Ilpuxnaoue npozpamne 3ab6e3nevuennn

UDC 004.415.2.045 (076.5) https://doi.org/10.15407/pp2020.02-03.164

DOMAIN ENGINEERING APPROACH OF SOFTWARE
REQUIREMENT ANALYSIS

O.V. Chebanyuk, O.V. Palahin, K.K. Markov

Requirement analysis is one of the important processes in software development lifecycle management. In Agile approach requirements
software models are the basic of generating other software development artifacts. Improving requirements approaches and techniques
allows avoiding mistakes in other software development artifacts. Domain engineering fundamentals is the basic for “template oriented”
approaches of software development artifacts designing. Reusing domain models and knowledge allows adding details in vertical “model
to model” transformation operations, refine generated software development artifacts, organize systematic software reuse and perform
many other activities. Paper proposes an approach of requirement analysis based on UML Use Case diagrams transformations into
communication ones and the next refinements of them by means of information from domain models. The advantages of the proposed
approach is the next: proposed transformation method involves “many to many” transformation in order to save the semantic of initial
model. Domain knowledge are used to complete communication diagram by means of adding details after transformation to them. In
order to perform Use case to communication transformation graph representation of software models is chosen.

Key words: Domain Engineering, Domain Analysis, Requirement Analysis, Software Model Transformation, UML diagram.

AHaJi3 BUMOT € BOXJIUBHM MPOLECOM JKUTTEBOTO LUKy PO3POOKH MPOrpaMHOro 3abe3nedeHHs. Y THYYKHX METOAOJOrisX po3poOKH
[IPOrpaMHOro 3a0e3MeYcHHs MOJENi BHMOT € TakuMu apredakTaMd PO3POOKH MPOrPaMHOrO 3abe3MedYeHHsS, IO MICTATh BHUXIJHY
iHpopManiro Ui 3ifiCHEeHHs MOJANBIINX 3aBJaHb PO3POOKH. Y IOCKOHAJICHHS METOOHK aHalli3y BHMOI JO3BOJSIE YHHKHYTH CHTYaIil,
KON TMOMHJKH apTe(akTiB, IO HPOSKTYIOThCS NPH aHai3i BUMOr, MEPEHOCAThCS Ha iHII apTedakTH PO3POOKH MPOrPaMHOIO
3abe3meueHHs. JloMeHHa imkeHepis 3a0esnedye (yHHaMEHTaIbHI OCHOBU s BIPOBADKCHHS «IIA0IOHHO-OPI€HTOBAHUX» METOIHUK
MIPOEKTYBaHHs apTedakTiB po3poOKH HmporpamMHOro 3adesnedeHHs. [I0OBTOpHE BHKOPHCTAHHS JOMEHHHX MOJENCH Ta 3HAHb JJO3BOJSIE
JOMOBHUTH 1H()OPMALII0 PO CTPYKTYPY MOAENI, [0 Mae OuIbLI [eTadbHY HOTALIIO MCIAs BUKOHAHHS BEPTHKAIbHOI TpaHc(opmamii
«3 MoOJeni y MOJETb)», YTOYHHTH CIIPOCKTOBAaHMII apTehakT po3poOKH MPOrpaMHOro 3abe3NedeHHs, OpraHi3yBaTH CHCTEMATHYHE
MOBTOPHE BUKOPUCTaHHS MPOrPaMHHUX MOAYTIB Ta BUKOHATH 0araTo iHIINX 3aBJaHb. Y poOOTI MPEICTaBICHO METONUKY aHai3y BUMOT
JI0 TporpamMHoOro 3abe3nedeHHs, 1Mo 0azyeThcst Ha TpaHchopMalii JiarpaM NpEneeHTIB y JAiarpaMM KOMYHiKalid 3 X mojaibIIuM
YTOYHEHHSM 3a JOHNOMOro0 iH(popMarii, [0 MICTHTBCS y JOMEHHHX Mozensix. IlepeBarorw mpeacTaBiIeHO! METOAMKH IO 3PiBHSHHIO
3 ICHYIOUMMH € Te, IO Ui TpaHcdopmalil BUKOPHCTOBYIOTHCS BCi CKJIAJOBI BHXiJHOI MOJETi 3 METOI0 NEpeHecTH Ii CeMaHTHKY
Ha pe3ynbTylouy Mozenb. Ilicns TpaHcopMalil BUKOHYETHCS yTOUYHEHHS JllarpaM KOMYHIKalii i3 BUKOPUCTAaHHAM HAKONMYEHUX 3HAHb
mpo jgomeH. Buximnolo iHdopMmaricio uis TpaHc(opMmamii Mojeneld NporpaMHOro 3abe3ledeHHS IX aHANITHYHE IPEACTABICHHS
y rpadosiii Gpopmi.

