
Інструментальні засоби та середовища програмування

© Dmytro V. Rahozin, 2019

ISSN 1727-4907. Проблеми програмування. 2019. № 4 3

UDC 681.3 https://doi.org/10.15407/pp2019.04.003

Dmytro V. Rahozin

A RESOURCE LIMITED PARALLEL PROGRAM MODEL

Modern parallel programs run in a complex, resource-limited environment, and this raises the new require-

ments for resource consumption and execution stability of long running processes. In order to help with check-

ing resource constraints for such parallel software a resource-limited parallel program formal model was de-

veloped. The model expresses the resource and time constraints and is suitable both for fine grained and

coarse-grained parallelism in programs. For higher degrees of parallelism (at independent procedure level, big-

ger loop iterations, large computing blocks for graphics, video and neural network processing) the interpreta-

tion of formal model can be done in run-time and avoid dead locks and hangs during resource allocation. We

are discussing several modern software frameworks that are able to integrate the functionality to interpret the

model and check the feasibility of the set of parallel programs running on hardware simultaneously with re-

source and time limitations. Real world tasks – neural network inference, video processing, general purpose

computing on GPU – which get benefits after enabling such models - are discussed.

Key words: formal model, parallel computing, parallel computing on graphics processing units.

Introduction

Nowadays parallel programming still

is an activity, which cannot be planned well in

terms of spent time and parallelization quality

(i. e. writing a good code, which fits underly-

ing architecture well in limited time and mon-

ey). This can be easily explained by increas-

ing complexity of underlying computing ar-

chitecture of the modern hardware. The paral-

lel architectures of 80ies had the minimal

number of cache levels, simpler memory hier-

archy and quite simple MESI cache protocols,

but even in this case the performant imple-

mentation of basic BLAS/LAPACK proce-

dures was a tricky thing. Today the state-of-

art parallel computing is based on Graphics

Processing Units (GPUs) which has quite

complex memory hierarchy, complicated da-

ta exchange paths between central processors

and GPUs and highly parallel SIMD-type

computational units. The sophisticated tuning

of GPU-based programs is mostly economi-

cally ineffective due to high labor cost and

longer time-to-market. This involves the use

of programming tools, which enable more

high-level programming structures than just

basic CUDA or OpenCL code.

The good examples of such tool are

the neural network descriptions tools. Starting

from Caffe tool [1], the inference and deep

learning phases in neural networks are based

on a high-level description of the network.

The network therefore is defined as a pipeline

of standard computing blocks (usually more

than 50 types of blocks are defined) and data

paths between them. This definition format

practically enables the development of a neu-

ral network from idea to optimized implemen-

tation without moving down to hand pro-

gramming the neural network behavior. The

success of Caffe lead other development

groups to implement alternate or competitive

neural network definition languages (Darknet

[2]) or integrate a set of packages into pro-

gramming languages and frameworks (Ten-

sorFlow [3]), sometimes incompatible. Of

course, the use of high level definitions is

not limited to neural network structure de-

scriptions.

1. Practical expressions of high-level

programming structures

Usually the simplified description of

a big computational pipeline lacks ability for

semi-precise optimization of resource use, as

there is no way to estimate possible changes

in computation pipeline which can use GPU

resources more effectively or estimate how

efficiently the neural network pipeline will

run on GPU simultaneously with other appli-

cations. The optimizations of such compu-

ting pipeline are hard and strictly depend on

underlying hardware architecture, which is a

trade secret for the main hardware market

players.

Other example is OpenCV framework

[4] extensions for matrix/image operations on

https://doi.org/10.15407/pp2019.04.003

Інструментальні засоби та середовища програмування

4

GPUs. Program can simply move matrices or

image operations to GPU without critical

changes in code, but the GPU memory man-

agement is done by hand by moving the im-

age data between central processor unit

(CPU) and GPU memory. Such a helper

(here helper mean the OpenCV functions set)

does not deal with actual computational re-

source allocation on GPU, so the user cannot

reach the best performance on GPU side

without additional and expensive platform-

dependent optimizations.

An interesting example is Gstreamer

[5] media processing pipeline. Started as an

eager media processing pipeline more than

30 years ago, now it is enriched with data

processing on GPU side. A good example is

Gstreamer-based DeepStream framework

from Nvidia [6], which provides optimized

neural network inference at GPU side. For

this case the data processing pipeline may

reach more than a hundred components,

which are controlled by a dozen of threads.

