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A RESOURCE LIMITED PARALLEL PROGRAM MODEL 

Modern parallel programs run in a complex, resource-limited environment, and this raises the new require-

ments for resource consumption and execution stability of long running processes. In order to help with check-

ing resource constraints for such parallel software a resource-limited parallel program formal model was de-

veloped. The model expresses the resource and time constraints and is suitable both for fine grained and 

coarse-grained parallelism in programs. For higher degrees of parallelism (at independent procedure level, big-

ger loop iterations, large computing blocks for graphics, video and neural network processing) the interpreta-

tion of formal model can be done in run-time and avoid dead locks and hangs during resource allocation. We 

are discussing several modern software frameworks that are able to integrate the functionality to interpret the 

model and check the feasibility of the set of parallel programs running on hardware simultaneously with re-

source and time limitations. Real world tasks – neural network inference, video processing, general purpose 

computing on GPU – which get benefits after enabling such models - are discussed. 

Key words: formal model, parallel computing, parallel computing on graphics processing units. 

Introduction 

Nowadays parallel programming still 

is an activity, which cannot be planned well in 

terms of spent time and parallelization quality 

(i. e. writing a good code, which fits underly-

ing architecture well in limited time and mon-

ey). This can be easily explained by increas-

ing complexity of underlying computing ar-

chitecture of the modern hardware. The paral-

lel architectures of 80ies had the minimal 

number of cache levels, simpler memory hier-

archy and quite simple MESI cache protocols, 

but even in this case the performant imple-

mentation of basic BLAS/LAPACK proce-

dures was a tricky thing. Today the state-of-

art parallel computing is based on Graphics 

Processing Units (GPUs) which has quite 

complex memory hierarchy, complicated da-

ta exchange paths between central processors 

and GPUs and highly parallel SIMD-type 

computational units. The sophisticated tuning 

of GPU-based programs is mostly economi-

cally ineffective due to high labor cost and 

longer time-to-market. This involves the use 

of programming tools, which enable more 

high-level programming structures than just 

basic CUDA or OpenCL code. 

The good examples of such tool are 

the neural network descriptions tools. Starting 

from Caffe tool [1], the inference and deep 

learning phases in neural networks are based 

on a high-level description of the network. 

The network therefore is defined as a pipeline 

of standard computing blocks (usually more 

than 50 types of blocks are defined) and data 

paths between them. This definition format 

practically enables the development of a neu-

ral network from idea to optimized implemen-

tation without moving down to hand pro-

gramming the neural network behavior. The 

success of Caffe lead other development 

groups to implement alternate or competitive 

neural network definition languages (Darknet 

[2]) or integrate a set of packages into pro-

gramming languages and frameworks (Ten-

sorFlow [3]), sometimes incompatible. Of 

course, the use of high level definitions is  

not limited to neural network structure de-

scriptions. 

1. Practical expressions of high-level 

programming structures 

Usually the simplified description of 

a big computational pipeline lacks ability for 

semi-precise optimization of resource use, as 

there is no way to estimate possible changes 

in computation pipeline which can use GPU 

resources more effectively or estimate how 

efficiently the neural network pipeline will 

run on GPU simultaneously with other appli-

cations. The optimizations of such compu-

ting pipeline are hard and strictly depend on 

underlying hardware architecture, which is a 

trade secret for the main hardware market 

players. 

Other example is OpenCV framework 

[4] extensions for matrix/image operations on 
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GPUs. Program can simply move matrices or 

image operations to GPU without critical 

changes in code, but the GPU memory man-

agement is done by hand by moving the im-

age data between central processor unit 

(CPU) and GPU memory. Such a helper 

(here helper mean the OpenCV functions set) 

does not deal with actual computational re-

source allocation on GPU, so the user cannot 

reach the best performance on GPU side 

without additional and expensive platform-

dependent optimizations. 

An interesting example is Gstreamer 

[5] media processing pipeline. Started as an 

eager media processing pipeline more than 

30 years ago, now it is enriched with data 

processing on GPU side. A good example is 

Gstreamer-based DeepStream framework 

from Nvidia [6], which provides optimized 

neural network inference at GPU side. For 

this case the data processing pipeline may 

reach more than a hundred components, 

which are controlled by a dozen of threads. 