KnrouoBi cinoBa: joMeHHa iH)XKEHeEpis, JOMEHHHMH aHajli3, aHaji3 BUMOT, TpaHcdopmauis Mozeneil mporpamHoro 3abesnedents, UML
niarpama.

Ananu3 TpeOOBaHUI SBIAETCS BAXHBIM IIPOLECCOM JKH3HEHHOIO LHUKJIA pa3pabOTKH MHpPOrpaMMHOro obecredeHus. B rubkux
METOOJIOTHSAX Pa3pabOTKH IMPOrpaMMHOro oOecneueHus MOJeNnd TpPeOOBaHUH SBISIOTCS apTedakTaMu pazpabOTKHM MPOrpaMMHOTO
obecriedeHust, KOTOpbIe COAEPKAT HCXOAHYI0 HH(MOPMAIMIO JUIS OCYIIECTBICHUS NalIbHEHUIINX 3a1ad pa3padoTku. COBEpIICHCTBOBAHHE
METOJHMK aHalu3a TpeOOBaHMI MO3BOJSET M30EkKATh CUTYal[MH, KOrJa OMIMOKH apTe(haKkToB, KOTOPHIE MPOCKTUPYIOTCS MPH aHaIH3e
TpeOOBaHMI, MEPEHOCATCS Ha Apyrue apredakTbl pa3pabOTKU HporpaMMHOro obecredeHus. JloMeHHas WHXKEHepHs oOecleunBaeT
(yHIaMeHTaNbHBIE OCHOBBI ISl BHEAPEHMS <«IIA0JIOHHO-OPHEHTHPOBAHHBIX» METOAMK IIPOSKTUPOBaHHSA apTehakToB pa3pabOTKH
nporpaMMHoro obecnedeHus. [ToBTOpHOE HCIOIb30BAaHHE JOMEHHBIX MOJAENEH M 3HAHUH MO3BOJIIET JOMOJIHUTH MH(OPMALHMIO O
CTPYKType MOAEIH, UMeroLieil 6oee moApoOHY0 HOTALHIO MIOCIIE BBIMOIHEHHS BEPTHKAIbHON TpaHC(HOPMALUK «HU3 MOJEIH B MOJCIBY,
YTOYHUTH CIIPOCKTUPOBAHHBIM apTedakT pa3pabOTKH IPOTPAMMHOrO OOECIeUeHHs, OPraHH30BaTh CHUCTEMAaTHYECKOE MHOBTOPHOE
HCIIONIb30BaHUE MPOrPAMMHBIX MOJyJICH U BBINOJIHUTH MHOTO APYIHMX 3aja4. B paboTe nmpencraBieHa METOAMKA aHAIM3a TPeOOBaHHUH K
IPOrpaMMHOMY OOECIICUCHHIO, OCHOBAaHHAas Ha TPaHC()OPMALMM AMArpaMM MPELEJCHTOB B AMAarpaMMbl KOMMYHHKAIMH C HX
MOCJIEAYIOIAM yTOYHEHHEM C IIOMOIIBI0 HH(GOPMAINH, COJEpKalleiicss B NOMEHHBIX MonelsiX. IIpeHMMymecTBOM IpeACTaBICHHOH
METO/IMKM 110 CPABHEHHIO C CYIIECTBYIOIIMMH SBJISETCS TO, YTO JUIS TPaHC(OPMAILMU HCIONB3YIOTCS BCE COCTABIISIONIME HMCXOIHOM
MOJIEIIH C IIEJIBIO TIEPEHECTH €€ CEMAHTHKY Ha Pe3ylbTHPYIONIy0 Moaens. [Tocie TpaHchOpMaLMi BBIMONHICTCS YyTOYHCHHE AUArPaMM
KOMMYHHKAIlMil C HCHOJIE30BaHHEM HAKOIUIEHHBIX 3HAHUH mpo nomeH. McxomHolf mH(popMmanmued st TpaHChOpMAaUH MOAeNeH
MPOrPaMMHOr0 00ECIeYEHH S ABISETCS X aHATUTHYECKOe peCcTaBleHie B rpadoBoil hopme.