Despite of many efforts applied from Nvidia

side, basic Gstreamer functionality still uses

only rudimentary and hidden thread control

and does not bother with resource allocation

(either GPU memory or GPU computational

power).

Looking through these three cases the

can lighten the following flaws: 1) too high-

level model for neural network description,

where resource allocation (computational,

memory, communication) is out of scope

of the model; 2) too low-level model where

the user should deal with resources by hand

but not by describing them in model descrip-

tion; 3) even ignorance of resource alloca-

tion. All these flaws greatly affect the paral-

lel software system which goes from proof

of concept stage to customer environment

(i. e. productization process) experiencing

all computational, memory and communi-

cation resource constraints. Due to modern

shift of heavy computations to GPU side,

the productization process becomes a head-

ache for engineers, full of bug hunting and

code tricks to resolve various resource con-

straints. The problem appears more complex

in case if applications are long-running, so

the memory and other resource leaks can

be fatal.

In order to overcome the difficulties of

constraint management process we propose a

model, which allows to introduce resource

management process to frameworks such as

OpenCV, TensorFlow or Gstreamer. It should

be noted that these frameworks are different

in levels of parallelism expression. OpenCV

provides only basic parallelism, Gstreamer –

thread-level and Caffe/Tensorflow – coarse-

grain. Still we model will fit to all parallelism

types.

There are a lot of previous work intro-

ducing various concepts for parallel software

models, starting from Timed Finite Automa-

tons [7]. This article introduces resource con-

straints for parallel software models, which

are necessary for executing parallel program

in modern highly parallel and resource con-

strained environment.

2. A Model of Resource-Constrained

Parallel System

The definition of the system is de-

rived from [8], extending the previous defini-

tions. The word “real-time” is not used inten-

tionally, as the complex parallel system may

have both hardware and resource constraints

that prevent real-time behavior.

We consider a discrete-time model

where the time is represented as a set of non-

negative integer values denoted by ℕ. The

time progress is measured by clocks, which

are non-negative integer variables increased

constantly by one for some time. If com-

pared to [8] the definition “synchronously” is

dropped, as in real life system usually a

common reference clock is used. For the set

of clocks X, a valuation 𝑣: 𝑿 → ℕ is defined

– it is a function associating with each clock

its value v(x). For a clocks subset 𝑿′ ⊆ 𝑿 and

a clock value 𝑙 ∈ ℕ we denote by 𝑣(𝑿′, 𝑙, 𝑥)
the valuation that coincides with v for all

clocks 𝑥 ∈ 𝑿\𝑿′, and that associates l to all

clocks 𝑥 ∈ 𝑿′. It is defined by:

𝑣(𝑿′, 𝑙, 𝑥) = {
𝑙 if 𝑥 ∈ 𝑿′

𝑣(𝑥) otherwise.

Guards are used to specify when ac-

tions are enabled. Simple constrains over

Інструментальні засоби та середовища програмування

5

clocks X are considered. The grammar allows

to build general constrains over clocks:

𝑐 ≔ 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 |𝑥 ≤ 𝑘|𝑥 < 𝑘|𝑥 ≥

≥ 𝑘|𝑥 > 𝑘|𝑐 ∧ 𝑐|𝑐 ∨ 𝑐|¬𝑐.

The evaluation of a clock constraint c

for a valuation v of clocks X denoted by c(v)

is obtained by replacing each clock x by its

value v(x).

A guard g is a clock constraint c with

an urgency type 𝜏 ∈ { 𝑛, 𝑑, 𝑢 }, denoted by

𝑔 = [𝑐𝜏]. Here urgency types are used to

specify the need of the action in case if action

execution is enabled (i. e. when the clocks

constraint is true). Non-urgent actions are de-

noted by n, delayable actions (which should

be executed during their enable time interval)

by d, urgent actions (should be executed as

soon as they are enabled) are denoted by u.

The predicate urg[g] that characterizes the

valuations of clocks for which the guard

𝑔 = [𝑐𝜏] is urgent is defined by:

𝑢𝑟𝑔[𝑔](𝑣) ⇔

⇔ {

false if 𝑔 is non urgent (τ = n)

𝑐(𝑣) ∧ ¬𝑐(𝑣 + 𝐾) if 𝑔 is delayable (τ = d)

𝑐(𝑣) if 𝑔 is urgent (τ = u)

The set of guards over the set of

clocks X is denoted as G(X).

