ∩ ρi' -1( ft -1(Do
t‘ Ω)) ⊆ Di

t Ω ∩ Di
t‘‘Ω 

Io
 =def Do

t Ω ∩ ρo' –1 (Do
t‘ Ω) ⊆ Do

t Ω ∩ Do
t‘‘ Ω 

denote appropriate restrictions of domain 
and codomain (on the intermediate level) 
of input and output data representations, 
respectively. Then, if ft contains ft‘‘ on  

Ii
 × Io , we can prove the following vertical 
composition corollary: 

Corollary 5.1. If the two inner dia-
grams of Figure 8 are commutative, if the 
intermediate error sets agree, and if  
ft |Ii

 × Io 
⊇ ft‘‘ |Ii

 × Io 
, then the outer diagram is 

commutative as well. 
Proof. Consider the following 

(coupling) diagram:  

 

Since ft |Ii
 × Io 

⊇ ft‘‘ |Ii
 × Io

, it is im-

mediately clear that this diagram is 
commutative. Thus, the outer diagram is 
commutative due to vertical composition 
Theorem 5.2.  

For horizontal composition, let 
commutative (inner) diagrams and the 
outer diagram with sequential composi-
tions fs ; fs‘ respectively ft ; ft‘ be as in Fig-
ure 9. Again, for strong error strictness 
reasons, we require the intermediate error 
sets to agree, i.e. Ao

s = A i
s´, Uo

s = U i
s´,  

Ao
t = Ai

t´, and Uo
t = U i

t´.  

 
Fig 9: Weak horizontal composability: If the inner diagrams are  

commutative and the data representations ρo and ρi' appropriately  
coincide, then the outer diagram is commutative as well. 

Let, again, 

Is
 =def fs(Di 

s Ω) ∩ Di 
s‘ Ω ⊆ Do

s Ω ∩ Di 
s‘ Ω 

It
 =def ft (ρi(Di

s Ω)) ∩ ft‘ –1(Do
t‘ Ω) ⊆ Do

t Ω ∩ Di
t‘ Ω 

denote appropriate restrictions of (inter-
mediate) domain and codomain of 
source and target semantics, respec-
tively. Then, if the data representation 

relation ρo is contained in ρi' on Is
 × It

 , we 
can prove the following horizontal com-
position corollary: 

Corollary 5.2. If the two inner dia-
grams of Figure 9 are commutative, if the 
intermediate error sets agree, and if  
ρo |Is

 × It
 ⊆ ρi' |Is

 × It 
, then the outer diagram 

is commutative as well. 
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Proof. Consider the following 
(coupling) diagram:  

 

Since ρo |Is × It
 ⊆ ρi' |Is × It 

, it is imme-

diately clear that this diagram is commu-
tative. Thus, the outer diagram is commu-
tative due to horizontal composition 
Theorem 5.3. �  

Both more general theorems have 
been proved by construction of commuta-
tive coupling diagrams. In both cases, we 
have been looking for as weak as possible 
conditions under which we are allowed to 
compose commutative diagrams. Note, 
however, that we might sometimes be able 
to prove commutativity of more complex 
diagrams from commutativity of constitu-
ent diagrams even under weaker assump-
tions. Note also, that we might be able to 
prove correct implementation for a com-
posite diagram, even though one or more 
component diagrams are not commutative. 

Let us finally note, that every theo-
rem and corollary in this section does 
hold for any of our notions of correct im-
plementation, i.e. not only for correct 
relative (partial) implementation but also 
for correct acceptable and correct regular 
(total) implementation. We have defined 
a family of correct implementation no-
tions which allows for more elaborated 
and sophisticated adjustments to what-
ever the practical requirements for cor-
rect implementation really are. And the 
essential (proof engineering) quality of 
composability and hence modularizeabi-
lity is guaranteed for any choice. 

