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THE PRACTICAL ASPECT
OF USING THE ARTIFICIAL INTELLECTUAL TECHNOLOGY FOR
BUILDING A MULTIDIMENSIONAL FUNCTION CFAR
FOR SMART-HANDLED LPI RADAR

M. Kosovets, L. Tovstenko

The problem of the development of modern mobile smart-handled LPI radars using artificial intelligence technologies, the main difference of
which is the construction of the CFAR function, which takes into account the influence of external and internal factors and requirements for
the purpose, also distinguishes the developed radar among others in its class. The analysis of the publications was showed a great interest in
modern radar systems and the lack of a unified approach to solving this problem. The purpose of the article is to reduce this gap, from
collecting information from radar sensors and internal sensors to construct a generic multidimensional CFAR function and for organize its
effect on the receiving and transmitting part of the radar. The application of artificial intelligence technologies in the construction of a
modeling complex of LPI radars with CFAR function and their debugging in real time is covered.

Key words: Smart-Handled Radar, LPI (Low Probability of Intercept) Radar, CFAR (Constant False Alarm Rate), loT (internet of things),
artificial Intelligence, Deep learning, Signal processor, Signal-to-Noise Ratio (SNR).

PosrnsHyTO MpobieMy po3poOKH Cy4acHUX MOOLIBHHX iHTenekTyansHux LPI pamapiB BUKOPHCTOBYIOUM TEXHONOTII IITYYHOTO iHTENEKTY,
OCHOBHA BiJIMIHHICTb SIKMX Hoisirae B mooyznoBi ¢ynknii CFAR, mo BpaxoBye BIUIMB 30BHIIIHIX Ta BHYTPINIHIX ()aKTOpiB i BUMOTH IO
IPU3HAYCHHIO, TAKOK BOHA BUPI3HSE PO3POOIIOBAHHH pajiap cepen iHIMX Y cBoeMy kiaci. [IpoBesieHnii aHaii3 myOuikaliiil oKa3aB BEIIHKY
3aLiKaBJICHICTh CYYaCHUMHU PaJlapHUMH CHUCTEMaMH i BIJICYTHICTb €IMHOTO MiIXOAy A0 po3B’si3aHHA wiei mpoOmemu. Mera crarti —
3MCHIIMTH L0 MNPOTAMHY, IOYHHAIOYM 31 300py iHdopMamil BiX pajapHHX CEHCOpiB Ta BHYTPINIHIX AATYMKIB IS NOOYZOBH
y3aranbHio040i 6araToBumipHoi ¢ynkuii CFAR Tta opranisauil ii BIUIMBY Ha NpuiiManbHy 1 HepefaBalbHy YaCTHHY pagapy. BucsimieHo
3aCTOCYBAaHHS TEXHOJIOTIH IITy4HOTO IHTENEKTy HpU NoOyAoBi Mopemoroudoro komiviekcy LPI pamapiB 3 ¢ynkuieto CFAR Ta ix
BiJUIaro/DKCHHS B peajlbHOMY MacIITadi dacy.

Kirouosi crosa: Ilepenocuuit posymumii pamap, LPl (3 nHusbkoro iimoBiphicTio nepexormienns) pagap, CFAR (¢pyHkuis mocriiHol
iiMoBipHOCTI XMOHUX TpuBOr), |0T (iHTEpHET peveii), MTYIHHUIT IHTENEKT, TTHOOKE HABYAHHS, CHTHAIBHHUIT poIiecopr, KOeimieHT CHrHa-

wym (koed. c/ur).