For given guards

𝑔1 = [𝑐1]
𝜏1 𝑎𝑛𝑑 𝑔2 = [𝑐2]

𝜏2,

the conjunction of g1 and g2 is denoted by

𝑔1 ∧ 𝑔2 and is defined by 𝑔1 ∧ 𝑔2 =
= [𝑐1 ∧ 𝑐2]

𝑚𝑎𝑥 𝜏1,𝜏2, considering that urgency

types are ordered as follows: 𝑛 < 𝑑 < 𝑢. So,

for given guard g=[c]
τ

and a valuation v, we

also write g(v) for the expression c(v).

Additionally, the resource constraints

are defined.

Additionally to model in [8] let us de-

fine the resource set P = { pi
t
}, where t is the

resource type, I is the resource index for some

number of identical resources in computation-

al system. Also the resource pi
t
 may be allo-

cated in part – pi
t
(k), where k is the amount of

resource pi
t
.

Let us define availability function for

resource: avl(pi
t
(k)), is it true is case if the re-

source is available.

3. Abstract model with

constraints

Definition 1. Abstract model with

constrains.

An abstract model is a timed automa-

ton M=(A,Q,X,P,→) such that:

- A is a finite set of (observable)

actions. In addition to actions A internal ac-

tions β. The set of actions A  {β} is denoted

as A
β
;

- Q is a finite set of control loca-

tions;

- P is the resource set;

- X is finite set of clocks

→ Q×(A
β
×G(X)×2

X
)×Q is a finite set of la-

beled transitions. A transition is a tuple

(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′) where a is an action executed

by the transition, g is guard over X, r is a sub-

set of clocks that are reset by the transition

and p is the resource necessary to be allocated

during the transaction. We write 𝑞
𝑎,𝑔,𝑟,𝑝
→ 𝑞′ for

(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′) ∈→.

An abstract model describes the plat-

form-independent behavior of the system.

Definition 2. (Abstract model

semantics). An abstract model 𝑀 =
= (𝑨,𝑸, 𝑿, 𝑷 →) defines a transition system

TS. States of TS are pairs (q,v), where q is a

control location of M and v is a valuation of

the clocks X.

Actions: We have (𝑞, 𝑣)
𝑎
→

𝑎
→ (𝑞′, 𝑣[𝑟 ⟼ 0])𝑖𝑓 𝑞

𝑎,𝑔,𝑟,𝑝
→

𝑎,𝑔,𝑟,𝑝
→ 𝑞′𝑖𝑛 𝑀 𝑎𝑛𝑑 𝑔(𝑣)𝑖𝑠 𝑡𝑟𝑢𝑒 and avl(p) is

true.

Time steps. For a waiting time

𝛿 ∈ ℕ, 𝛿 > 0, we have (𝑞, 𝑣)
𝛿
→(𝑞, 𝑣 + 𝛿) if

for all transitions

(𝑞
𝑎,𝑔,𝑟
→ 𝑞′𝑜𝑓 𝑀 𝑓𝑜𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿′ ∈

∈ [0, 𝛿[, ¬𝑢𝑟𝑔[𝑔](𝑣 + 𝛿′).

Urgency corresponds to priorities in-

duced by the timing constraints: urgent transi-

tions have priority compared to other possible

transitions. We denote by wait(q,v) the maxi-

mal waiting time allowed at (q,v). Always

wait(q,v+δ) = wait(q,v) – δ for all 𝛿 ∈

Інструментальні засоби та середовища програмування

6

∈ [0, 𝑤𝑎𝑖𝑡(𝑞, 𝑣)], and is formally defined as

follows:

𝑤𝑎𝑖𝑡(𝑞, 𝑣) =

= 𝒎𝒊𝒏({𝛿 ≥ 0|⋁ 𝑢𝑟𝑔[𝑔𝑖](𝑣 + 𝛿)
𝑞
𝑎𝑖,𝑔𝑖,𝑟𝑖,𝑝𝑖
→ 𝑞𝑖

} ∪

 ∪ {+∞}).