6. Correct Compiler Programs 

Main constituents of a program-
ming language are its set L of abstract 
syntactical programs and its language 
semantics [[٠]]  L : L → Sem L, a partial 
function from L into an associated seman-
tics space Sem L. The domain of [[٠]]  L is 
the set of so-called proper or well-formed 

programs. In case of a well-formed π and 
of sequential imperative programming 
languages we are aiming at, [[π]]  L can be 
defined as a relation between extended 
input and output data domains Di

L Ω and 
Do

L Ω as discussed in the previous sections:  

[[π]] L ∈ Sem L =def (Di
L Ω ⇀ Do

L Ω) 

For a source language SL, a target 
language TL and proper source programs 
πs ∈ SL and πt ∈ TL with semantics  
fs = [[πs]] SL and ft = [[πt]] TL, section 5 defines 

the semantical relation ft ⊒ fs of correct 
implementation: 

 
Fig 10. Correct implementation for  

sequential imperative programs 

Data representations ρi and ρo and 
associated acceptable and unacceptable 

error sets are implicit parameters of ⊒. 

Note also, that ⊒ implicitly defines if we 
mean preservation of relative (partial), 
acceptable or regular (total) correctness. 
We have not yet fixed any one of these 
parameters. 

6.1. Compiling Specifications. 
Every compiler program establishes a 
mapping between source and target pro-
grams, actually between source and tar-
get program representations like for in-
stance character sequences on the one 
and linkable object code format on the 
other hand. In order to talk about this 
mapping abstractly and to relate source 
and target programs semantically, we as-
sume that we have or can define a com-
piling (or transformation) specification  

C : SL ⇀ TL, 

a mathematical relation between abstract 
source and target programs. C might be 
given by a closed inductive definition, 
more or less constructive, or by a set of 
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bottom-up rewrite rules to be applied by 
a term or graph rewrite system (e.g. bot-
tom up rewrite systems, BURS [Pele-
gri/Graham88]) as for instance used in 
rule-based code generators. 

 
Fig 11. Correctness of the compiling  

specification C 

Definition 6.1 (Correct compiling 
specification) We call C correct, if and 
only if for any well-formed source pro-
gram πs ∈ SL, every associated target 
program πt ∈ C(πs) is a correct implemen-
tation of πs, i.e. if and only if the diagram 
in Figure 11 is commutative in the sense  

([[٠]] SL
-1; C) ⊆ (⊑; [[٠]] TL

–1). 

Note that we do not require C to 
be defined for all well-formed SL-
programs, and we will also not require 
this property for compiler program se-
mantics. Due to resource restrictions of 
finite host machines we won't be able to 
prove it for compiler programs, anyway, 
because realistic source languages con-
tain arbitrarily large programs. 

For any two programming lan-
guages SL and TL there is an implicitly 
given natural correct compiling specifica-
tion that simply relates any well-formed 
source program in SL to every of its cor-
rect implementations in TL: 

ℂ =def [[ ٠]] SL ; ⊑ ; [[٠]] TL 
–1 

The following calculation shows, 

that ℂ is correct (Actually, if we only 
consider well-formed programs, it is the 
largest correct compiling specification.): 

([[٠]] SL 
–1 ; ℂ) =  

= ([[٠]] SL
–1 ; [[٠]] SL

 ; ⊑ ; [[٠]] TL
–1) ⊆ (⊑; [[٠]] TL

–1). 

But how is a correct C related to ℂ 

in general? Of course, ℂ ⊈ C (C might 
even be empty, e.g. for the pathological 

compiler which fails on every source pro-
gram). Restricted to well-formed source 

programs, C is a subset of ℂ. However, in 
general C might relate non well-formed 
SL-programs (which have no semantics) 
to TL-programs. Perhaps well-formedness 
is hard to decide or even undecidable. So 
compilers sometimes generate or have to 
generate target code also for improper 
source programs without explicitly sig-
naling an error. The user should be care-
ful, keep this in mind and avoid non-
well-formed compiler inputs. In any case, 

in general C ⊈ ℂ as well. 

Hence, so far C is unrelated to ℂ, 
and so will be any correct implementa-
tion of C. This observation suggests to 
view at the program sets SL and TL as 
data domains and extend them by par-
ticular unacceptable error elements. This 
will allow us to also formally express in 
particular the well-formedness precondi-
tion that source programs have to fulfill if 
they are to be correctly compiled. We 
will do so also for the semantics spaces 
SemSL and Sem TL . 