Despite of many efforts applied from Nvidia 

side, basic Gstreamer functionality still uses 

only rudimentary and hidden thread control 

and does not bother with resource allocation 

(either GPU memory or GPU computational 

power). 

Looking through these three cases the 

can lighten the following flaws: 1) too high-

level model for neural network description, 

where resource allocation (computational, 

memory, communication) is out of scope  

of the model; 2) too low-level model where 

the user should deal with resources by hand 

but not by describing them in model descrip-

tion; 3) even ignorance of resource alloca-

tion. All these flaws greatly affect the paral-

lel software system which goes from proof  

of concept stage to customer environment 

(i. e. productization process) experiencing  

all computational, memory and communi-

cation resource constraints. Due to modern 

shift of heavy computations to GPU side,  

the productization process becomes a head-

ache for engineers, full of bug hunting and 

code tricks to resolve various resource con-

straints. The problem appears more complex 

in case if applications are long-running, so 

the memory and other resource leaks can  

be fatal. 

In order to overcome the difficulties of 

constraint management process we propose a 

model, which allows to introduce resource 

management process to frameworks such as 

OpenCV, TensorFlow or Gstreamer. It should 

be noted that these frameworks are different 

in levels of parallelism expression. OpenCV 

provides only basic parallelism, Gstreamer – 

thread-level and Caffe/Tensorflow – coarse-

grain. Still we model will fit to all parallelism 

types. 

There are a lot of previous work intro-

ducing various concepts for parallel software 

models, starting from Timed Finite Automa-

tons [7]. This article introduces resource con-

straints for parallel software models, which 

are necessary for executing parallel program 

in modern highly parallel and resource con-

strained environment. 

2. A Model of Resource-Constrained 

Parallel System 

The definition of the system is de-

rived from [8], extending the previous defini-

tions. The word “real-time” is not used inten-

tionally, as the complex parallel system may 

have both hardware and resource constraints 

that prevent real-time behavior. 

We consider a discrete-time model 

where the time is represented as a set of non-

negative integer values denoted by ℕ. The 

time progress is measured by clocks, which 

are non-negative integer variables increased 

constantly by one for some time. If com-

pared to [8] the definition “synchronously” is 

dropped, as in real life system usually a 

common reference clock is used. For the set 

of clocks X, a valuation 𝑣: 𝑿 → ℕ is defined 

– it is a function associating with each clock 

its value v(x). For a clocks subset 𝑿′ ⊆ 𝑿 and 

a clock value 𝑙 ∈ ℕ we denote by 𝑣( 𝑿′, 𝑙, 𝑥) 
the valuation that coincides with v for all 

clocks 𝑥 ∈ 𝑿\𝑿′, and that associates l to all 

clocks 𝑥 ∈ 𝑿′. It is defined by: 

𝑣(𝑿′, 𝑙, 𝑥) = {
𝑙 if 𝑥 ∈ 𝑿′

𝑣(𝑥) otherwise.
  

Guards are used to specify when ac-

tions are enabled. Simple constrains over 



Інструментальні засоби та середовища програмування 

5 

clocks X are considered. The grammar allows 

to build general constrains over clocks: 

𝑐 ≔ 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 |𝑥 ≤ 𝑘|𝑥 < 𝑘|𝑥 ≥ 

≥ 𝑘|𝑥 > 𝑘|𝑐 ∧ 𝑐|𝑐 ∨ 𝑐|¬𝑐. 

The evaluation of a clock constraint c 

for a valuation v of clocks X denoted by c(v) 

is obtained by replacing each clock x by its 

value v(x). 

A guard g is a clock constraint c with 

an urgency type 𝜏 ∈ { 𝑛, 𝑑, 𝑢 }, denoted by 

𝑔 = [𝑐𝜏]. Here urgency types are used to 

specify the need of the action in case if action 

execution is enabled (i. e. when the clocks 

constraint is true). Non-urgent actions are de-

noted by n, delayable actions (which should 

be executed during their enable time interval) 

by d, urgent actions (should be executed as 

soon as they are enabled) are denoted by u. 