Paccmotpena npobGiema pa3paboTKi COBPEMEHHBIX MOOMIIBHBIX MHTEIUIEKTYalbHbIX LPI pagapoB, UCIIONB3YsS TEXHOIOTMH UCKYCCTBEHHOTO
HHTEJIEKTa, OCHOBHOE OTIMYHE KOTOPBIX 3aKimiodaercsa B moctpoeHnd ¢yHkimu CFAR, y4nTsIBaomuii BIMSHIE BHENIHAX U BHYTPEHHHUX
(axTopoB M TpeOOBaHMS [0 HA3HAUCHWIO, TAKKE OHA OTIMYACT pa3pabaTbIBaeMBbIil pajap cpelu ApYrHX B cBoéM Kiacce. IIpoBenéHHBIN
aHalu3 MyONMKalUi ToKa3all OONBIIYI0 3aUHTEPECOBAHHOCTh COBPEMEHHBIMH PaJapHbIMH CHCTEMaMU M OTCYTCTBHE €IHHOrO MOAXOIa K
paspemenuio 3Toil mpobieMsl. llenb cTaTbu - yMEHBIIUTH 3TOT NIpoOeld, HaduWHAs 1O cOOpy MH(OPMAIMH OT PajgapHBIX CEHCOPOB U
BHYTPEHHHX JaTYUKOB I IOCTpoeHus oboOmaromeil MooromepHoil ¢ynkmmn CFAR n opranmsammu e€ BIMSIHHS Ha NPUEMHYIO H
nepeaomylo 4acTh pajgapa. OcBellleHbl NPUMEHEHHs TEXHONOTHH HCKYCCTBEHHOIO HHTE/UIEKTa IPHU IOCTPOSHHU MOJEIUPYIONIEro
komruiekca LPI pagapoB ¢ pynkuueid CFAR 1 ux oTinaaxu B peajJbHOM MaciiTabe BpeMeHH.

KiroueBble ciioBa: nepeHOCHOI yMHEBIN panap, LPI (¢ Hu3Koi BeposTHOCTEIO IepexBata) pagap, CFAR (pyHKIHS HOCTOSHHOMN BEPOSITHOCTH
noxHbIX Tpesor), [0T (MHTepHeT Beleil), CKYCCTBEHHBIIT HHTEILIEKT, ITy0oKoe 00ydeHne, CHTHAIBHBII Iporeccop, KO3 HUIUEHT CUrHai-

nryma (xoadd. c/mr).

Introduction

Today nobody will have surprised application of radar technologies in different industries of the economy:
medicine, armament, security, agriculture, geology, 10T and others like that. Their further development is impossible
without the use of artificial intelligence, cognitive technologies, deep learning, cloud computing, real-time
multiprocessors, which are being rebuilt in the process of solving the problem, neural networks. All these modern
technologies do not diminish the importance of knowledge of antenna theory, radio engineering, signal processing, but
make them revisit, more meticulously. And a separate task, no less important - real-time setup of the complex. This is
often a stumbling block, since debugging LPI radars is sometimes more difficult than designing the radars themselves,
since it requires the construction of modelling complexes but often sufficient resources (time, funding) are not provided
in the contract.

Features of development of CFAR function for LPI radar

The main requirement for LPI radars, depending from the using — is invisibility to the surrounding electronic
devices, low radiation power (less than 1 W), minimizing the negative impact on human health. This makes it difficult
to isolate the signal from the noise, which explains the unsuccessful attempts to create a ground-based scanning radar
(GRP), a mine-finding radar, a portable intelligent through the wall radar (PSTW), near- and far-range radars. The use
of technology in the 10T environment is rapidly increasing as demand for such a service built into existing gadgets such
as iPhones, clocks, and so on increases, allowing for unlimited access to cloud computing, which facilitates deep
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learning of cognitive functions. Historically, this new class of radar has been called the Low Probability of Interception
(LPI) radar.

For nonlinear approach (NLFM) the CHIRP modulation as the SIDELOBE (side petals) can improve level has
the greatest advantage and to receive losses <1 dB in comparison with windowing configuration. (NLFM) modulation
can be considered of course as "window weightings". As a lack of nonlinear modulation in relation to linear it is
possible to note difficulties with elimination of hindrances and big sensitivity to Doppler shift (providing Doppler
compensation filters).