For SLΩ and TLΩ we need an unac-
ceptable error nwf (for "non-well-formed") 
in USL and UTL, and for SemSL

Ω and 
SemTL

Ω
 we need an unacceptable error 

uds (for "undefined semantics") in USemSL 

and USemTL. C, ℂ, [[٠]] SL, [[٠]] TL and ⊑ are 
extended so that these artificial error ele-
ments are related to each other and to 
non-well-formed programs in SL and TL. 
Again we denote the extended relations 
by the same symbols. 

Observe in Figure 12 (b), that we 

used ⊒v to indicate the difference be-
tween (horizontal) correct implementation 

⊒ and (vertical) correct compiler imple-

mentation ⊒v (see section 6.3.3). For ⊒v 

(respectively ⊒v) only preservation of 
relative (partial) correctness makes sense 
in practice, i.e. commutativity of diagram 

(b) is only valid if ⊒v expresses correct 
relative (partial) implementation. 
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Fig 12. Correctness of extended compiling 
specifications. The original diagrams (a) (for 

C and ℂ) are commutative if and only if the 
corresponding extended diagrams (b) are. 

The extended C is a correct im-

plementation of the extended ℂ (Figure 
13) and hence this step homogeneously 
fits on top of a stack of further commuta-
tive diagrams establishing correct trans-
formation and implementation steps, all 

correctly tied together and related to ℂ 
by vertical composability due to Theorem 
5.2 and Corollary 5.1 from section 5. As 
any compiler program, also the compiling 
specification C reflects design decisions. 
It already selects particular target pro-
grams from the set of all possible correct 
implementations. 

 
Fig 13. Correctness definition for  
extended compiling specifications 

Theorem 6.1 (Correct compiling 
specifications) A compiling specification 
C is correct, if and only if it is a correct 

implementation of ℂ. 
Proof: If: by Figure 13, Figure 12 

(b) and vertical composition.  

Only if: Let πs ∈ SL and ℂ (π s) ⊆ 
⊆TL ∪ ATL (*), and let πt ∈ C(πs). We have 

to show: πt ∈ ℂ(πs) ∪ ATL. First note that 
πs is well-formed, i.e. has semantics  
[[ πs]] SL ∈ SemSL, because otherwise πt and 

ℂ(πs) would be the unacceptable error 
nwf ∉ TL ∪ ATL which contradicts (*). If  
πt ∈ ATL, then we are done. πt ∈ UTL is 
impossible, because πt would be nwf and 
hence πs not well-formed.  

So let πt ∈ TL. Then, ([[ πs]] SL, πt) ∈ 
∈ ([[٠] SL

–1 ; C). Due to correctness of C 
(Figure 12 (a)) we have ([[  πs]] SL, πt) ∈ 

∈ (⊑; [[٠]] TL
–1), that is to say (πs, πt) ∈  

∈ ([[٠]] SL ; ⊑ ; [[٠]] TL
—1). But the latter is 

exactly the definition of ℂ, hence we 

have πt ∈ ℂ(πs).  
6.2. Correct Compiler Programs. In 

order to prove that a compiler program 
(sometimes also called compiler 
implementation or simply compiler) is 
correct, we want to relate its semantics 
to the compiling specification. It is often 
a good advice to write a compiler in its 
own source language. In general, 
though, the compiler will be imple-
mented in a high level or a low level 
machine host language HL with seman-
tics space 

SemHL
Ω = (Di

HL Ω ⇀ Do
HL Ω )Ω. 

If we want to call an HL-program τh 
a compiler from SL to TL, then we need 
representation relations φs and φt to rep-
resent SL- and TL-programs as data in 
SL´ Ω =def Di

HL Ω resp. in TL´Ω =def Do
HL Ω. 

Note that there are a lot of data in SL´ 
and TL´ which do not represent pro-
grams, but for a consistent presentation 
we prefer to let a compiler program τh 
just be like any other HL-program. 