The predicate urg[g] that characterizes the 

valuations of clocks for which the guard 

𝑔 = [𝑐𝜏] is urgent is defined by: 

𝑢𝑟𝑔[𝑔](𝑣) ⇔ 

⇔ {

false if 𝑔 is non urgent (τ = n)

𝑐(𝑣) ∧ ¬𝑐(𝑣 + 𝐾) if 𝑔 is delayable (τ = d)

𝑐(𝑣) if 𝑔 is urgent (τ = u)
 

The set of guards over the set of 

clocks X is denoted as G(X). 

For given guards  

𝑔1 = [𝑐1]
𝜏1  𝑎𝑛𝑑 𝑔2 = [𝑐2]

𝜏2,  

the conjunction of g1 and g2 is denoted by 

𝑔1 ∧ 𝑔2 and is defined by 𝑔1 ∧ 𝑔2 = 
= [𝑐1 ∧ 𝑐2]

𝑚𝑎𝑥 𝜏1,𝜏2, considering that urgency 

types are ordered as follows: 𝑛 < 𝑑 < 𝑢. So, 

for given guard g=[c]
τ 

and a valuation v, we 

also write g(v) for the expression c(v). 

Additionally, the resource constraints 

are defined. 

Additionally to model in [8] let us de-

fine the resource set P = { pi
t
}, where t is the 

resource type, I is the resource index for some 

number of identical resources in computation-

al system. Also the resource pi
t
 may be allo-

cated in part – pi
t
(k), where k is the amount of 

resource pi
t
. 

Let us define availability function for 

resource: avl(pi
t
(k)), is it true is case if the re-

source is available. 

3. Abstract model with  

constraints 

Definition 1. Abstract model with 

constrains.  

An abstract model is a timed automa-

ton M=(A,Q,X,P,→) such that: 

- A is a finite set of (observable) 

actions. In addition to actions A internal ac-

tions β. The set of actions A  {β} is denoted 

as A
β
;  

- Q is a finite set of control loca-

tions;  

- P is the resource set; 

- X is finite set of clocks 

→ Q×(A
β
×G(X)×2

X
)×Q is a finite set of la-

beled transitions. A transition is a tuple 

(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′) where a is an action executed 

by the transition, g is guard over X, r is a sub-

set of clocks that are reset by the transition 

and p is the resource necessary to be allocated 

during the transaction. We write 𝑞
𝑎,𝑔,𝑟,𝑝
→    𝑞′ for 

(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′) ∈→. 

An abstract model describes the plat-

form-independent behavior of the system. 

Definition 2. (Abstract model  

semantics). An abstract model 𝑀 = 
= (𝑨,𝑸, 𝑿, 𝑷 →) defines a transition system 

TS. States of TS are pairs (q,v), where q is a 

control location of M and v is a valuation of 

the clocks X. 

Actions: We have (𝑞, 𝑣)
𝑎
→ 

𝑎
→ (𝑞′, 𝑣[𝑟 ⟼ 0])𝑖𝑓 𝑞

𝑎,𝑔,𝑟,𝑝
→    

𝑎,𝑔,𝑟,𝑝
→    𝑞′𝑖𝑛 𝑀 𝑎𝑛𝑑 𝑔(𝑣)𝑖𝑠 𝑡𝑟𝑢𝑒 and avl(p) is 

true. 

Time steps. For a waiting time 

𝛿 ∈ ℕ, 𝛿 > 0, we have (𝑞, 𝑣)
𝛿
→(𝑞, 𝑣 + 𝛿) if 

for all transitions  

(𝑞
𝑎,𝑔,𝑟
→  𝑞′𝑜𝑓 𝑀 𝑓𝑜𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿′ ∈ 

 

∈ [0, 𝛿[, ¬𝑢𝑟𝑔[𝑔](𝑣 + 𝛿′). 

Urgency corresponds to priorities in-

duced by the timing constraints: urgent transi-

tions have priority compared to other possible 

transitions. We denote by wait(q,v) the maxi-

mal waiting time allowed at (q,v). Always 

wait(q,v+δ) = wait(q,v) – δ for all 𝛿 ∈ 
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∈ [0, 𝑤𝑎𝑖𝑡(𝑞, 𝑣)], and is formally defined as 

follows: 

𝑤𝑎𝑖𝑡(𝑞, 𝑣) = 

= 𝒎𝒊𝒏({𝛿 ≥ 0|⋁ 𝑢𝑟𝑔[𝑔𝑖](𝑣 + 𝛿)
𝑞
𝑎𝑖,𝑔𝑖,𝑟𝑖,𝑝𝑖
→        𝑞𝑖

} ∪

 ∪ {+∞}). 