KuroueBbie coBa: JOMEHHAS HEDKCHEPHUS, TOMEHHBIN aHAIN3, aHATM3 TPeOOBaHMIA, TpaHC(HOPMAIHS MOJIENEH MPOrpaMMHOTO 00ECIICUEHHS,
UML nuarpamma.

Introduction

In practice, domain engineering finds practical implementation in Software Product Line approach. There are
software engineering standards with recommendations to organize lifecycle processes in AGILE approach (ISO 12207,
1ISO 15288, 1SO 19770-1, ISO 29119-2, ISO 20000-4). General recommendations of software development lifecycle
process organization are complicated by specific operations aimed to organize an effective reuse of different software
development artifacts. As software models are central development artifacts in AGILE approach operations of their
reuse will allow to avoid designing and other mistakes. In order to organize effective software artifacts reuse scheme it
is necessary to answer on two research questions (RQ):

(RQ1) What should be reused? Other words: how to select proper domain knowledge for reuse?

(RQ2) How to merge domain model with software development artifacts?

© 0.V. Chebanyuk, O.V. Palahin, K.K. Markov, 2020
164 ISSN 1727-4907. IIpo6.aemu nporpamyBannsi. 2020. Ne 2—-3. CneniajJbHuii BUIYCK

Ilpuxnaoue npozpamne 3abe3neuennn

Effective solving of these questions propose performing the next activities:

- forming request of searching in domain area through domain artifacts in repository;
- organizing search procedure and defining matching criterion;

- merging domain knowledge with software development artifacts.

Related papers and practical research

Involving Domain engineering into software artifacts reuse started in the end of the previous century. Reuse
researches performed in two directions. Research laboratories of big companies accumulated practical achievements in
this area. Scientific research directed to development of an analytical approaches.

As a result of research laboratories practices analysis shows that the next factors slowed the process of software
artifacts reuse:

Successful search of software development artifacts in Motorola practices was limited because it was some
difference rules using meta-information while preparing information about software artifacts and its further reuse during
search.

IBM focused on architectural solutions reuse. As a procedure of architectural solutions adoption for future
projects is quite complicated, architectural solutions may contain errors or rigid design characteristics.

Hewlett-Packard developer teams make some free procedure of adoption software development life
cycle process including extra processes for preparing high — quality software development artifacts ready for the
further reuse.

Table 1 Summarizing results of research laboratories IBM, Motorola and Hewlett-Packard companies.

Table 1. Level of coverage requirements of software artifacts reuse in application engineering

Application engineering requirements fc_>r effective reuse Motorola | 1BM Hewlett

of software development artifacts Packard
Formal apparatus of software artifacts reuse + + -
Formal apparatus of software artifacts semantic similarity - + -
Providing maturity level of software development lifecycle processes - - +

Analysis of scientific papers devoted to domain engineering development pointed that there is a list of factors
that slow the development of software artifacts reuse in domain engineering:

1. Absence of the common concept and complex approach of software artifacts reuse information that is based
on gathering information while domain analysis and its further reuse in application engineering processes [1-4].

2. Existing approaches of software artifacts reuse estimation do not contain formal apparatus of choosing the
best software development artifact from the set of possible ones. [5-8].

3. Complex of tasks needed to be solved for software artifact reuse usually performed by means of different
software development tools that use different formats of data representation. Inaccurate data transition between formats
can be a cause of their partially lost or appearing some not expected elements [9-12].

4. Absence of formal methods allowing synchronizing domain models structure when initial information about
domain analysis is changed (text, audio, video, web-site etc.) [13-16].