The situation is as described in 
Figure 14. However, in order to treat lan-
guages of concrete program repre-
sentations like SL´ and TL´ as reasonable 
programming languages, we require that 
[[٠]] SL´ =def φs

–1 ; [[٠]] SL and [[٠]] TL´ =def  
=def φ t

–1 ; [[٠]] TL are single-valued partial 
functions. Thus, any concrete representa-
tion of a well-formed SL- or TL-program 
has a unique semantics. 
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Fig 14. Compiler programs related to compil-
ing specifications. If the lower diagram is 
commutative as well, we call τh a correct 

compiler program 

Definition 6.2 (Correct compiler 
program) We call τh a correct compiler 

program, iff [[τh]] HL ⊒ ℂ, i.e. iff [[τh]] HL is a 
correct implementation of ℂ. 

If τh is a correct compiler, then the 
lower diagram of Figure 14 and, due to 
vertical composition, also the outer dia-
gram is commutative. Actually, we could 

equivalently have required ⊒-commuta-
tivity of the outer diagram. This would 
entail commutativity of both inner dia-
grams and in particular of the lower dia-
gram (the upper diagram is commutative 
anyway).  

The proof of the latter remark is a 
bit more detailed, but analogous to that 

of Theorem 6.1: Let πs ∈ SL and φt (ℂ(πs)) ⊆ 
⊆ TL´ ∪ ATL´ (*), and let π't ∈ [[πs]] SL(φs (πs)). 
We have to show π't ∈ φt(ℂ(πs)) ∪ ATL´. 
First note that πs is well-formed, i.e. has 

semantics [[πs]] SL. Otherwise, ℂ would as-
sign nwf ∈ UTL to πs which contradicts (*). 
If π't ∈ ATL´ , we are done. If π't ∈ UTL´, 
then by commutativity of the outer dia-

gram [[πs]] SL∈ (⊑; [[٠]] TL´ 
–1)–1 (UTL´) = {uds} 

contradicting well-formedness of πs. So 
let π't ∈ TL´. Commutativity of the outer 
diagram means ([[٠]] SL´

–1 ; [[τh]] HL)([[πs]] SL) ⊆ 

⊆ (⊑; [[٠]] TL´ 
–1)([[πs]] SL) ∪ ATL´ and therefore 

π't ∈ (⊑; [[٠]] TL´
–1)([[πs]] SL) = φt([[٠]] TL

—1 (⊑ 
⊑ ([[πs]] SL))). Since π't and [[πs]] SL are regu-

lar in TL´ resp. SemS, we have π't ∈  
∈ φt (ℂ(πs)) by definition of ℂ. �  

Any correct compiler program τh in-
duces an associated correct extended com-
piling specification Cτ =def (φs ; [[τh]] HL ; φt

–1) : 
SLΩ ⇀ TLΩ such that  

[[ τh ]] HL ⊒ C τ ⊒ ℂ . 

If [[τh]] HL is a correct implementa-
tion of any correct specification C, i.e.,  

[[ τh ]] HL ⊒ C ⊒ ℂ, then τh is a correct 

compiler program (cf. Figure 15). That is 
to say: A compiler program is correct, if 
and only if it is the correct implementa-
tion of a correct compiling specification. 

 
Fig 15. Compiler programs and compiling 

specifications. Due to vertical composition, a 
correct implementation of a correct compil-

ing specification is a correct compiler 

But what does happen, if we apply a 
correct compiler program to the represen-
tation of a well-formed source program? It 
should not be a surprise, that we will get 
at most a representation of a correct im-
plementation of the source program: 

Theorem 6.2. Let τh be a correct 
compiler program and let π's ∈ φs(πs) be 
the representation of a well-formed  
SL-program. Then any regular π't ∈  
∈ [[τh]] HL(π's) represents a correct imple-
mentation πt of πs. 

