
Мови програмування

© Y. Sulema, V. Glinskii, 2020

74 ISSN 1727-4907. Проблеми програмування. 2020. № 1

UDC 004.432 https://doi.org/10.15407/pp2020.01.074

Yevgeniya Sulema, Vladyslav Glinskii

SEMANTICS AND PRAGMATICS OF PROGRAMMING

LANGUAGE ASAMPL

This paper presents semantics and practical implementation of the domain-specific programming language

ASAMPL. This programming language has been developed to support the efficient processing of multimodal

data processing, in particular, the processing of multimedia content which components are evidently defined in

terms of time. The data processing concept employed in ASAMPL is based on the data structures, operations,

and relations defined in the algebraic system of aggregates. The paper explains the compilation approach used

for this programming language as well as it presents the test results and their discussion.

Key words: multimedia, multimodal data, programming language, compilation.

Introduction

Nowadays, such technologies as IoT,

machine learning, big data, augmented and

virtual reality are developing very fast and

they are more and more in use for solving

everyday tasks. For example, virtual assistants

like Amazon Alexa or Apple Siri help users

by employing natural language processing,

voice recognition and computer vision along

with other artificial intelligence techniques.

Multimedia technologies along with

AR and VR allow us to make education more

efficient [1–3]. Some examples are interactive

classes and training programs for medical

students, technicians, drivers, etc. These tech-

nologies enable modelling processes and vis-

ualize them, recreating required environment,

improve skills while minimizing loss due to

learner’s mistake. They can be used to make

monitoring and operating machines or even

industrial complexes much simpler. As an ex-

ample, it can greatly improve operation of the

drone used in emergency situation by giving

to operator visualization of the environment,

identified objects or threats.

IoT solutions are used not only in in-

dustrial and agricultural complexes but also to

create “smart homes” and “smart cities”. Data

gathered from different sensors can be used to

make immediate decisions to control opera-

tion of connected equipment. At the same

time this data is stored for analysis and pre-

diction of the future trends in self-learning

systems, visualization to human operators.

Rising amounts of diverse data push

requirements to its storage, transmission and

processing technologies further. So, nowa-

days we have real need to work with so-called

multimodal data, i.e. data which has different

origin, such as images, audio, environmental

characteristics (humidity, temperature), etc.

Usually such data is constantly changing in

time. In some cases, the use of general-

purpose programming languages for multi-

modal data processing tasks is not efficient

enough when timewise processing is required.

The understanding of this fact has leaded to

the creation of a domain-specific program-

ming language ASAMPL [4]. The purpose of

the research presented in this paper is to make

the semantics of ASAMPL more mature as

well as to carry out the reference implementa-

tion of this language by developing a compil-

er and a standard library.

1. Concept and features of ASAMPL

The ASAMPL programming language

derives its name from the "Algebraic System

of Aggregates" and the "Mulsemedia data

Processing Language" [4]. ASAMPL has

been designed for simple and efficient multi-

modal data processing which is based on the

following facts: (1) every element of such da-

ta is related to a certain point in time when it

has been obtained (recorded, generated,

measured, etc.); (2) multimodal data pro-

cessing needs to take into account the modali-

ty of the data, its compatibility and the possi-

ble interrelation between data of different

modalities. Therefore, the basic principle of

organizing a program in this language is that

the program code execution is governed by

two entities: time and data modality.

Мови програмування

75

A key concept in ASAMPL is the

concept of multi-image which is based on the

mathematical apparatus of the Algebraic Sys-

tem of Aggregates (ASA) [5-7]. To represent

the multi-image of a real-world object, two

basic data structures defined in ASA, namely,

tuples and aggregates, are employed in this

programming language. The processing of tu-

ples and aggregates is performed in accord-

ance with the rules prescribed in ACA.

The main features of the ASAMPL

language which specify the principles of the

programming paradigm for multimodal data

structures processing as the following:

1. Linking the data processing pro-

cess to a timeline.

2. Synchronizing the data of differ-

ent modalities.

3. Complex representation of multi-

modal data using tuples and aggregates.

4. Focusing on the simultaneous use

of various multimodal data sources (data

streams from remote sensors, media files from

cloud storages, etc.).

5. Dynamic linking external librar-

ies, renders (a renderer is a software tool for

reproducing the data of a certain modality),

handlers for encoding / decoding, data pro-

cessing and reproduction for each modality,

use of specific file formats and predefined de-

vices.