5. Difficulty to collaborate results of software models processing in text and graphical representation [17-19].

6. Absence of formal approaches of preparation and reuse meta-information about software development
artifacts [20-22].

Proposed approach

Proposed approach is grounded on collaboration of knowledge about problem domain that were accumulated in
domain analysis procedure [23] and improvement of requirement analysis procedures. The aim of improvement
requirement analysis procedure is to spread information about Use Case Diagram and design communication diagram
that satisfy the requirements and store the semantics of requirement specification.

From domain analysis artifacts, controlled vocabulary is used. Requirement analysis of artifacts consists of
requirement specification and Use Case Diagram.

Proposed approach is based on performing transformation from Use Case to Communication Diagram,
transforming whole structure of Use Case. Graph representation of UML diagram is chosen. Initial information for
transformation is prepared composing all graph paths from textual representation (XMI) of UML diagram. The concept
of “text to model” transformation is proposed in paper [24].

165

Ilpuxnaoue npozpamne 3ab6e3nevuennn

Data flow of the proposed approach is represented in the figure 1.

Domain

____analysis |

®

Desigh
controlled
| vocabulary)

f N

Application

Transformation

Prepare
requirement
| specification)

r—l—

Design
transformation
rules using

Desigh Design Use graph

domain
models

Case representation
diagram

obtain its
analytical
representation
]
Prepare
requirement
specification

obtain
communication
diagram
skeleton
[unoptimized
objgcts]

optimize
communication
diagram
structure

obtain
resulting

Figure 1. Data flow of the proposed approach

In order to solve this task propose the next denotations:
Graph representation of Use Case Diagram, that consider data streams

SM e e ={path, path,,..., path },n = SM
path = (esg,,esg,,....€sd,)

esg = (ob,, link,ob,)

ob,,0b, e{p,a,c}

link e{l,I(include), I (extends),(inh)}

use _case |

where SM

use_case

— denotation of whole Use Case Diagram,

166

Ilpuxnaoue npozpamne 3abe3neuennn

where

where

path, — path in the Use Case Diagram representing one data stream (path in graph),

esg — elementary sub-graph, describing two directly linked objects 0B, and ob, by means of link.

Obijects (ob) in notation of Use Case Diagram can be the next type a — actors; p — precedents; ¢ — comments.
Links in Use Case diagram can be the next types — I(include) — include, I(extends) — extends, I(inh) — inheritance.

SM ., ={path,, path,,..., path.},n =|SM__, |
path = (esg,,esg,,---,sg,)

esg = (ob,,m,ob,)

ob,,0b, {a,c,obj}

SM_,,, — Communication Diagram,
ob,,ob, — Communication Diagram objects,

m — Communication Diagram message.
Denote transformation operation from Use Case Diagram to Communication one as: SM, . y SM ,, as:

SM _TRANS y oM

use_ case

— TR 5 is a set of transformations rules, which are applied when Use Case diagram is transformed into

communication one.

A set of domain entities in controlled vocabulary (ConVoc)

ConVoc ={c,,c,,...,c,},n= ConVoc|.
A set of Use Case diagram precedents is:

I:Lse_case :{pl’ p2""l pk}
p = (Wl'WZ""’VVt)’ p € Puse_case
Let define the transformation rules using proposed denotations.

In order to perform transformation from Use case to Communication diagrams.
Transformation rules represented in the paper [25] are used. Grounding on these rules, it is proposed rule for

transforming whole Use Case diagram into communication one.

where

Rules for obtaining skeleton of communication diagram

PATH — A 5 PATH,,,

use_case

path — A path, .

use _case

TRANS
eSg use_case eSg com

TRANS ={trans,,trans,}
trans, : (a,l, p) — (a,m,obj)
trans, : (p,.1, p,) — (obj;,m,0bj,)

path,, .. — Pathin Use Case Diagram,

path,,, — path in Communication Diagram,

€50 use_case ~ elementary sub-graph in Use Case Diagram,
€SQ.,m — elementary sub-graph in Communication Diagram,
obj — Communication Diagram object.