Proof: Since πs is well-formed,  

ℂ(πs) ⊆ TL and hence, since τh is a correct 
compiler program, we have (φs ; [[τh]] H L)(πs) ⊆ 
⊆ (ℂ;φt) (πs) ∪ Ao

HL. Thus,  

π't ∈ [[ τh ]] HL (π's) ⊆ [[ τh ]] HL (φs(πs)) ⊆  
⊆ (ℂ;φt) (πs) ∪ Ao

HL . 
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But π't is regular, i.e. π't ∉ Ao
HL. Therefore, 

π't ∈ (ℂ;φt) (πs). So π't ∈ φt(πt) for a πt ∈  

∈ ℂ(πs), which means [[πt]] TL ⊒ [[πs]] SL. �  

Let us call a concrete SL´- or TL´-
datum π's or π't a well-formed SL´- or TL´-
program, if it represents a well formed 
SL- or TL-program. Then π's or π't have 
semantics [[π's]] SL´ respectively [[π't]] TL´. 
Thus, it is defined when π't correctly im-
plements π's. According to Theorem 6.2, 
every regular result π't ∈ [[ τh ]] HL (π's) of a 
correct compiler τh, applied to a well-
formed π's, correctly implements π's. 

That is to say: A correct compiler, 
applied to a well-formed source program, 
returns at most correct implementations 
of that source program. 

6.3. Discussion and First Sum-
mary. We want to summarize some im-
portant observations and give some addi-
tional explanations. In particular, we will 
relate the definitions and notions defined 
in the previous sections to our informal 
sketch of a conscientious compiler cor-
rectness proof as of section 4.1 and in 
particular of Figure 2. Moreover, we will 
discuss McKeeman's T-diagram notation, 
give some remarks on the difference be-
tween correct implementation of user 
programs and of compiler programs, and 
finally we want to discuss correct imple-
mentation for optimizing compilers. 

6.3.1. Precise View at the Three 
Steps. Let us first come back to the dia-
gram shown in Figure 2 (page 13) in sec-
tion 4.1. In the previous sections (5, 6.1 
and 6.2) we have exactly defined every 
single notion mentioned in section 4.1 
and, hence, we now know precisely every 
conjecture we have to prove in order to 
implement an SL to TL compiler correctly 
as an executable program on a host 
processor HM. 

In Figure 2, every data set, pro-
gram set and semantics space, every pro-
gram semantics, data representation, pro-
gram representation, semantics function, 
compiling specification, compiler seman-
tics and semantics relation has to be ap-
propriately extended by unacceptable 
and acceptable error elements. The fol-
lowing commutative diagrams (Figure 16 
and 17) precisely express that C is a cor-
rect compiling specification, and that τHL 
respectively τHML are correct compiler 
programs. 

Programs and their representations 
have equal semantics. But we should ex-
plicitly note that in diagram 16 the com-
piler program τHML is not a representa-
tion of τHL. These two programs have in 
general different semantics, but the for-
mer is a correct implementation of the 
latter. 

 

Fig 16. This diagram is again illustrating the three steps for correct  
compiler implementation as of Figure 2 on page ?? 
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Fig 17. This diagram is again illustrating  
correct implementation as of Figure 4 on 

page ??. Note that [[πSL]] SL = [[π'SL]] SL´ = 

= [[π''SL]] SL´´ and analogously for TL 

6.3.2. T-Diagram Notation. McKee-
man's so-called T-diagrams allow to illus-
trate the effects of iterated compiler ap-
plications in an intuitive way. We use 
them as shorthand notations for particu-
lar diagrams as of Figure 18. 

 
Fig 18. The situation which we will abbrevi-

ate by McKeeman's T-diagrams 

Recall that ℂ is the natural correct 
compiling specification from SL to TL. 
Well-formed programs and their (syntac-
tical) φ-representations have equal se-
mantics, and τHL´ ∈ φHL

HL´(τHL) is a well-
formed HL´-program compiling syntacti-
cal SL´-programs to syntactical TL´-
programs. HL´ is the domain of perhaps 
more concrete syntactical representations 
of HL-programs. In this situation we use 
T-diagram (Figure 19) as an abbreviation 
for the diagram in Figure 18. However, 
we have to keep in mind that the con-
crete situation is a bit more involved,  

 
Fig 19. McKeeman's T-diagram as a  
short-hand for the above situation 

that the T-diagrams do not explicitly ex-
press crucial differences between various 
program representations. We need to dis-
tinguish programs, program semantics 
and (syntactical) program representations 
in order to suffice requirements from 
practice. We cannot put practitioners 
short by elegant but too nebulous ideali-
zations. 