6. Mathematical processing of data

aggregates based on ACA.

A program code is ASAMPL consists

of blocks starting with the following key-

words:

 ACTIONS, it defines data pro-

cessing logic;

 AGGREGATES, it defines aggre-

gates composed from defined tuples;

 ELEMENTS, it defines variables

and their belonging to defined sets;

 HANDLERS, it defines built-in

and external modules for data converting;

 LIBRARIES, it defines built-in

and external libraries;

 PROGRAM, it starts a program

code;

 RENDERERS, it defines built-in

and external modules for data rendering;

 SETS, it defines sets which con-

tain data elements;

 SOURCES, it defines data

sources where multimodal data is stored, rec-

orded, generated, etc.

 TUPLES, it defines tuples and

their belonging to defined sets.

The program structure is as follows:

Program <name> {

 Libraries {

 <library1> is <path-

ToLibray1>;

 <library2> is <pathToLi-

brary2>;

 …………………………………… }

 Handlers {

 <handler1> is

<pathToHandler1>;

 <handler2> is

<pathToHandler2>;

 …………………………………… }

 Renderers {

 <renderer1> is <pathToRender-

er1>;

 <renderer2> is <pathToRender-

er2>;

 …………………………………… }

 Sources {

 <source1> is <pathToSource1>;

 <source2> is <pathToSource2>;

 …………………………………… }

 Sets {

 <set1> is <type1>;

 <set2> is <type2>;

 …………………………………… }

 Elements {

 <element1> is <set>;

 <element2> = <value>;

 …………………………………… }

 Tuples {

 <tuple1> = <set1>;

 <tuple2> = <set2>;

 …………………………………… }

 Aggregates {

 <aggregate1> = [<tuple1>, …,

<tupleM>];

 <aggregate2> = [<tupleK>, …,

<tupleN>];

 …………………………………… }

 Actions {

 <list of statements> } }

The logic of multimodal data struc-

tures timewise processing is set by the opera-

tors which are based on the mathematical

concept defined in ASA, in particular, logical

Мови програмування

76

and ordering operations on aggregates and

frequency and interval relations of discrete in-

tervals as well as the concept of a multi-image

[3–5].

To implement the multimodal data

timewise processing logic, the ASAMPL

specification includes the following operators:

TIMELINE; SEQUENCE; SUBSTITUTE

FOR WHEN; DOWNLOAD FROM WITH;

UPLOAD TO WITH; RENDER WITH.

To define the semantics of the

ASAMPL operators, the axiomatic approach

is used in this research [8, 9]. An axiomatic

specification is defined as the following deri-

vation rule:

1 2, , , nH H H

H
,

where H is true if ∀ Hi is true, i = [1..n].

TIMELINE operator enables timewise

data processing by allowing a programmer to

apply a certain action during a defined period

of time. All actions included into the operator

body are to be executed simultaneously. This

operator has three options for the timeline de-

fining.

The first option requires an evident in-

dication of both the beginning and the end

time moments of the timeline:

TIMELINE time1 : step : time2

{ list of actions to be carried

out simultaneously }

The semantics rule for the first option

of TIMELINE operator is:

{ &(())} { }

{ }TIMELINE : : () { }

P a x a a n C Q

P a a a a n C Q

   

  
.

The second option allows a program-

mer to specify an arbitrary tuple of time val-

ues which correspond to specific time mo-

ments when the actions from the given list

need to be carried out:

TIMELINE AS time_tuple { list of

actions to be carried out simul-

taneously }

The semantics rule for the second op-

tion of TIMELINE operator is:

1

1

{ &([..])} { }

{ }TIMELINE AS[..] { }

n

n

P x a a C Q

P a a C Q


.

The third option of the TIMELINE

operator enables using a condition which trig-

gers the completion of the given actions ful-

filment:

TIMELINE UNTIL condition

{ list of actions to be carried

out simultaneously }

The semantics rule for the third option

of TIMELINE operator is:

{ & } { }

{ }TIMELINE UNTIL { }

P B C Q

P B C Q
.

SEQUENCE operator enables sequen-

tial processing of actions as one compound

action:

SEQUENCE { list of actions to be

carried out sequentially }

The semantics rule for this operator is

as follows:

1 2

1 2

{ } { }, { } { }

{ }SEQUENCE ; { }

P C Q Q C R

P C C R
.