After performing such a transformation, the next task is to give a name for obtained objects. Denote named

objects as obj(name). The rule of naming object is written in the following way:

ConVocn p={w=c|we p,c eConvoc}
ConVocnp = — obj(name) =ConVocn p _ (1)

167

Ilpuxnaoue npozpamne 3ab6e3nevuennn

The last transformation task is to optimize Communication Diagram structure by means of applying

“self-message” rule. Self-message is the message that is outcomes and incomes to the same communication diagram
object.

if obj, =obj, in(obj,,m,obj,)
then (obj,, m,obj,) — (obj, m(self), obj) '

Graphically such communication diagram fragment (figure 2,a) is changed to the next (figure 2,b).

m s
:Obj — :obj Obj In(self)
a b

Figure 2. “Self-message” optimization rule: a — obtained communication diagram fragment;
b — optimized communication diagram fragment

Describe the steps of the proposed approach of communication diagram designing that based on Use Case
diagram (application engineering artifact) and controlled vocabulary (domain analysis artifact).

1. Compose of a problem domain controlled vocabulary.
2. Design Use case diagrams from requirement specification.

3. Obtain a skeleton of communication diagram from the Use Case using proposed transformation rules

SM,, .. — % soM_

use_case

4. Fill communication diagram skeleton by means of objects names using.
5. Entities from controlled vocabulary in Use Case diagram using (1).
6. Optimize structure of communication diagram using self-message rule.

Case study

Consider example of Use case diagram for visualizing data of accounting reports. Report settings are stored in

profiles. Reports visualized in using graphics. Graphics are obtained considering time settings. Use Case Diagram is
represented in the figure 3.

setting of diagram
representation parametres
p2

time setting
p5
P 7
<<inc|udef> I(include)2

<<include>> I(include)1

) -
changing profile
p3

S
graphics
design p4

Marking makx,
min and media
p6

loading of old profile

Export data
from Excel
p8

Figure 3. Use case diagram of visualizing accounting reports

Analytical representation of this diagram is prepared using approach represented in [24]. A set of Path is
containing from six elements. Some part of paths are duplicated. Analytical representation of Use case diagram contains
the initial information for designing of communication diagram structure.

168

Ilpuxnaoue npozpamne 3abe3neuennn

chain, = (a1, p,)

chain, = chain,(p,,1;, p,) chain, =chain,(p,.l,, p;)
path, = chain,(p,,I(include),, p,)

path, = chain,(p,,I(include),, p;)

chain, = chain,(p,,l,, p,) chain; =chain,(p;,l;, p;)
chaing = chain,(p,,l;, p,) chain, =chainy(p,.l,, ps)
chaing = chain,(p,,l, p,) chain, =chaing(p,,l,, p,)
path, = chain,(p,, 15, p;)

path, = chaing(p I, p;)

path, = chaing (p,,ls, Ps)

path = chaing (s, s, Ps)

Expression (2) represents example of transformation Use case diagram path into communication one.

Path e casey = (@ hs P1)y (P11, Ps), (Pa, I (include),, p,)
path, .y = (a,,m;, 0bj;), (obj;, m,, obj;), (obj;, m;, obj,) - 2)
obj, = profile,obj, = profile,obj, ="todefine"
The note according to transformation rule names of different objects can be the same. It is pointed to the fact that
the diagram needs the further optimization. Name of object “to define” points, that in order to define the name of

communication diagram object the information from domain knowledge is used. After designing all paths of
communication diagram, its skeleton is composed (figure 4).

:Profile :Profile

:Profile
() 1 |

—»
:Profile :Profile

3
. :Graphic
3 8
. . | -— —
:Graphic Excel

Figure 4. Unoptimized “skeleton” of the Communication Diagram

After performing sequence of Communication Diagram refinement (implementing self-object messaging rule)
obtain diagram that is represented in figure 5 and 6.

0]
1, :Profile
— | l7
ri
L
<
3, :Graphic
S 8,
:Graphic Excel

169

Ilpuxnaoue npozpamne 3ab6e3nevuennn

Figure 5. First- step of communication diagram skeleton optimization (Object profile is optimized)

—1> :Profile

hic :Excel

— |

I

:Grap

Figure 6. Refined Communication Diagram

The next step is to complete diagram structure by problem domain entities and their properties (figure 7).
Performing this step it is defined, which data streams can be organized in parallel.