6.3.3. Correct Implementation ver-
sus Correct Compiler Implementation. If 
we bootstrap compiler programs, we have 
in general to distinguish between two dif-
ferent notions of correct implementation. 
Source programs are to be correctly im-
plemented by target programs (relating 
source to target programs) on the one 
hand, and the compiler itself is to be cor-
rectly implemented on the host machine 
(which relates the compiler source pro-
gram to the compiler machine program). 

Error behavior and required 
parameterization of application programs 
πSL, πTL and their representations πSL´, πTL´ 
, πSL´´ , πTL´´ are in general of a different 
nature and independent of the expected 
error behavior and required parameteriza-
tion for the compiler, i.e. for the specifi-
cation C and compiler programs τHL, τHML 
and their syntactical representations. 

For instance, let us assume SL to 
be a process programming language. The 
process programmer would not like to 
witness any uncertainty nor error at com-
putation time of source programs πSL re-
spectively πSL´, πSL´´. That is source pro-
grams are written such that 

 ∅ ≠ [[πSL]] SL (di
s) ⊆ Dos (1) 

holds whenever πSL is applied to an input 
di

s ∈ Di
s \ [[πSL]] SL

-1 (Uo
s) outside the domain 

of computations which possibly end in 
unacceptable errors. But this involves 
regular termination and hence total cor-
rectness of πSL which the process pro-
grammer requires to be preserved for 
any correct implementation πTL. He/she 
wants that 

∅ ≠ [[ πTL]] TL (di
t) ⊆ Dot (2) 
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holds whenever the target program πTL is 
applied upon the representation di

t ∈ ρi(di
s ), 

di
s ∉ [[πSL]] SL

-1(Uo
s), of the corresponding 

input. Correct regular (total) implementa-
tion together with (1) guarantees (2), be-
cause due to section 5.1, we have 

∅ ≠ [[ πTL]] TL(di
t) ⊆ ρo( [[ πSL]] SL(di

s)) ⊆ Dot. 
On the other hand, the same proc-

ess programmer will (and in general has 
to) accept compile time error reports, like 
for instance HM-memory overflow, while 
πSL is compiled to πTL, i.e. while the com-
piler machine implementation τHML is 
executed and applied upon a (syntactical) 
representation πSL´´ of the source program 
πSL. With respect to compilation, the 
process programmer wants a guarantee at 
execution time of πTL´´ whenever τHML has 
succeeded on HM and has generated the 
target program representation πTL´´, which 
means that (2) is established by success-
ful execution of the compiler implemen-
tation τHML. 

Note that there are no obvious 
natural mappings between the error sets 
Ao

s, Uo
s , Ao

t, Uo
t crucial for the correct im-

plementation of source programs by tar-
get programs on the one hand, and the 
error sets ATL´ =def Ao

HL, UTL´ =def Uo
HL,  

ATL´´ =def Ao
HML and UTL´ =def Uo

HML crucial 
for the correct implementation notion for 
generating the compiler machine execu-
table τHML on the other hand. We have to 
distinguish these two correct implementa-
tion relations. 

6.3.4. Notes on Optimizing Com-
pilers. As already mentioned, many exist-
ing and in particular optimizing compiler 
programs τh do not check all pre condi-
tions necessary for correct compilation of 
source programs. In particular optimizing 
transformations often need pre-conditions 
which, for practical reasons, are too hard 
to decide or are even algorithmically un-
decidable 3. Therefore, in general compil-

                                                           
3 For many programming languages it is algo-
rithmically undecidable whether or not for in-
stance variables are initialized before they are 
used, or if programs terminate regularly. 

ing specifications C or compiler program 
semantics [[ τh ]] HL might yield unreason-
able target programs even for well-
formed programs for which additional op-
timization pre-conditions do not hold. 