SUBSTITUTE FOR WHEN operator

enables replacement of one data set by anoth-

er one if a certain condition becomes true:

SUBSTITUTE name1 FOR name2

WHEN logical_expression.

This operator can be useful in the case

when, for example, high-resolution data can-

not be downloaded, uploaded, or processed

because of insufficient data rates and, thus,

they can be replaced with low-resolution data

to allow an application to be executed even in

such inappropriate conditions.

The semantics rule for this operator is

as the following:

1 2

2 1

{ & } { }, { & } { }, (:)

{ } SUBSTITUTE FOR WHEN { }

i iP B C Q P B C Q C d d

P d d d B Q

 

where i = [1, 2].

Мови програмування

77

DOWNLOAD FROM WITH operator

enables downloading data from a specified

data source by using either a predefined han-

dler, or a given one. In the first case, the oper-

ator has the following format:

DOWNLOAD data_name FROM source

Its semantic rule is as follows:

1

{ } { }

{ } DOWNLOAD { }

P C Q

P d FROM d Q
.

In the second case, the handler identi-

fier needs to be indicated directly:

DOWNLOAD data_name FROM source

WITH handler

Its semantic rule for this case is:

1

{ } { }

{ } DOWNLOAD WITH { }

P C Q

P d FROM d z Q
.

UPLOAD TO WITH operator allows

to upload any data (an element, a tuple, an

aggregate) to a defined resource by using ei-

ther a predefined handler, or a given one. In

the first option, there is no need to indicate

the handler because it is predefined:

UPLOAD data_name TO destination

The semantic rule for the first option

is the following:

1

{ } { }

{ } UPLOAD { }

P C Q

P d TO d Q
.

In the second option, the handler

needs to be indicated evidently:

UPLOAD data_name TO destination

WITH handler

The semantic rule for the second op-

tion is the following:

1

{ } { }

{ } UPLOAD WITH { }

P C Q

P d TO d z Q
.

RENDER WITH operator enables data

reproduction. Each data modality is pre-

processed and rendered by its specific render.

The form of this operator is as follows:

RENDER data_name WITH render_name

The semantic rule for this operator is

the following:

{ } { }

{ } RENDER WITH { }

P C Q

P d z Q
.

Besides, ASAMPL employs a branch

statement IF THEN; a selection statement

CASE OF; an assignment statement IS.

Thus, the logic of the data processing

is based on these basic actions. The method of

ASAMPL code translation is presented in the

next section.

2. Compilation approach

The compiler implementation lan-

guage needs to be strongly typed high-level

general-purpose programming language with

simple and expressive syntax. Automatic

memory management is desired but not man-

datory. Besides, this language should be pop-

ular and mature enough because popular lan-

guages tend to have bigger community, com-

prehensive documentation, many ready-to-use

program components, frameworks and librar-

ies. The analysis of top programming lan-

guages [10, 11] has been resulted in selecting

Python.

The parser and lexer compiler compo-

nents can be generated from the formal lan-

guage specification, thus, a generator with Py-

thon target language support was needed to be

selected. Another important criteria included

versatility, separation of output code from

grammar and comprehensive documentation.

For this research, ANTLR [12] has been se-

lected. A viable alternative to it is PLY [13].

Multimedia is the third base com-

ponent of the implementation, cross-platform

and open-source projects with Python bin-

dings were preferred. We have selected

GStreamer [14] because its core does not de-

pend on the type of processed data and it can

be extended by plugins, which enable adding

new formats, protocols or hardware support.

Мови програмування

78

The architecture of the implemented

two-pass compiler includes frontend and

backend (Fig. 1).

Fig. 1. Compiler architecture

2.1. Frontend. The frontend performs

syntax and semantics verification (e.g., identi-

fier availability, type checking). The lexer and

parser are generated by ANTLR from the lan-

guage context-free grammar description,

it also generates the helper base classes

for parse tree traversal: a listener and/or a vis-

itor. Our semantic analyser implements the

visitor design pattern to control the order

of traversal.

All declarations for declarative sec-

tions are checked if a name they define has

not been declared yet, and additional checks

need to be performed for every section.