0 1 Profile
—p — — 7
Visualization term 5 —
Diagram type - :Graphic Excel
Data source
. |
2|1 ST 2
3
l 2.2 < 1
23 :Data
I
2.4

Figure 7. Communication Diagram that is complicated from domain knowledge

Conclusion

Known “model to model” transformation approaches do not use the whole structure of initial diagram. It may be
cause of losing some information or performing additional efforts of domain analytics to organize the structure of
resulting diagram. From the other hand, such approaches require additional time and efforts.

Proposed approach aimed to designing of Communication Diagram from Use Case one. It is grounded on usage
of whole Use Case diagram structure while transformation operation is performed. Such a fact allows saving Use Case
semantics after transformation. As proposed approach implements vertical transformation, resulting diagram
complicated by information about problem domain from domain knowledge.

Further research

It is planned to design formal approach allowing reuse domain knowledge while designing different types of
UML diagrams in Software Product Line.

References

[

Hooper J.W., & Chester R.O. (1991). Software reuse: guidelines and methods. Springer Science & Business Media.

2. Marshall JJ., & Downs R.R. (2008, July). Reuse readiness levels as a measure of software reusability. In IGARSS 2008-2008 IEEE

International Geoscience and Remote Sensing Symposium (Vol. 3, pp. 111-1414). IEEE.

Smith M., & Sodhi J. (1994). Marching Towards a Software Reuse Future. ACM SIGAda Ada Letters, 14(6), 62-72.

4. Vieira M., Madeira H., Cruz S., Costa M., & Cunha J.C. (2011, June). Integrating GQM and Data Warehousing for the Definition of Software
Reuse Metrics. In 2011 IEEE 34th Software Engineering Workshop (P. 112-116). IEEE.

5. MagaC., & Jazdi N. (2009, June). Concept of a domain repository for industrial automation. In Proceedings of the First International Workshop

on Domain Engineering.

w

170

Ilpuknaone npozpamne 3abe3nevenns

6. Komissarchik J., & Komissarchik E. (2008). U.S. Patent N 7,454,430. Washington, DC: U.S. Patent and Trademark Office.

7. Van der Meij L., Isaac A., & Zinn C. (2010, May). A web-based repository service for vocabularies and alignments in the cultural heritage
domain. In Extended Semantic Web Conference (P. 394-409). Springer, Berlin, Heidelberg.

8. Dwyer M.B., Hatcliff J., Robby R., Pasareanu C.S., & Visser W. (2007, May). Formal software analysis emerging trends in software model
checking. In 2007 Future of Software Engineering (P. 120-136). IEEE Computer Society.

9. Whalen M., Cofer D., Miller S., Krogh B.H., & Storm W. (2007, July). Integration of formal analysis into a model-based software development
process. In International Workshop on Formal Methods for Industrial Critical Systems (P. 68-84). Springer, Berlin, Heidelberg.

10. Qin W., Rajagopalan S., & Malik S. (2004, June). A formal concurrency model based architecture description language for synthesis of
software development tools. In ACM SIGPLAN Notices (Vol. 39, N 7, P. 47-56). ACM.

11. Fraser M.D., & Vaishnavi V.K. (1997). A formal specifications maturity model. Communications of the ACM, 40(12), 95-104.

12. Satyananda T.K., Lee D., Kang S., & Hashmi S.I. (2007, August). Identifying traceability between feature model and software architecture in
software product line using formal concept analysis. In 2007 International Conference on Computational Science and its Applications (ICCSA
2007) (P. 380-388). IEEE.

13. Markopoulos P. (2013). A compositional model for the formal specification of user interface software (Doctoral dissertation).

14. Bjorner D. (2019). Domain analysis and description principles, techniques, and modelling languages. ACM Transactions on Software
Engineering and Methodology (TOSEM), 28(2), 1-67.

15. Cao L., Liu J, Wang Q., Jiang C., & Zhang L. (2019). An efficient structural uncertainty propagation method based on evidence domain
analysis. Engineering Structures, 194, 26-35.

16. Rabiser R., Schmid K., Eichelberger H., Vierhauser M., Guinea S., & Griinbacher P. (2019). A domain analysis of resource and
requirements monitoring: Towards a comprehensive model of the software monitoring domain. Information and Software Technology, 111,
86-109.