Our more elaborated view at cor-
rect implementation offers a remedy 
which exploits the notion of acceptable 
errors in ATL. Let us think of a compiler 
warning (like for instance "Warning: ar-
ray index check omitted in line ...") as a 
potential error message, i.e. as an indica-
tion for an eventually generated target 
program πt to potentially belong to the 
set of acceptable errors in ATL in the fol-
lowing sense: ''We [the compiler] give 
you [the compiler user] the following tar-
get program πt, but it contains optimiza-
tions which require additional pre condi-
tions Φ ⊆ Di

s for your source program to 
hold. If you cannot guarantee Φ, please 
take this as an error message, because πt 
might not be correct.'' 

That is to say: Besides the usual 
compiling specification C every source 
program πs carries an additional (optimi-
zation) pre-condition Φ = PC(πs) ⊆ Di

s,  

PC : SL → 2Dis, which leads to a modified 
source language semantics 

[[ πs]] SL,PC =def [[ πs]] SL ∪ (Dis\PC(πs)) × {pcf}, 

where pcf ∈ Uo
s reads as "(optimization) 

pre-condition false". Now, if compiling 
specification or compiler program deliver 
a target program together with an opti-
mization warning, then this guarantees a 
weaker correct implementation of πs by 
πt, namely that  

(ρi ; [[ πt]] TL) (di
s ) ⊆ ([[ πs]] SL; ρo) (di

s) ∪ Aot 
holds for all di

s ∈ PC(πs) with [[ πs]] SL(di
s ) ⊆ 

⊆ Di
s ∪ Ao

s. This weaker notion of correct 
implementation (with respect to [[٠]] SL) 
can equivalently be expressed by usual 
correct implementation, but with respect 
to the weaker semantics relation [[٠] SL,PC . 

A well-known optimization is the 
so-called redundant (dead) code elimina-
tion, which might violate preservation of 
relative (partial) correctness, e.g. which 
might eliminate the code that for some 
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input data di
s ∈ Di

s would cause a runtime 
error like for instance a division by zero. 
The source program πs might be partially 
(relatively) correct w.r.t. some pre- and 
post-conditions Φ´ resp. Ψ´, whereas the 
optimized target program πt is not. It 
might return a regular but incorrect re-
sult if applied to di

t ∉ ρi (Φ). If the addi-
tional optimization pre condition Φ does 
not hold for the input, πt might danger-
ously deceive the user. Its result might 
have nothing in common with any regu-
lar source program result do

s
. 

A different optimization is the so-
called unswitching, which might violate 
preservation of total (regular) correctness. 
Unswitching is an optimization that 
moves conditional branches outside loops 
and in particular changes the sequential 
order of conditional expressions while 
transforming 

while(b, if (c, π1,π2)) ↦ if (c, while (b, π1),  
while (b, π2)) . 

This transformation does in general 
not preserve regular (total) correctness. A 
process programmer, who has proved 
regular (total) correctness of a source 
program πs (containing the left statement) 
would dangerously be cheated by the 
program πt (containing an implementation 
of the right statement instead) if πt is ap-
plied to input data di

t ∉ ρi (Φ) such that b 
evaluates to false and c causes a runtime 
error. In that case, πt would incorrectly 
irregularly abort with an error, which 
might lead to a dangerous situation if πt 
controls for instance a safety critical 
process. 

7. From Correct Compiler Programs to 
Trusted Compiler Implementations 

At this point we have developed a 
mathematical theory of expressing com-
piling and compiler implementation cor-
rectness in a compositional, rigorous and 
realistic way using special commutative 
diagrams. In particular Figure 16 on page 
23 precisely defines the three essential 
proof obligations corresponding to the 
three tasks necessary in order to provide 

a rigorous and conscientious correctness 
proof for an initial trusted compiler ex-
ecutable. 

It is the machine (low) level com-
piler implementation correctness proof by 
bootstrapping and a-posteriori code in-
spection, which is new and for the first 
time closes the implementation gap rig-
orously and trustworthily. It needs further 
explanation. Therefore, the forthcoming 
second part of our article on Trusted 
Compiler Implementation [Goerigk/Lang-
maack01b] will go into detail on this 
proof for the initial trusted compiler ex-
ecutable which we have constructed and 
completely verified. The article will also 
give a security related motivation for low 
level implementation verification and 
show that otherwise correctness and thus 
trustworthiness cannot be guaranteed. 