For an abstract model M =

=(A,Q,{x},P,→), a finite execution sequence

of M from an initial state (q0,v0) is a maximal

sequence of observable actions and time-steps

(𝑞𝑖, 𝑣𝑖) ↝
𝜎𝑖 (𝑞𝑖+1, 𝑣𝑖+1), 𝜎𝑖 ∈ 𝑨 ∪ 𝑁 and

𝑖 ∈ {0, 1, 2, … , 𝑛} (𝑖 ∈ ℕ), such that ↝ is the

transitive closure of → for β-transitions, that

is (𝑞𝑖, 𝑣𝑖) ↝
𝜎𝑖 (𝑞𝑖+1, 𝑣𝑖+1) if (𝑞𝑖, 𝑣𝑖)

𝛽
→
∗

𝛽
→
∗

(𝑞′
𝑖
, 𝑣′𝑖)

𝜎𝑖
→(𝑞′′𝑖, 𝑣

′′
𝑖)

𝛽
→
∗

(𝑞𝑖+1, 𝑣𝑖+1).

For example of this model you can re-

fer to Model 1 in [8].

Definition 3. (Composition of abstract

models). Let Mi = (Ai,Qi,Xi,Pi,→i), 1 ≤ 𝑖 ≤
≤ 𝑛, be a set of abstract models. We assume

that their sets of action and clocks are dis-

joint, i.e. for all 𝑖 ≠ 𝑗we have Ai ∩Aj=∅ and

Xi ∩Xj=∅. A set of interactions γ is a subset

of 2
A
, where 𝐴 = ⋃ 𝐴𝑖

𝑛
𝑖=1 , such that any in-

teraction a ∈γ contains at most one action of

each component Mi, that is, 𝑎 = {𝑎𝑖|𝑖 ∈ 𝐼}
where 𝑎𝑖∈𝐴𝑖and 𝐼 ⊆ {1,2, … , 𝑛}. The compo-

sition of the abstract models Mi, 1 ≤ 𝑖 ≤ 𝑛,

by using a set of interactions γ, denoted

by γ(M1,….,Mn), is the composite abstract

model M=(γ,Q,X,P,→) such that Q=Q1×

×Q2×… Qn, 𝑋 = ⋃ 𝑋𝑖
𝑛
𝑖=1 and →γ is defined

by the rules:

𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈ 𝛾

 𝑔 = ⋀ 𝑔𝑖𝑖∈𝐼

 𝑟 =⋃𝑟𝑖
𝑖∈𝐼

∀𝑖 ∈ 𝐼, 𝑞𝑖
𝑎𝑖,𝑔𝑖,𝑟𝑖,𝑝𝑖
→ 𝑞𝑖

′

∀𝑖 ∉ 𝐼. 𝑞𝑖
′ = 𝑞𝑖

(𝑞1, … , 𝑞𝑛)
(𝑎,𝑔,𝑟,𝑝)𝛾
→ (𝑞′

1
, … , 𝑞′

𝑛
)

аlso ∃𝑖 ∈ {1,… , 𝑛}. 𝑞𝑖
𝛽,𝑔𝑖,𝑟𝑖,𝑝𝑖
→ 𝑖 𝑞

′
𝑖

∀𝑖 ≠ 𝑗. 𝑞′
𝑗
= 𝑞𝑗

(𝑞1, … , 𝑞𝑛)
𝛽,𝑔𝑖,𝑟𝑖,𝑝𝑖
→ 𝛾 (𝑞

′
1
, … , 𝑞′

𝑛
).

A composition M=γ(M1,…,Mn) of ab-

stract models Mi, 1 ≤ 𝑖 ≤ 𝑛, can execute two

types of transitions: interactions 𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈
𝛾 which corresponds to synchronizations of

actions ai of models Mi, 𝑖 ∈ 𝐼, and internal ac-

tions β of the modeles Mi. An interaction

𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈ 𝛾is enabled from a state of M if

all actions ai are enabled.

In a composite model M=γ(M1,…,Mn)

many interaction can be enabled to act simul-

taneously (in the same time) introducing a de-

gree of non-determinism in the behavior of M.

In order to restrict non-determinism,

priorities are introduced that specify which

interaction should be executed among the en-

abled ones. A priority on M=γ(M1,…,Mn) is a

relation 𝜋 ⊆ 𝛾 × 𝑄 × 𝛾 such that for all q the

relation 𝜋𝑞 = {(𝑎, 𝑎
′)|(𝑎, 𝑞, 𝑎′) ∈ 𝜋} is a par-

tial order. We write aπqa' for (𝑎, 𝑞, 𝑎′) ∈ 𝜋 to

express the fact that a has weaker priority

than a' at state q. That is if both a and a' are

enabled at state q, only the action a' can be

executed. Thus, priority aπqa' is applied only

when the conjunction of the guards and re-

sources of a and a' is true. Let 𝑞
𝑎,𝑔,𝑟,𝑝
→ 𝛾 𝑞′ and

𝑞
𝑎′,𝑔′,𝑟′,𝑝′
→ 𝛾 𝑞′′ be transitions of M such that

g=[c]
τ
 and g'=[c']

τ'
. Applying priority aπqa'

boils down to transforming the guard g of a

into the guard gπ=[c˄¬𝑐′]τ
 and leaving the

guard g' of a' unchanged.