The radar has to operate from 20 m, at fine resolution, out to 96 nmi, at reduced resolution, with the same solid
state transmitter, relying on waveforms and processing to achieve the necessary performance. The underlying method
by which this is achieved is to use short pulses for close ranges, where the returned energy is adequate for detection, and
then to integrate the power over longer pulses or sequences of pulses, preferably coherently, to allow adequate SNR for
the detection of targets at longer ranges.

This leads to the use of signals with a complex signal structure. Consider the key metrics that characterize radar:
resolution by distance, azimuth, area, volume.

The distance resolution on range is estimated by distance AD between two separately observed targets 1 and 2
located on one direction concerning the radar. Separate reception of the reflected signals from these targets it is possible
if the reflected impulse from the first targets ends before, than there will be acceptances an impulse which is reflected
off from the second target.

Since the reflection from the first target lasts for T pulse time, and the signal from the second target is delayed by
time At = ZATD , then the inequality of the individual receiving signals will be inequality ZATD >1

pulse *

Two targets will be displayed separately on the radar screen if the distance between the targets is:

AD > AD _ e

resolution 2

With decreasing AD resolution, the value of the range resolution increases. Thus, to increase the resolution of the
range should reduce the length of the probe pulses.

The azimuth resolution is estimated by the minimum value of the angle oo between the directions to two
equidistant point targets 1 and 2, inat which the reflected signals from these targets are received separately. The
azimuth resolving power value ap is determined by the horizontal antenna width an at half power. Thus, in order to
increase the azimuth resolution, one should narrow the antenna pattern in azimuth.

The resolving area at a distance D is estimated by the size of the area limited by azimuth by the beam width an of
the antenna at half power, and in range — by range resolution. It should be noted that the range resolution due to the

ct
finite sliding angle B is 1/cosP times larger than the generally accepted value %Ise .

The slip angle is the angle in the vertical plane between the direction of maximum radiation from the output of
the radar antenna and the sea surface.

Area resolution

Do ct Do, ct
Sresolution = ——H P = 00087H—pulse
57.3-2cosp cosf3
For small values of B, this holds
Sresolution = 00087 D(x“H Ct pulse *
Estimated expression for resolving area
Da,,150ct
sresolution = HSTF)UISG ~ 26D0(,H Tpulse [Mz]v

were o [epad]; tpuise [MKS]; D [m].
Within the area resolution, point targets cannot be displayed separately on the radar screen

If D= 50 '103 M, OH = IO,' Tpulse — 1 MKC, mo Sresolution = 13104 MZ.

The resolving volume at a distance D is estimated by the value of a volume numerically equal to the cross-

T
sectional area of the antenna beam at this distance, multiplied by the range resolution —2%
a e Ct ulse
Get Vresolution = D2 (57H3)2 : % =15 ].041 DZOLH Oct pulse *
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Calculation formula for volume resolution:

D2 O‘49.1507;

Vresolution = (57 3)2 pulse = 0'045D2aHOT pulse [MS]I

were D [m]; an [epad]; 6 [epad]; Touse [MKS].

We get:

a e C‘C ulse —
Vresolution =D? ﬁ% =15-10 * DzaHecrpulse '

Clouds, rain, fog and snow interfere with the radar, which manifests itself in the form of false radar reflections
(weather clutter, volume clutter). Thus, difficult meteorological conditions lead to a weakening of the reflected signals
from the targets and the appearance of additional re-reflected interference. If the sea surface is mirrored, then the probe
signal reflected from the sea surface propagates only towards the target.

With an excited sea surface, the geometry of the reflecting surface of the sea is constantly changing, part of the
power of the probing signal is reflected from the sea waves, arrives not only towards the target, but also returns to the
side of the locator, creating additional interference (sea clutter). The reflected signals in this case are diffuse in nature;
the probability distribution of instantaneous noise values has a normal distribution, the same as that of thermal noise.

LPI Radar emites electromagnetic waves with impulse modulation low power of up to 1 watt. Depending on
application , modulation can be phase, frequency, pseudorandom, noise-like, and the like. For determine goals with
good resolution requires complex mathematical processing of the received signal, controlling process of formation of
probing impulses, interaction with the receiving part and control of the processing of received information. Similar non
LPI radars have a power of about 1 kW.