The parse tree traversal starts at the

LIBRARIES section and the library importer

component tries to import declared libraries

as a regular Python package. The libraries

which define custom types need to have ex-

port_types dict in their packages which maps

type names to corresponding classes. If a li-

brary name has not been declared yet and its

package was successfully imported, the li-

brary is registered in a corresponding lookup

table and becomes available in anther pro-

gram parts.

For declarations in the HANDLERS

and RENDERERS sections, the visitor checks

if the specified name has not declared yet, the

library is imported, and it tries to import a

specified element as a class in that library. If

the class was imported successfully and inher-

its a required base class, it will be registered

in the lookup table.

In SETS section, type import declara-

tions are checked if a name has not been de-

clared yet, the specified library was imported

and has specified type, in that case the im-

ported type is registered in the lookup table.

Type alias are registered only for already pre-

sent types if the name defined by an alias has

not been used before.

The declarations in the ELEMENTS,

TUPLES and AGGREGATES sections assign

names to certain values in the lookup table

when a specified type name or a referenced

value name is defined.

The ACTIONS section declarations

define program logic and data flows, they are

converted to a hierarchy of action objects

which represent specific discrete tasks.

The interface defined by the base ac-

tion class includes methods Start, Stop and

Stop_Prepare, Finished signal and Depth

property (a depth within the hierarchy tree).

The Start method returns False when the ac-

tion finished immediately, otherwise it returns

True. The Stop_Prepare method is used to

notify an action before it is actually stopped

with the Stop method call. The Finished sig-

nal is emitted only when the action finished

neither during Start nor during Stop method

calls.

Another important abstract base class

is CompositeAction: a group of actions which

can be treated as a single action and may de-

fine custom execution order. There are two

concrete implementations: ChinedAction

which executes child actions sequentially and

ParallelAction, which executes child actions

concurrently. When they are stopped, they

stop child actions. The ChainedAction finish-

es execution only when all children have fin-

ished. The ParallelAction behaves in the same

way when execution duration is not specified

or when early finish is allowed, otherwise it

continues execution even when all children

have finished already and stops unfinished

when the data processing time elapses.

To create a delay in the beginning of

actions (e.g., in TIMELINE statements with

non-zero start time), the DelayAction is used.

Мови програмування

79

The behaviour which defines an up-

date frequency and an elapsed time tracking is

extracted into ActionUpdateStrategy sub-

classes and can be used in certain classes with

help of the Dependency Injection design pat-

tern. The base interface provides update

method which receives a time difference for a

current update step (for base class it updates

an object age) and properties to get a current

update interval duration, a next update delay,

an overall duration, an age and an update loop

finish status. All time values are stored with

microsecond precision. There are two con-

crete implementations: FixedStepUpdate

which has equal update intervals and

FramesTupleUpdate which accepts a list of

update intervals. The DelayAction objects in-

stantiate and encapsulate FixedStepUpdate

objects with an overall duration and an update

interval duration equal to the specified delay.

The ParallelAction can be initialized with any

concrete implementation of ActionUpdateS-

trategy to define the action duration and the

update frequency.

The DownloadAction, UploadAction,

and RenderAction implement corresponding

program statements DOWNLOAD FROM

WITH, UPLOAD TO WITH, and RENDER

WITH. They check compatibility of handlers

and renderers with user-specified data stream

objects, establish connections at the action

start and disconnect them when stopped of

finished execution. Additionally, Down-

loadAction and UploadAction create

GStreamer pipeline element that handles input

(or output) to a supplied source (or target)

URL.

The action hierarchy is built by Time-

lineBuilder object and helper classes. Every

TIMELINE statement block and root code

block are treated as a separate time interval

and are represented by separate _Timeline ob-

ject within TimelineBuilder. These objects

encapsulate checks for detecting duplicated

data streams in lists, cases when the same data

stream has different target or source declared

for the same execution time, ensure compati-

bility between specified data streams, handler

(or renderer) and action.

TimelineBuilder holds at least one

_Timeline instance: for the root code block.

Entering to a new TIMELINE statement

block will create a new _Timeline instance

with a parent object which becomes current

while the previous one becomes its parent.