Furthermore we denote by enq(a) the

predicate characterizing valuations of clocks

for which an interaction a is enabled at state

q. It is defined by:

𝑒𝑛𝑞(𝑎) = {

𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 ∄(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑔′) ∈→𝛾

⋁ 𝑐

(𝑞,𝑎,[𝑐]𝜏,𝑟,𝑝,𝑞′∈→𝛾

− 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Definition 4. Priority. Given a compo-

site model M=(γ,Q,X,P,→γ) the application of

priority π to M defines a new model

πM=(γ,Q,X,P,→π) such that →π is defined by

the rule:

𝑞
𝑎,𝑔,𝑟,𝑝
→ 𝛾 𝑞

′, 𝑔 = [𝑐]𝜏,

Інструментальні засоби та середовища програмування

7

 𝑔𝜋 = [𝑐˄¬ ⋁ 𝑒𝑛𝑞(𝑎
′)

𝑎𝜋𝑞𝑎′

]

𝜏

𝑞
𝑎,𝑔𝜋,𝑟,𝑝
→ 𝜋 𝑞′.

Example of an abstract model with

priorities is considered in [8].

Abstract models are platform-

independent representations of programs with

atomic and instantaneous actions execution.

Real (“physical”) models represent the pro-

gram behavior on a real platform. It accounts

the fact that the action execution takes some

non-zero time. So we need to break action ex-

ecution atomicity and introduce execution

times. The transition of an action a of an ab-

stract model is replaced by a sequence of two

consecutive transitions of the corresponding

physical (real world) model – see figure 1.

The first transition marks the beginning of the

execution of action a, and the second transi-

tion marks its completion. These transitions

are separated by a partial state denoted by ⊥.

The execution time of the action corresponds

to the waiting time at state ⊥

𝑞
𝑎,𝑔,𝑟,𝑝
→ 𝑞′

⊥𝑡
→ 𝐪

𝑎,𝑔,𝑟,𝑝
→ ⊥𝑡

𝛽
→𝑞′

(Corresponding sequence of transitions in

𝑀⊥), where

𝑡 = (𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′)𝑖𝑛 𝑀.

This denoted the transformation of

transitions of the abstract model.

Definiton 5. Physical model. Let

M=(A,Q,X,P,→) be an abstract model. We

define the associated as the timed automaton

𝑀⊥=(A,𝐐 ∪ 𝐐⊥,X,P,→⊥) such that:

𝐐⊥is the set of partial states such that

there is one partial state for each transition of

M, that is, 𝐐⊥={⊥𝑡 |𝑡 ∈→}
→⊥is defined by the rule:

𝑞
𝑎,𝑔,𝑟,𝑝
→ 𝑞′ 𝑡=(𝑞,𝑎,𝑔,𝑟,𝑝,𝑞′)

𝑞
𝑎,𝑔,𝑟,𝑝
→ ⊥⊥𝑡 ⊥𝑡

𝛽,[𝑡𝑟𝑢𝑒]𝐼,∅,𝑡𝑟𝑢𝑒
→ ⊥𝑞′

.

In the physical model 𝑀⊥we assume

arbitrary execution times for actions, ranging

from 0 to +∞, which is modeled by the guard

[true]
|
 for β-transitions. Notice that 𝑀⊥can be

further constrained if bounds of the execution

times of actions are unknown. For instance, if

an estimate WCET(a) is known for the worst-

case execution timeof an action a, the associ-

ated timing constraint is [xa≤WCET(a)]
d
 in-

stead of [true]
|
, where xa is a clock that is reset

whenever a is started. This allows us to stati-

cally check the correctness of the application

running on the platform but this is beyond the

paper scope.