The task of collecting information from the sensors of the electromagnetic environment, the internal sensors,
isolating of signal from noise at the input of the radar receiver, signal processing, using of artificial intelligence
technology, deep learning, classification of signals, support of cognitive functions of radar are provided by a
multiprocessor with architecture which in during of processing is rebuilt with forming a multidimensional function
dependent on the application of the radar.

This feature is called: Constant False Alarm Rate (CFAR). The developer's task is to minimize false alarms at
different signal, interference, and noise levels. In this article, we will focus on the formation of the CFAR function and
will cover, beyond the scope of consideration, the formation of interference elements, the effect of internal noise and the
methods of forming controls on the components of the radar LPI and the process of organizing calculations. The rapid
growth in the number of scientific publications in domestic and foreign publications confirms the importance of the
CFAR function, as well as the lack of a clear concept for its construction and the presence of a small number of
practical successful applications related to the most understandable and widely using military field: marine and
surveillance radars.

The main task of creating LPI radars with CFAR is to build a CFAR processor that processes an adaptive
algorithm for noise detection and interference problems. This must be the original architecture. We begin the process of
developing radar by formalizing radar requirements, building a complex to model a multidimensional CFAR function
with sufficient resources, and generating an impact function. This dispels the myth of the ease of constructing LPI
radars as a transmitter and superheterodyne receiver, as well as exaggerated affinity with basic telecommunication
wireless stations.

In most real systems, the level of interference changes over time. To maintain the constant probability of false
alarms, we change their threshold. A series of discrete values, each of which is the average signal level over a
corresponding time interval, enters the CFAR detection circuit. The detection scheme must decide whether the signal in
the study interval indicates the presence of a target or whether it is caused by external and internal noises. In most
simple CFAR detection schemes, the threshold level is calculated as the average noise value over several time intervals
before and after the test. We consider that the signal level in the test interval is conditioned by the presence of a target if
it exceeds the signal level at adjacent intervals. This approach is called cell-averaging CFAR (CA-CFAR).

Examples of CFAR implementation

There are many options for forming a CFAR function, depending on the purpose. Basically, it comes down to
determining the threshold level. For example, some algorithms average the signal at predetermined intervals before and
after the test, and then take more or less of the values obtained. These approaches are called maximum-of-CFAR, GO-
CFAR and least-of-CFAR, LO-CFAR.

More sophisticated CFAR algorithms can adaptively adjust the threshold level based on radar statistics. This is
especially true for shore-based radars, where noise due to reflection from the sea surface is poorly approximated by the
additive white Gaussian noise. This makes it difficult to detect objects such as submarines, yachts, swimmers, etc.

Article [1] examines critical interferences in the form of an unwanted echo called clutter. These include echoes
of the earth, weather (especially rain, snow), the sea, and deliberate disturbances. Therefore, the developer of shore-

306



Memoou mawmunnozo naguanus

based radars faces the problem of how to eliminate external interference. This article discusses troubleshooting methods
such as Doppler processing and Log-FTC, and then introduces an algorithm for protection against accidental changes
that are suitable in a transition state and a steady state. Also, this technique does not depend on the type of interference
and center frequency.

Article [2] presents the original structure of a CFAR detector and the estimation of moving marine targets under
natural interference conditions using bistatic radar scattering. Studies confirm that the amplitude of the marine target
signal is distributed by Rayleigh, and the amplitude of the reflected signal from the sea is distributed by Weibul. In this
situation, an adaptive approach to the formation of a statistical rule was used to suboptimal detect the unknown length
of the target at sea. The purpose of this approach is to build a structure of decision-making rules to determine unknown
parameters in situations where part of the statistical parameters of two hypotheses is unknown: power or length of
target.