For an abstract model M = 

=(A,Q,{x},P,→), a finite execution sequence 

of M from an initial state (q0,v0) is a maximal 

sequence of observable actions and time-steps 

(𝑞𝑖, 𝑣𝑖)  ↝
𝜎𝑖 (𝑞𝑖+1, 𝑣𝑖+1), 𝜎𝑖 ∈ 𝑨 ∪ 𝑁 and 

𝑖 ∈ {0, 1, 2, … , 𝑛} (𝑖 ∈ ℕ), such that ↝ is the 

transitive closure of → for β-transitions, that 

is (𝑞𝑖, 𝑣𝑖)  ↝
𝜎𝑖 (𝑞𝑖+1, 𝑣𝑖+1) if (𝑞𝑖, 𝑣𝑖)

𝛽
→
∗

𝛽
→
∗

(𝑞′
𝑖
, 𝑣′𝑖)

𝜎𝑖
→(𝑞′′𝑖, 𝑣

′′
𝑖)

𝛽
→
∗

(𝑞𝑖+1, 𝑣𝑖+1). 

For example of this model you can re-

fer to Model 1 in [8]. 

Definition 3. (Composition of abstract 

models). Let Mi = (Ai,Qi,Xi,Pi,→i), 1 ≤ 𝑖 ≤ 
≤ 𝑛, be a set of abstract models. We assume 

that their sets of action and clocks are dis-

joint, i.e. for all 𝑖 ≠ 𝑗we have Ai ∩Aj=∅ and 

Xi ∩Xj=∅. A set of interactions γ is a subset 

of 2
A
, where 𝐴 = ⋃ 𝐴𝑖

𝑛
𝑖=1 , such that any in-

teraction a ∈γ contains at most one action of 

each component Mi, that is, 𝑎 = {𝑎𝑖|𝑖 ∈ 𝐼} 
where 𝑎𝑖∈𝐴𝑖and 𝐼 ⊆ {1,2, … , 𝑛}. The compo-

sition of the abstract models Mi, 1 ≤ 𝑖 ≤ 𝑛, 

by using a set of interactions γ, denoted  

by γ(M1,….,Mn), is the composite abstract 

model M=(γ,Q,X,P,→) such that Q=Q1× 

×Q2×… Qn, 𝑋 = ⋃ 𝑋𝑖
𝑛
𝑖=1  and →γ is defined 

by the rules: 

𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈ 𝛾  

            𝑔 = ⋀ 𝑔𝑖𝑖∈𝐼            

 𝑟 =⋃𝑟𝑖
𝑖∈𝐼

 

∀𝑖 ∈ 𝐼, 𝑞𝑖
𝑎𝑖,𝑔𝑖,𝑟𝑖,𝑝𝑖
→      𝑞𝑖

′ 

∀𝑖 ∉ 𝐼. 𝑞𝑖
′ = 𝑞𝑖 

(𝑞1, … , 𝑞𝑛)
(𝑎,𝑔,𝑟,𝑝)𝛾
→      (𝑞′

1
, … , 𝑞′

𝑛
) 

аlso ∃𝑖 ∈ {1,… , 𝑛}. 𝑞𝑖
𝛽,𝑔𝑖,𝑟𝑖,𝑝𝑖
→     𝑖 𝑞

′
𝑖
 

∀𝑖 ≠ 𝑗. 𝑞′
𝑗
= 𝑞𝑗 

(𝑞1, … , 𝑞𝑛)
𝛽,𝑔𝑖,𝑟𝑖,𝑝𝑖
→     𝛾 (𝑞

′
1
, … , 𝑞′

𝑛
). 