In a physical model 𝑀⊥, the execution

of the action a by a transition t=(q,a,g,r,p,q')

is followed by a lapse of time δ(a)∈ ℕ at the

partial state ⊥𝑡before a β-transition is execut-

ed:

(𝑞, 𝑣) ↝𝑎 (⊥𝑡, 𝑣[𝑟 ⟼ 0]) ↝𝛿(𝑎)

↝𝛿(𝑎) (𝑞′, 𝑣[𝑟 ⟼ 0] + 𝛿(𝑎)). (1)

This corresponds to the following exe-

cution sequence in the abstract model M, if

such a sequence is feasible:

(𝑞, 𝑣) ↝𝑎 (𝑞′, 𝑣[𝑟 ⟼ 0]) ↝𝛿(𝑎)

↝𝛿(𝑎) (𝑞′, 𝑣[𝑟 ⟼ 0] + 𝛿(𝑎)). (2)

It should be noticed that the time

stamp δ(a) of 𝑀⊥ in (1) may not be the time

stamp of M in (2) if δ(a)>wait(q',v[𝑟 ⟼ 0]),
meaning that the physical model violates tim-

ing constraints defined in the corresponding

abstract model. In this case we say that the

considered execution sequence is not time-

safe. (The execution times of abstract and

physical models are compared in [9] –

considering that if all execution sequences

of 𝑀⊥ are time-safe than 𝑀⊥ is weakly

simulated by M).

Correct model implementation should

execute only time-safe sequences, but time-

safety violations occur in a physical model

when the execution time of an action is larger

than what is allowed by the timing and re-

source constraints of the corresponding ab-

stract model. Correct implementations are ob-

tained for platforms that are sufficiently fast

for executing the program without violating

time-safety. Here the physical model pre-

serves the semantic of the abstract model as

shown in [10]. Otherwise the time-safety vio-

lations should be checked in run time.

Physical model composition consider-

ations and correctness considerations can be

checked in [8].

Інструментальні засоби та середовища програмування

8

So how we can deal with resource lim-

itations? State-of-the-art software packages

require simpler solutions, so model interpreta-

tion in run-time (such as in [11]) looks com-

plex and superfluous. In case if program is al-

ready expressed as a graph of scheduled

blocks, it is possible to evaluate model re-

quirements and behavior at the moments be-

tween the previous block finish and a the new

block start – this also works for moments of

spawning new parallel processes and joining

parallel processes for one new serial process.

This works well for cases enlisted before:

LAPACK-based computations [12], neural

network inference and media processing in

Gstreamer-like pipelines. Even it is possible

for interpreted code, such as Java or .Net,

where code assemblies can be annotated with

resource information.

4. Affected industry cases

Why all these model descriptions are

important for us although all they looks to be

abstract for real software business?

Before 2005 the parallel programming

was the area of academy pundits and small

groups of professionals in computer graphics

area. After 2005 the integrated circuits mak-

ing technology enabled so many transistors on

single die for hardware engineers so that the

single computing units (up to von Neumann

definitions) can not effectively use the hard-

ware. The most efficient way was to place

several processing units on one silicone crys-

tal, so that the silicone can run multiple pro-

cesses simultaneously somehow. It looked

like “as single CPU can not deal effectively,

let’s do multiple CPUs and the programmer

should do software in right way”. At practical

side a lot of money was invested into teaching

parallel programming in colleges and making

specialized computer languages for highly

parallel hardware – such as Nvidia CUDA

[13] or anti-Nvidia industry standard OpenCL

[14]. As the efficient parallel software re-

quires more time to invest, more skilled re-

sources and more money for test teams work

the new tendency was appeared – to make

frameworks which allow the programmer to

make parallel programs with simpler (less or

more simpler) descriptions. Such concept

looks nice but works hard. Two well-known

technology examples – CUDA and OpenCL

shows that the main model of writing a paral-

lel program for GPUs is a “producer-

consumer” model when a CPU-side program

controls GPU threads execution and none of

GPU threads are self-sufficient. Practically all

memory management employs CPU-GPU

memory communications, and memory com-

munications between neighbor GPU cards are

exceptions.

Under these conditions any software

developer experiences a serious technology

limitation, as any parallel program support

only its exclusive execution on GPU resource

and the resource pool subdivision between

different processes are possible only in case if

each parallel program allocates some number

of GPUs, leaving the other GPUs to counter-

part.

However, all technologies similar to

CUDA/OpenCL or any specialized parallel

programming languages do not decrease the

development time significantly. The good

ways to decrease programmer effort are infra-

structures, which shorten development time

for 90 % in simpler cases and for 50 % in

hard cases. The important issue is that the

most of the infrastructures are upgradable to

incorporate the described physical model.