For machine level compiler imple-
mentation verification we will use a spe-
cialized bootstrapping technique with a-
posteriori code-inspection. Initially, a 
Common Lisp system runs on and gener-
ates code for our compiler on an auxil-
iary processor. We use it as an unverified 
compiler generator which transforms its 
specification (the compiler source pro-
gram) and generates an (auxiliary) com-
piler machine executable. The generated 
executable depends on untrusted auxil-
iary software and is not verified. Its re-
sults have to be checked. Fortunately, we 
need to use this auxiliary executable only 
once. N. Wirth's technique of writing the 
compiler in its own source language en-
ables to bootstrap the compiler source 
again, and this run, if successful, gener-
ates a target program which should be 
the specified target code for the com-
piler. Although in general every result of 
the auxiliary executable would have to be 
checked, we need a-posteriori result 
checking only for exactly one run. 

This is because we realize an im-
portant difference to the general proce-
dure: As soon as the syntactical check 
succeeds and guarantees, that the gener-
ated binary is as specified by the seman-
tically correct compiling specification, a 
semantics to syntax reduction theorem 
applies and guarantees that the gener-
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ated binary is a (semantically) correct 
compiler executable on the target ma-
chine. Compiling specification verifica-
tion guarantees, that specification com-
pliance implies semantical correctness. 

Source and intermediate languages 
for the initial compiler are carefully cho-
sen in order to be able to finally produce 
a convincing complete rigorous proof 
document. They have particularly been 
chosen to isolate crucial compilation 
steps and to enable code inspection by 
target to source code comparison. 

The compiler will horizontally be 
decomposed in a (sequential) composi-
tion of subsequent passes. Vertical com-
position originates from horizontal com-
position: The compiler generates a tower 
of subsequent intermediate programs of 
decreasing abstraction level between 
high-level source and machine level tar-
get program. Each step (pass) corre-
sponds semantically to a commutative 
diagram expressing that the lower-level 
intermediate program correctly imple-
ments the higher-level program. 

For the initial compiler every in-
termediate program representation is 
made explicit. Every intermediate lan-
guage has an explicit composition opera-
tor expressing the (horizontal) sequential 
composition of passes. If the compiler is 
applied to itself, then every compiler pass 
explicitly transforms step by step the se-
quential composition of n (= 4) passes to 
again a sequential composition of n 
passes. The process finally corresponds 
semantically to an n by n matrix of com-
mutative diagrams (actually n+1 by n in-
cluding the specification on top), 
plugged together by horizontal and verti-
cal composition theorems. 

Semantical machine code inspec-
tion – to semantically understand and to 
assure the correctness of generated target 
code – is tedious, cumbersome, error-
prone and probably unmanageable. But 
also syntactical machine level code in-
spection, i.e. to compare source and ex-
pected low-level machine code with re-
spect to the (correct) compiling specifica-
tion, is cumbersome and should and can 
be further minimized. Horizontal and ver-

tical composition with only two small low 
level transformations will split the code 
inspection task in a number of small and 
easier parts. Lowest level machine code 
inspection is only necessary for the final 
code generation. Moreover, the boot-
strapping process can already make use 
of checked lower level passes to guaran-
tee implementation correctness for higher 
level intermediate code, which further 
helps saving much and in particular low 
level machine code inspection below the 
diagonal of the matrix mentioned above. 

The initial ComLisp compiler uses 
five subsequent passes including front 
end and code generation. They are by no 
means arbitrary. Front end, transforma-
tion of recursive procedures using stack 
technique, of recursive data types imple-
mented on a heap memory, of control 
structure to linear machine code, and 
code generation producing binary execu-
table code, all these passes coincide with 
passes identifiable also in compilers in 
general. They also adequately modularize 
the theorem prover supported mechanical 
proof of compiling correctness. 
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