A composition M=γ(M1,…,Mn) of ab-

stract models Mi, 1 ≤ 𝑖 ≤ 𝑛, can execute two 

types of transitions: interactions 𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈
𝛾 which corresponds to synchronizations of 

actions ai of models Mi, 𝑖 ∈ 𝐼, and internal ac-

tions β of the modeles Mi. An interaction 

𝑎 = {𝑎𝑖}𝑖∈𝐼 ∈ 𝛾is enabled from a state of M if 

all actions ai are enabled.  

In a composite model M=γ(M1,…,Mn) 

many interaction can be enabled to act simul-

taneously (in the same time) introducing a de-

gree of non-determinism in the behavior of M.  

In order to restrict non-determinism, 

priorities are introduced that specify which 

interaction should be executed among the en-

abled ones. A priority on M=γ(M1,…,Mn) is a 

relation 𝜋 ⊆ 𝛾 × 𝑄 × 𝛾 such that for all q the 

relation 𝜋𝑞 = {(𝑎, 𝑎
′)|(𝑎, 𝑞, 𝑎′) ∈ 𝜋} is a par-

tial order. We write aπqa' for (𝑎, 𝑞, 𝑎′) ∈ 𝜋 to 

express the fact that a has weaker priority 

than a' at state q. That is if both a and a' are 

enabled at state q, only the action a' can be 

executed. Thus, priority aπqa' is applied only 

when the conjunction of the guards and re-

sources of a and a' is true. Let 𝑞
𝑎,𝑔,𝑟,𝑝
→    𝛾 𝑞′ and 

𝑞
𝑎′,𝑔′,𝑟′,𝑝′
→      𝛾 𝑞′′ be transitions of M such that 

g=[c]
τ
 and g'=[c']

τ'
. Applying priority aπqa' 

boils down to transforming the guard g of a 

into the guard gπ=[c˄¬𝑐′]τ
 and leaving the 

guard g' of a' unchanged. 

Furthermore we denote by enq(a) the 

predicate characterizing valuations of clocks 

for which an interaction a is enabled at state 

q. It is defined by: 

 

𝑒𝑛𝑞(𝑎) =  {

𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 ∄(𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑔′) ∈→𝛾 

⋁ 𝑐

(𝑞,𝑎,[𝑐]𝜏,𝑟,𝑝,𝑞′∈→𝛾

− 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Definition 4. Priority. Given a compo-

site model M=(γ,Q,X,P,→γ) the application of 

priority π to M defines a new model 

πM=(γ,Q,X,P,→π) such that →π is defined by 

the rule: 

𝑞
𝑎,𝑔,𝑟,𝑝
→    𝛾 𝑞

′, 𝑔 = [𝑐]𝜏,   
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 𝑔𝜋 = [𝑐˄¬ ⋁ 𝑒𝑛𝑞(𝑎
′)

𝑎𝜋𝑞𝑎′

]

𝜏

 

𝑞
𝑎,𝑔𝜋,𝑟,𝑝
→     𝜋 𝑞′. 

 

Example of an abstract model with 

priorities is considered in [8]. 

Abstract models are platform-

independent representations of programs with 

atomic and instantaneous actions execution. 

Real (“physical”) models represent the pro-

gram behavior on a real platform. It accounts 

the fact that the action execution takes some 

non-zero time. So we need to break action ex-

ecution atomicity and introduce execution 

times. The transition of an action a of an ab-

stract model is replaced by a sequence of two 

consecutive transitions of the corresponding 

physical (real world) model – see figure 1. 

The first transition marks the beginning of the 

execution of action a, and the second transi-

tion marks its completion. These transitions 

are separated by a partial state denoted by ⊥. 

The execution time of the action corresponds 

to the waiting time at state ⊥ 
 

𝑞
𝑎,𝑔,𝑟,𝑝
→    𝑞′  

⊥𝑡
→  𝐪

𝑎,𝑔,𝑟,𝑝
→    ⊥𝑡

𝛽
→𝑞′ 

(Corresponding sequence of transitions in 

𝑀⊥), where 

𝑡 = (𝑞, 𝑎, 𝑔, 𝑟, 𝑝, 𝑞′)𝑖𝑛 𝑀. 

This denoted the transformation of 

transitions of the abstract model. 