Let us check several infrastructure (frame-

work) cases.

1) TensorFlow [3]. At least 60 % of

neural network learning and inference market.

Tensorflow interprets network model (using

Python language) based on a sequence of big

code blocks.

2) Caffee[1]. Near 30 % of neural

networking segment, written in optimized

C++. Caffee (conceptually similar to Tensor-

flow) interprets an abstract sequence of

blocks.

3) Gstreamer [5] and ffmpeg [15]

media processing pipelines. Both construct a

pipeline using already defined big code

blocks (plugins), including spawning parallel

processes and internal queue storage. Pipe-

lines also works for GPU-based computa-

tions. Both packages are widely used as a

base for industry media processing and

broadcasting.

4) OpenCV framework [4]. It is a

good base for parallel matrix computations

Інструментальні засоби та середовища програмування

9

(and 2D/3D processing) at GPU. Still the

OpenCV is more low-level library tool than a

framework, the packages can benefit from

model interpretation.

5) Simulation tools, starting from the

old good NS2 (good use example in [16]) and

other network simulations. In case of big runs

cluster-based modeling benefit from model

interpretations.

The proposed abstract and physical

models are good universal tools for many

frameworks. It can deal with both low level

descriptions of CPU-handled subroutines (at

50-100 CPU instructions level) and high-

level annotations for framework elements:

all timing and resource constraints remain

the same.

The next step will be more practical:

incorporation of the model interpreter into

one of the frameworks and practical test of

benefits got because of expressing the soft-

ware in term of physical model.

Conclusions

In order to meet the modern require-

ments for software development – less time,

more quality, lower expenses – this article

proposes the resource constrained model for

parallel programs, which allows to run (or

model the behavior) of multiple (and differ-

ent) parallel software runs under resource

constraints on real-world hardware systems.

In addition, the list of popular frameworks -

which can benefit from incorporating the el-

ements of the resource-constrained models in-

terpreter – is presented. The future work in-

cludes the extension of one of framework

with model interpreter for low-overhead re-

source checker on the fly (at program run

time) and real-world model examples.

References

1. Yangqing J., Shelhamer E., Donahue J.,

Karayev S., Long J., Girshick R., Guadarrama

S., Darrell T. (2014) Caffe: Convolutional Ar-

chitecture for Fase Feature Embedding. ArXiv

preprint: arXiv:1408.5039

2. Redmon J. (2013) [Online]. Darknet: Open

Source Neural Networks in C. – Available

from https://pjreddie.com/darknet/

3. Abadi M., Barham P., Chen J., Chen Z., Davis

A., Dean J., Devin M., Ghemawat S., Irving

G., Isard M. & others (2016). TensorFlow: A

System for Large-Scale Machine

Learning. OSDI. P. 265–283.

4. Bradsky G., Kaehler A. Learning OpenCV —

O’Reilly, 2008. P. 1.

5. Taymans W., Baker S., Wingo A. (2018)

GStreamer Application Development 1.10.1.

P. 164. 12
th
 Media Services.

6. DeepStream [Online] – Nvidia DeepStream

Software Development Kit – Available at

https://developer.nvidia.com/deepstream-sdk

7. Peter Hui and Satish Chikkagoudar. (2012) A

Formal Model for Real-time Parallel compu-

tation. In Proc of FTSCS-2012. P. 39–53.

8. Ahlem Triki, Jacques Combaz. (2013) Model-

Based implementation of Parallel Real-

Time Systems. Verimag Research Report TR-

2013-11

9. Wilhelm R., Altmeyer S., Burguiere C.,

Grund D., Herter J., Reineke J., Wachter B.,

Wilhelm S. Static timing analysis for hard re-

al-time systems. In Barthe G. and Herme-

negildo M.V., eds., WMCAI. 2010. Vol. 5944

of LNCS. P. 3–22. Springer.

10. Abdellatif T., Combaz J., Sifakis J. Model-

based implementation of real-time applica-

tions. In Carloni L.P. and Stavros Tripakis,

eds. EMSOFT. 2010. P. 229–238.

11. Basu A., Bogza M., Sifakis J. Modeling

heterogeneous real-time components in BIP.

In SEFM. 2006. P. 3–12. IEEE Computer

Society.

12. Baboulin M., Demmel J., Dongarra J., Tomov

S., and Volkov V. Enhancing the Performance

of Dense Linear Algebra Solvers on GPUs (in

the MAGMA Project) , Austin, TX, The In-

ternational Conference for High Performance

Computing, Networking, Storage, and Analy-

sis (SC08), Nov. 2008.