17. Drsilva V., Kroening D., & Weissenbacher G. (2008). A survey of automated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7), 1165-1178.

18. Ouimet M., & Lundgvist K. (2007). Formal software verification: Model checking and theorem proving. Embedded Systems Laboratory
Technical Report ESL-TIK-00214, Cambridge USA.

19. Ammann P., & Black P. E. (1999, October). Abstracting formal specifications to generate software tests via model checking. In Gateway to the
New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No. 99CH37033) (Vol. 2, P. 10-A). IEEE.

20. Bennion M., & Habli I. (2014, May). A candid industrial evaluation of formal software verification using model checking. In Companion
Proceedings of the 36th International Conference on Software Engineering (P. 175-184). ACM.

21. Jetley R., lyer S.P., & Jones P. (2006). A formal methods approach to medical device review. Computer, 39(4), 61-67.

22. Broy M., Kriiger I.H., & Meisinger M. (2007). A formal model of services. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(1), 5.

23. Chebanyuk O. & Palahin O. (2019) Domain Analysis Approach. International journal “Informational Content and Processing”. Volume 6,
Number 2, 2019, 3-20.

24. Chebanyuk O. (2018) An Approach of Text to Model Transformation of Software Models. In Proceedings of the 13th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), 432-439 (Bunanus ingekcyetses y SCOPUS)

25. Chebanyuk E. (2014) An approach to class diagram designing. Proceedings of the 2st International Conference on Model-Driven Engineering
and Software Development, 7-9 January 2014 y. Portugal, Lisbon. 579-583.

JlitepaTypa

1. Hooper J.W., & Chester R.O. (1991). Software reuse: guidelines and methods. Springer Science & Business Media.

2. Marshall JJ., & Downs R.R. (2008, July). Reuse readiness levels as a measure of software reusability. In IGARSS 2008-2008 IEEE
International Geoscience and Remote Sensing Symposium (Vol. 3, pp. 111-1414). IEEE.

3. Smith M., & Sodhi J. (1994). Marching Towards a Software Reuse Future. ACM SIGAda Ada Letters, 14(6), 62-72.

4. Vieira M., Madeira H., Cruz S., Costa M., & Cunha J.C. (2011, June). Integrating GQM and Data Warehousing for the Definition of Software
Reuse Metrics. In 2011 IEEE 34th Software Engineering Workshop (P. 112-116). IEEE.

5. MagaC., & Jazdi N. (2009, June). Concept of a domain repository for industrial automation. In Proceedings of the First International Workshop
on Domain Engineering.

6. Komissarchik J., & Komissarchik E. (2008). U.S. Patent N 7,454,430. Washington, DC: U.S. Patent and Trademark Office.

7. Van der Meij L., Isaac A., & Zinn C. (2010, May). A web-based repository service for vocabularies and alignments in the cultural heritage
domain. In Extended Semantic Web Conference (P. 394-409). Springer, Berlin, Heidelberg.

8. Dwyer M.B., Hatcliff J., Robby R., Pasareanu C.S., & Visser W. (2007, May). Formal software analysis emerging trends in software model
checking. In 2007 Future of Software Engineering (P. 120-136). IEEE Computer Society.

9. Whalen M., Cofer D., Miller S., Krogh B.H., & Storm W. (2007, July). Integration of formal analysis into a model-based software development
process. In International Workshop on Formal Methods for Industrial Critical Systems (P. 68-84). Springer, Berlin, Heidelberg.

10. Qin W.,, Rajagopalan S., & Malik S. (2004, June). A formal concurrency model based architecture description language for synthesis of
software development tools. In ACM SIGPLAN Notices (Vol. 39, N 7, P. 47-56). ACM.

11. Fraser M.D., & Vaishnavi V.K. (1997). A formal specifications maturity model. Communications of the ACM, 40(12), 95-104.

12. Satyananda T.K., Lee D., Kang S., & Hashmi S.I. (2007, August). Identifying traceability between feature model and software architecture in
software product line using formal concept analysis. In 2007 International Conference on Computational Science and its Applications (ICCSA
2007) (P. 380-388). IEEE.