Each _Timeline object has an initial mode set

to “in parallel”, but when the code block

marked with SEQUENCE keyword is en-

tered, it is switched to “in sequence”. On exit

from the top-level SEQUENCE block, all cre-

ated actions within that block are put into

wrapper ChainedAction (this step is skipped

for single action) and are added to the actions

list of this _Timeline. When TIMELINE

statement block is exited, the current

_Timeline instance is set to its parent. Empty

TIMELINE blocks are ignored, but when time

range is set and parent _Timeline has mode

“in sequence”, DelayAction is added instead

to the parent. When time range is not speci-

fied for the current TIMELINE statement

block and the parent has “in parallel” mode,

all actions of the current _Timeline are pushed

to the parent as they are. In all other cases

they are put to ParallelAction which has an

appropriate ActionUpdateStrategy set if need-

ed. When non-zero start time is specified, De-

layAction is created with the corresponding

delay set. If parent has “in sequence” mode or

start time is zero ParallelAction with De-

layAction are pushed as is to the parent. Oth-

erwise, they are wrapped with ChainedAction

before they are added to the parent.

2.2. Backend. The backend provides

runtime environment and runtime error han-

dling, schedules execution of the action hier-

archy received from the frontend stage. The

action hierarchy is represented here by a sin-

gle root ParallelAction object. The core com-

ponent of the backend is the scheduler object

UpdateSource which attach itself to GLib

main context as an event source to receive

updates.

Actions which need updates (e.g.,

ParallelAction and DelayAction) hold refer-

ence to the scheduler object and subscribe for

updates when needed. The scheduler holds the

priority queue of subscribed actions where

priority determined by both the next update

time in microseconds and the action depth

within the hierarchy tree. This ensures that the

parent action receives update before its chil-

dren when they have the same update time.

But for sibling actions update order (and, as a

Мови програмування

80

result, the start order) is not guaranteed.

The scheduler update loop has three

distinct stages (Fig. 2): prepare, wait, and

dispatch.

The prepare stage determines the

closest update time for subscribed actions and

calculates a delay for the wait stage. On the

first run, this stage starts a root action and the

scheduler subscribes to the root action fin-

ished signal if it did not finish immediately,

otherwise the wait stage is skipped.

Fig. 2. Scheduler update loop

The dispatch stage pulls actions which

reached their update time from a priority

queue. The actions update method receives a

defference between planned and actual update

time and returns a Boolean value. An action

which still needs updates is added back to the

scheduler priority queue. At the end of this

stage, on_update_unsubscribed handler is

called for all unsubscribed actions in the order

they received updates. If the root action is fin-

ished during or before the dispatch stage, the

scheduler removes itself from GLib main con-

text and the program finishes its execution.

2.3. Standard library. The standard

library provides base classes and reference

implementations of handlers, renderers and

data streams. Handlers and renderers imple-

ment BaseHandler class, its interface define

methods for attaching and detaching to data

streams, compatibility checking, starting and

stopping operation, signal done to notify sub-

scribed objects. Renderers are always used as

destination for data streams, while handlers

can implement either source or destination.

Depending on the implementation, they can

be attached to single or multiple data streams

at the same time (e.g., handlers for multi-

plexed data formats). The reference handler

implementations are classes OGGIn and

OGGOut which work with files in OGG con-

tainer format and support the following data

stream types: audio, video, and subtitles. Both

handlers try to automatically find the required

coder or decoder among GStreamer plugins

when attached to uncompressed data streams.

Standard renderers are represented by

AudioOutput and VideoOutput classes which

implement playback of uncompressed audio

and video. Data streams can have at most one

source and multiple receivers (handlers and

renderers). The base data stream class Base-

Stream provides an interface with the meth-

ods for attaching and detaching source and re-

ceiver objects, retrieving information about

supported data types for its inputs and out-

puts, signals to notify when no outputs are

present anymore or first output attached. The

standard library provides implementation of

uncompressed audio and video streams:

RawAudio and RawVideo.

All these components have own

GStreamer elements connected into pipelines.

During runtime actions they are connected to-

gether to ensure data flow described by the

program.

3. Results and discussion

In order to evaluate the efficiency of

the implemented solution we compared it

with traditional development tools, namely, C

compiler from GNU Compiler Collection

suite [15] and GStreamer framework. For this

purpose, we created two sets of equivalent

small- and medium-sized programs written in

both C and ASAMPL. To evaluate perfor-

mance of the implemented compiler, we

Мови програмування

81

measured overall running time and peak

memory consumption during program code

parsing, analysis, and preparation program

code to execution.