13. CUDA [Online] – Available at

https://developer.nvidia.com/cuda-zone

14. OpenCL [Online] – Available at Khronos

Group: https://www.khronos.org/opencl/

15. Xu Y.G. and Cao S.X. Real-Time Video

Acquisition and Frame Compression

Processing Technology Based on FFmpeg,

Applied Mechanics and Materials. 2014.

Vols. 631–632. P. 494–497.

16. Michael Welzl. Adaptive Multimedia

Communication over Satellite Routed IP". In

ICC 2000 (International Conference on

Communications – IEEE Communications

Society), New Orleans, Louisiana, USA,

18–22 June 2000.

Інструментальні засоби та середовища програмування

10

Література

1. Yangqing J., Shelhamer E., Donahue J.,

Karayev S., Long J., Girshick R., Guadarrama

S., Darrell T. (2014) Caffe: Convolutional Ar-

chitecture for Fase Feature Embedding. ArXiv

preprint: arXiv:1408.5039

2. Redmon J. (2013) [Online]. Darknet: Open

Source Neural Networks in C. – Available

from https://pjreddie.com/darknet/

3. Abadi M., Barham P., Chen J., Chen Z., Davis

A., Dean J., Devin M., Ghemawat S., Irving

G., Isard M. & others (2016). TensorFlow: A

System for Large-Scale Machine

Learning. OSDI. P. 265–283.

4. Bradsky G., Kaehler A. Learning OpenCV —

O’Reilly, 2008. P. 1.

5. Taymans W., Baker S., Wingo A. (2018)

GStreamer Application Development 1.10.1.

P. 164. 12
th
 Media Services.

6. DeepStream [Online] – Nvidia DeepStream

Software Development Kit – Available at

https://developer.nvidia.com/deepstream-sdk

7. Peter Hui and Satish Chikkagoudar. (2012) A

Formal Model for Real-time Parallel compu-

tation. In Proc of FTSCS-2012. P. 39–53.

8. Ahlem Triki, Jacques Combaz. (2013) Model-

Based implementation of Parallel Real-

Time Systems. Verimag Research Report TR-

2013-11

9. Wilhelm R., Altmeyer S., Burguiere C.,

Grund D., Herter J., Reineke J., Wachter B.,

Wilhelm S. Static timing analysis for hard re-

al-time systems. In Barthe G. and Herme-

negildo M.V., eds., WMCAI. 2010. Vol. 5944

of LNCS. P. 3–22. Springer.

10. Abdellatif T., Combaz J., Sifakis J. Model-

based implementation of real-time applica-

tions. In Carloni L.P. and Stavros Tripakis,

eds. EMSOFT. 2010. P. 229–238.

11. Basu A., Bogza M., Sifakis J. Modeling

heterogeneous real-time components in BIP.

In SEFM. 2006. P. 3–12. IEEE Computer

Society.

12. Baboulin M., Demmel J., Dongarra J., Tomov

S., and Volkov V. Enhancing the Performance

of Dense Linear Algebra Solvers on GPUs (in

the MAGMA Project) , Austin, TX, The In-

ternational Conference for High Performance

Computing, Networking, Storage, and Analy-

sis (SC08), Nov. 2008.

13. CUDA [Online] – Available at

https://developer.nvidia.com/cuda-zone

14. OpenCL [Online] – Available at Khronos

Group: https://www.khronos.org/opencl/

15. Xu Y.G. and Cao S.X. Real-Time Video

Acquisition and Frame Compression

Processing Technology Based on FFmpeg,

Applied Mechanics and Materials. 2014.

Vols. 631–632. P. 494–497.

16. Michael Welzl. Adaptive Multimedia

Communication over Satellite Routed IP". In

ICC 2000 (International Conference on

Communications – IEEE Communications

Society), New Orleans, Louisiana, USA,

18–22 June 2000.

Received 01.10.2019

About the author:

Dmytro V. Rahozin,

candidate of tech. sciences (PhD)

More than 10 publication in Ukrainian and

foreign journals.

https://orcid.org/0000-0002-8445-9921

Affiliation:

Institute of Software Systems,

NAS of Ukraine

03187, Kyiv-187,

Acad. Hlushkov avenue, 40.

Tel.: +38 068 575 91 25.

E-mail: dmytro.rahozin@gmail.com