13. Markopoulos P. (2013). A compositional model for the formal specification of user interface software (Doctoral dissertation).

14. Bjorner D. (2019). Domain analysis and description principles, techniques, and modelling languages. ACM Transactions on Software
Engineering and Methodology (TOSEM), 28(2), 1-67.

15. Cao L., Liu J, Wang Q., Jiang C., & Zhang L. (2019). An efficient structural uncertainty propagation method based on evidence domain
analysis. Engineering Structures, 194, 26-35.

16. Rabiser R., Schmid K., Eichelberger H., Vierhauser M., Guinea S., & Griinbacher P. (2019). A domain analysis of resource and
requirements monitoring: Towards a comprehensive model of the software monitoring domain. Information and Software Technology, 111,
86-109.

17. Dr'silva V., Kroening D., & Weissenbacher G. (2008). A survey of automated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7), 1165-1178.

18. Ouimet M., & Lundgvist K. (2007). Formal software verification: Model checking and theorem proving. Embedded Systems Laboratory
Technical Report ESL-TIK-00214, Cambridge USA.

19. Ammann P., & Black P. E. (1999, October). Abstracting formal specifications to generate software tests via model checking. In Gateway to the

New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No. 99CH37033) (Vol. 2, P. 10-A). IEEE.

171

Ilpuxnaoue npozpamne 3ab6e3nevuennn

20.

21.
22.

23.
24,

25.

Info

Bennion M., & Habli I. (2014, May). A candid industrial evaluation of formal software verification using model checking. In Companion
Proceedings of the 36th International Conference on Software Engineering (P. 175-184). ACM.

Jetley R., lyer S.P., & Jones P. (2006). A formal methods approach to medical device review. Computer, 39(4), 61-67.

Broy M., Kriiger I.H., & Meisinger M. (2007). A formal model of services. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(1), 5.

Chebanyuk O. & Palahin O. (2019) Domain Analysis Approach. International journal “Informational Content and Processing”. Volume 6,
Number 2, 2019, 3-20.

Chebanyuk O. (2018) An Approach of Text to Model Transformation of Software Models. In Proceedings of the 13th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), 432439 (Bunauns ingekcyetscs y SCOPUS)

Chebanyuk E. (2014) An approach to class diagram designing. Proceedings of the 2st International Conference on Model-Driven Engineering
and Software Development, 7-9 January 2014 y. Portugal, Lisbon. 579-583.

Received 02.03.2020

rmation about the authors:

Chebanyuk Olena Viktorivna,

PhD
PhD

, associate professor of software engineering department,
, associate professor.

Number of publications — approximately 75.

Publications in Ukrainian journals — 35.

Publications in foreign journals — 35.

PP Hirsh index=4, Scopus — 1.

https://orcid.org/0000-0002-9873-6010 (ORCID name Elena Chebanyuk),

Palahin Olexander Vasyliovych,

Doctor of Sciences, Academician of National Academy of Sciences of Ukraine,
Deputy director of Glushkov Institute of Cybernetics, head of department 205.
Publications in Ukrainian journals — 290.

Publications in foreign journals — 45.

H-index: Google Scholar — 15, Scopus — 3.

http:

/lorcid.org/0000-0003-3223-1391,

Markov Krassimir K.,

Professor Dr.

Number of publications: more than 135; 5 monographs.

PP Hirsh index — 11.

https://orcid.org/0000-0001-5041-1498 (ORCID name Krassimir Markov)
WoS ResearcherID L-6845-2018.

Authors’ place of work:

National Aviation University,

03058 ave. Lubomira Guzara 1,

Phone: 044-406-76-41,

E-mail: chebanyuk.elena@gmail.com (chebanyuk.elena@ithea.org)

V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine
40, Academician Glushkov Avenue, Kyiv, 03187, Ukraine

Institute of Information Theories and Applications, Sofia, 1000, P.O. Box 775, Bulgaria.
E-mail: markov@ithea.org

172

http://orcid.org/0000-0003-3223-1391
https://orcid.org/0000-0001-5041-1498
https://publons.com/researcher/L-6845-2018/
mailto:chebanyuk.elena@gmail.com
mailto:markov@ithea.org