Table 1

Average program code size

Program
code

Small size
(lines of code)

Medium size
(lines of code)

C 193 318

ASAMPL 43 95

For running time measurement, we

used Perf tool [16], running each compiler for

every program 1000 times. Averaged results

for both program sets (see Table 2 and

Fig. 3b) show that execution time of GCC C

compiler is around 30 % lower.

Table 2

Average execution time

Program

code

Small size
(secs and
stddev)

Medium size
(secs and
stddev)

GCC
0.220516528

(0.34%)

0.23745095

(0.34 %)

ASAMPL

compiler

0.315360984

(0.53 %)

0.330313517

(0.29 %)

Difference 30 % 28 %

The results of peak memory consump-

tion measurement with Valdgrind tool [17]

(see Table 3 and Fig. 3c) show that on aver-

age it is 33% lower for ASAMPL compiler.

ASAMPL programs are visually sim-

pler, concise, and expressive since they omit

resource management, pipeline manipulation,

synchronization and other tasks required to

set up an environment, but not related to actu-

al data processing task. As a result, the pro-

gram size in lines-of-code (excluding com-

ments and whitespace) for ASAMPL is at

least 3 times smaller (see Table 1 and

Fig. 3a).

Table 3

Peak memory consumption

Program

code

Small size

(Mbytes)

Medium size

(Mbytes)

GCC 14.7 14.7

ASAMPL

compiler
9.62 9.8

Difference 35 % 33 %

.

Fig. 3. Benchmarking results comparison charts

Мови програмування

82

Conclusion

The programming language ASAMPL

is a domain-specific language driven by data

modality and time. It is developed for easy

and effective processing of multimodal data

defined with respect to time. To present such

data, the programming language specification

includes data structures called tuples and ag-

gregates. ASAMPL offers a set of special-

purpose operators, semantics of which is pre-

sented in the paper. To execute program code

in ASAMPL, a complier has been developed.

The paper presents both the architecture of

this compiler and the compilation approach.

The testing results show that ASAMPL code

is simpler, concise, and expressive as well as

memory consumption is lower for the devel-

oped ASAMPL compiler. Thus, ASAMPL

can be considered as an appropriate option

when the memory usage and the code simplic-

ity are important issues.

References

1. Virtual Reality for Education. Available from:

http://virtualrealityforeducation.com/ [Ac-

cessed 05/02/2020].

2. Antonov S., Antonova R., Spassov K. Multi-

media Applications in Education. Smart

Technologies and Innovation for a Sustaina-

ble Future. Springer. 2019. P. 263–271.

3. Weng C., Rathinasabapathi A., Weng A.,

Zagita C. Mixed Reality in Science Education

as a Learning Support: A Revitalized Science

Book. Journal of Educational Computing Re-

search. 2018. 57(3). P. 777–807.

4. Sulema Y. ASAMPL: Programming Lan-

guage for Mulsemedia Data Processing Based

on Algebraic System of Aggregates. Interac-

tive Mobile Communication Technologies and

Learning. Springer. 2018. P. 431–442.

5. Dychka I., Sulema Ye. Logical Operations in

Algebraic System of Aggregates for Multi-

modal Data Representation and Processing.

KPI Science News. 2018. Vol. 6. P. 44–52.

6. Dychka I., Sulema Ye. Ordering Operations in

Algebraic System of Aggregates for Multi-

Image Data Processing. KPI Science News.

2019. Vol. 1. P. 15–23.

7. Sulema Ye., Kerre E. Multimodal Data Rep-

resentation and Processing Based on Algebra-

ic System of Aggregates, preprint. 2020. 37 p.

8. Milner R. Operational and Algebraic Seman-

tics of Concurrent Processes. Formal Models

and Semantics. 1990. P. 1203–1242.

9. Roşu G., Ştefănescu A. Towards a Unified

Theory of Operational and Axiomatic Seman-

tics. Automata, Languages, and Program-

ming. Springer. 2012. P. 351–363.

10. TIOBE The Software Quality Company.

Available from: https://www.tiobe.com/tiobe-

index/ [Accessed 05/02/2020].

11. The Top Programming Languages 2019.

IEEE Spectrum. Available from:

https://spectrum.ieee.org/computing/software/

the-top-programming-languages-2019 [Ac-

cessed 05/02/2020].