Definiton 5. Physical model. Let 

M=(A,Q,X,P,→) be an abstract model. We 

define the associated as the timed automaton 

𝑀⊥=(A,𝐐 ∪ 𝐐⊥,X,P,→⊥) such that: 

𝐐⊥is the set of partial states such that 

there is one partial state for each transition of 

M, that is, 𝐐⊥={⊥𝑡 |𝑡 ∈→} 
→⊥is defined by the rule: 

𝑞
𝑎,𝑔,𝑟,𝑝
→     𝑞′ 𝑡=(𝑞,𝑎,𝑔,𝑟,𝑝,𝑞′)

𝑞
𝑎,𝑔,𝑟,𝑝
→     ⊥⊥𝑡 ⊥𝑡

𝛽,[𝑡𝑟𝑢𝑒]𝐼,∅,𝑡𝑟𝑢𝑒
→             ⊥𝑞′

. 

 

In the physical model 𝑀⊥we assume 

arbitrary execution times for actions, ranging 

from 0 to +∞, which is modeled by the guard 

[true]
|
 for β-transitions. Notice that 𝑀⊥can be 

further constrained if bounds of the execution 

times of actions are unknown. For instance, if 

an estimate WCET(a) is known for the worst-

case execution timeof an action a, the associ-

ated timing constraint is [xa≤WCET(a)]
d
 in-

stead of [true]
|
, where xa is a clock that is reset 

whenever a is started. This allows us to stati-

cally check the correctness of the application 

running on the platform but this is beyond the 

paper scope. 

In a physical model 𝑀⊥, the execution 

of the action a by a transition t=(q,a,g,r,p,q') 

is followed by a lapse of time δ(a)∈ ℕ at the 

partial state ⊥𝑡before a β-transition is execut-

ed: 

(𝑞, 𝑣) ↝𝑎 (⊥𝑡, 𝑣[𝑟 ⟼ 0]) ↝𝛿(𝑎) 

↝𝛿(𝑎) (𝑞′, 𝑣[𝑟 ⟼ 0] + 𝛿(𝑎)). (1) 

This corresponds to the following exe-

cution sequence in the abstract model M, if 

such a sequence is feasible: 

(𝑞, 𝑣) ↝𝑎 (𝑞′, 𝑣[𝑟 ⟼ 0]) ↝𝛿(𝑎) 

↝𝛿(𝑎) (𝑞′, 𝑣[𝑟 ⟼ 0] + 𝛿(𝑎)).  (2) 

It should be noticed that the time 

stamp δ(a) of 𝑀⊥ in (1) may not be the time 

stamp of M in (2) if δ(a)>wait(q',v[𝑟 ⟼ 0]), 
meaning that the physical model violates tim-

ing constraints defined in the corresponding 

abstract model. In this case we say that the 

considered execution sequence is not time-

safe. (The execution times of abstract and 

physical models are compared in [9] –  

considering that if all execution sequences  

of 𝑀⊥ are time-safe than 𝑀⊥ is weakly  

simulated by M). 

Correct model implementation should 

execute only time-safe sequences, but time-

safety violations occur in a physical model 

when the execution time of an action is larger 

than what is allowed by the timing and re-

source constraints of the corresponding ab-

stract model. Correct implementations are ob-

tained for platforms that are sufficiently fast 

for executing the program without violating 

time-safety. Here the physical model pre-

serves the semantic of the abstract model as 

shown in [10]. Otherwise the time-safety vio-

lations should be checked in run time. 

Physical model composition consider-

ations and correctness considerations can be 

checked in [8]. 
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So how we can deal with resource lim-

itations? State-of-the-art software packages 

require simpler solutions, so model interpreta-

tion in run-time (such as in [11]) looks com-

plex and superfluous. In case if program is al-

ready expressed as a graph of scheduled 

blocks, it is possible to evaluate model re-

quirements and behavior at the moments be-

tween the previous block finish and a the new 

block start – this also works for moments of 

spawning new parallel processes and joining 

parallel processes for one new serial process. 

This works well for cases enlisted before: 

LAPACK-based computations [12], neural 

network inference and media processing in 

Gstreamer-like pipelines. Even it is possible 

for interpreted code, such as Java or .Net, 

where code assemblies can be annotated with 

resource information. 

4. Affected industry cases 

Why all these model descriptions are 

important for us although all they looks to be 

abstract for real software business?  