12. ANTLR. Available from:

https://www.antlr.org/ [Accessed 05/02/2020].

13. PLY (Python Lex-Yacc). Available from:

https://www.dabeaz.com/ply/[Accessed

05/02/2020].

14. GStreamer. Available from:

https://gstreamer.freedesktop.org/ [Accessed

05/02/2020].

15. GCC, the GNU Compiler Collection. Availa-

ble from: https://gcc.gnu.org/ [Accessed

05/02/2020].

16. Perf Wiki. Available from:

https://perf.wiki.kernel.org/index.php/Tutorial

[Accessed 05/02/2020].

17. Valgrind's Tool Suite. Available from:

https://valgrind.org/info/tools.html [Accessed

05/02/2020].

Література

1. Virtual Reality for Education. Available from:

http://virtualrealityforeducation.com/ [Ac-

cessed 05/02/2020].

2. Antonov S., Antonova R., Spassov K. Multi-

media Applications in Education. Smart

Technologies and Innovation for a Sustainable

Future. Springer. 2019. P. 263–271.

3. Weng C., Rathinasabapathi A., Weng A.,

Zagita C. Mixed Reality in Science Education

as a Learning Support: A Revitalized Science

Book. Journal of Educational Computing Re-

search. 2018. 57(3). P. 777–807.

4. Sulema Y. ASAMPL: Programming Lan-

guage for Mulsemedia Data Processing Based

on Algebraic System of Aggregates. Interac-

tive Mobile Communication Technologies

and Learning. Springer. 2018. P. 431–442.

5. Dychka I., Sulema Ye. Logical Operations in

Algebraic System of Aggregates for Multi-

Мови програмування

83

modal Data Representation and Processing.

KPI Science News. 2018. Vol. 6. P. 44–52.

6. Dychka I., Sulema Ye. Ordering Operations in

Algebraic System of Aggregates for Multi-

Image Data Processing. KPI Science News.

2019. Vol. 1. P. 15–23.

7. Sulema Ye., Kerre E. Multimodal Data Rep-

resentation and Processing Based on Algebra-

ic System of Aggregates, preprint. 2020. 37 p.

8. Milner R. Operational and Algebraic Seman-

tics of Concurrent Processes. Formal Models

and Semantics. 1990. P. 1203–1242.

9. Roşu G., Ştefănescu A. Towards a Unified

Theory of Operational and Axiomatic Seman-

tics. Automata, Languages, and Programming.

Springer. 2012. P. 351–363.

10. TIOBE The Software Quality Company.

Available from: https://www.tiobe.com/tiobe-

index/ [Accessed 05/02/2020].

11. The Top Programming Languages 2019.

IEEE Spectrum. Available from:

https://spectrum.ieee.org/computing/software/

the-top-programming-languages-2019 [Ac-

cessed 05/02/2020].

12. ANTLR. Available from:

https://www.antlr.org/ [Accessed 05/02/2020].

13. PLY (Python Lex-Yacc). Available from:

https://www.dabeaz.com/ply/[Accessed

05/02/2020].

14. GStreamer. Available from:

https://gstreamer.freedesktop.org/ [Accessed

05/02/2020].

15. GCC, the GNU Compiler Collection. Availa-

ble from: https://gcc.gnu.org/ [Accessed

05/02/2020].

16. Perf Wiki. Available from:

https://perf.wiki.kernel.org/index.php/Tutorial

[Accessed 05/02/2020].

17. Valgrind's Tool Suite. Available from:

https://valgrind.org/info/tools.html [Accessed

05/02/2020].

Received 06.02.2020

About the authors:

Yevgeniya Sulema,

candidate of tech. sciences (PhD),

associate professor at Computer Systems

Software Department.

The number of publications in Ukrainian

and foreign journals is over 130.

Hirsh index is 4.

https://orcid.org/0000-0001-7871-9806,

Vladyslav Glinskii,

Master student at Computer Systems Soft-

ware Department.

https://orcid.org/0000-0003-1360-7218.

Affiliation:

Igor Sikorsky Kyiv Polytechnic Institute,

03056, Kyiv,

pr. Peremogy, 37, build. 15.

Tel.: +38 044 204 99 44.

Email: sulema@pzks.fpm.kpi.ua