Before 2005 the parallel programming 

was the area of academy pundits and small 

groups of professionals in computer graphics 

area. After 2005 the integrated circuits mak-

ing technology enabled so many transistors on 

single die for hardware engineers so that the 

single computing units (up to von Neumann 

definitions) can not effectively use the hard-

ware. The most efficient way was to place 

several processing units on one silicone crys-

tal, so that the silicone can run multiple pro-

cesses simultaneously somehow. It looked 

like “as single CPU can not deal effectively, 

let’s do multiple CPUs and the programmer 

should do software in right way”. At practical 

side a lot of money was invested into teaching 

parallel programming in colleges and making 

specialized computer languages for highly 

parallel hardware – such as Nvidia CUDA 

[13] or anti-Nvidia industry standard OpenCL 

[14]. As the efficient parallel software re-

quires more time to invest, more skilled re-

sources and more money for test teams work 

the new tendency was appeared – to make 

frameworks which allow the programmer to 

make parallel programs with simpler (less or 

more simpler) descriptions. Such concept 

looks nice but works hard. Two well-known 

technology examples – CUDA and OpenCL 

shows that the main model of writing a paral-

lel program for GPUs is a “producer-

consumer” model when a CPU-side program 

controls GPU threads execution and none of 

GPU threads are self-sufficient. Practically all 

memory management employs CPU-GPU 

memory communications, and memory com-

munications between neighbor GPU cards are 

exceptions. 

Under these conditions any software 

developer experiences a serious technology 

limitation, as any parallel program support 

only its exclusive execution on GPU resource 

and the resource pool subdivision between 

different processes are possible only in case if 

each parallel program allocates some number 

of GPUs, leaving the other GPUs to counter-

part.  

However, all technologies similar to 

CUDA/OpenCL or any specialized parallel 

programming languages do not decrease the 

development time significantly. The good 

ways to decrease programmer effort are infra-

structures, which shorten development time 

for 90 % in simpler cases and for 50 % in 

hard cases. The important issue is that the 

most of the infrastructures are upgradable to 

incorporate the described physical model. 

Let us check several infrastructure (frame-

work) cases. 

1) TensorFlow [3]. At least 60 % of 

neural network learning and inference market. 

Tensorflow interprets network model (using 

Python language) based on a sequence of big 

code blocks. 

2) Caffee[1]. Near 30 % of neural 

networking segment, written in optimized 

C++. Caffee (conceptually similar to Tensor-

flow) interprets an abstract sequence of 

blocks. 

3) Gstreamer [5] and ffmpeg [15] 

media processing pipelines. Both construct a 

pipeline using already defined big code 

blocks (plugins), including spawning parallel 

processes and internal queue storage. Pipe-

lines also works for GPU-based computa-

tions. Both packages are widely used as a 

base for industry media processing and 

broadcasting. 

4) OpenCV framework [4]. It is a 

good base for parallel matrix computations 
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(and 2D/3D processing) at GPU. Still the 

OpenCV is more low-level library tool than a 

framework, the packages can benefit from 

model interpretation. 

5) Simulation tools, starting from the 

old good NS2 (good use example in [16]) and 

other network simulations. In case of big runs 

cluster-based modeling benefit from model 

interpretations. 

The proposed abstract and physical 

models are good universal tools for many 

frameworks. It can deal with both low level 

descriptions of CPU-handled subroutines (at 

50-100 CPU instructions level) and high-

level annotations for framework elements:  

all timing and resource constraints remain 

the same. 

The next step will be more practical: 

incorporation of the model interpreter into 

one of the frameworks and practical test of 

benefits got because of expressing the soft-

ware in term of physical model. 

Conclusions 

In order to meet the modern require-

ments for software development – less time, 

more quality, lower expenses – this article 

proposes the resource constrained model for 

parallel programs, which allows to run (or 

model the behavior) of multiple (and differ-

ent) parallel software runs under resource 

constraints on real-world hardware systems. 

In addition, the list of popular frameworks - 

which can benefit from incorporating the el-

ements of the resource-constrained models in-

terpreter – is presented. The future work in-

cludes the extension of one of framework 

with model interpreter for low-overhead re-

source checker on the fly (at program run 

time) and real-world model examples. 
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