A comparison of the performance of the CFAR API and the Hauff detector with incoherent multilayer
integration is investigated in [3]. For comparison, the Rolling approach was used to calculate losses. This article unifies
the results of an extensive loss study of several types of detectors. This study examines the results of a comparative
analysis of a Hauff detector with incoherent integration in a multilayer situation. Losses are defined as a statistical
estimate using the probabilistic characteristics of detectors of both types. The efficiency of the Hauf detectors is
calculated for different values of the false alarm probability with different observations in the reference window, the
average interference ratio, the noise, and the probability of occurrence of a multi-path medium-length situation in the
cell range. Our results show that Hauf transformation is effective if the multipath situation is reduced.

Article [4] investigates the automatic averaging (ACCA) of a CFAR detector based on ordered variable data
(ODV) for heterogeneous background environments. The ACCA-ODV detector dynamically selects, by successive test
checks, the appropriate set of ranked cells to estimate the unknown background level. The proposed detector does not
require any prior information about the background environment and uses the variability index statistics as a form
parameter to reject or accept the ordered ordered cells. For implementation, a two-tier architecture is proposed, in which
both ODV-based sequential statistics match the hypotheses that are being processed simultaneously. The performance
of the proposed detector is evaluated and compared with those such as OS-CFAR and modified index-CFAR (VI-
CFAR) detectors in different background environments. The results show that the ACCA-ODV detector acts as a CA-
CFAR on a homogeneous background and operates reliably in heterogeneous environments.

Article [5] examines the received signals in a radar system, which are always accompanied by noise and
interference, such as echoes from the earth, sea, rain, birds, insects, wind gusts and atmospheric turbulence. These
disturbances can cause a serious deterioration in the performance of radar systems, leading them to conclude that these
echoes are targets (false alarms). To overcome this problem and make the right decision, the receiver in the radar
system must achieve a constant false alarm rate (CFAR) and a maximum probability of target detection. Modern radars
typically make the detection decisions automatically, using an adaptive threshold based on the CFAR architecture,
where the threshold is determined dynamically based on local background noise / clutter rather than the constant value
of a powerful signal.

Formation of CFAR function and its influence in modern LPI councils is impossible without the use of digital
filtering. We offer its construction on a multiprocessor, which is being rebuilt in the process of operation. Using
multiprocessor with neurocomputer elements allows you to achieve multiple types of signal processing in real time. The
processing is easy to do in the baseband, not the bandwidth. Then the low pass filter performs the task without taking
into account the external band. Increasing the signal-to-noise ratio improves the detection of targets in the middle of the
noise, if this filter is consistent with the expected radar signal, even when it has distorted the signal. Doppler processing
excludes signals from fixed and slow targets. The proposed filter, developed as an adaptive filter, is used for spectrum
formation and interference elimination, based on the least-squares algorithm, which monitors interferences and
eliminates the "blinding" of moving targets that occur during digital Doppler smoothing, which are more likely to be
caused.

After the electrodynamic formalization of the electromagnetic field, we construct an operator equation of the
first kind, where the nucleus is a Green function. We display the instantaneous characteristics of the observed object,
the set of values of which determines the image. This is the information that underlies the training and recognition of
radar information.

Today, there are many options for building CFAR algorithms based on linear and nonlinear operations. Analysis
of publications confirmed the complexity of building LPI radars. The impasse of the situation is seen in the non-
systematic consideration of the design of modern radar systems. The key problem is the generalization of the CFAR
function, the construction of a modeling complex to work out the options for constructing the function, the allocation of
computing resource to implement the function in real time. The CFAR processor architecture is offered as a specialized
module synthesized for multiple FPGA Xilinx Virtex VI configurations.

The optimum choice of architecture is ensured by its maximum approximation to the class of solved problems.
To implement the CFAR function, the architecture of a fault-tolerant real-time m-cluster multiprocessor for
multidimensional signal processing [6] with a high-speed radio channel is developed. High performance and reliability
are achieved through the use of high-speed radio to exchange between individual clusters, channel modulation and
fault-tolerant technologies. Such an architecture is optimally oriented to solve multidimensional field processing
problems in radar. The spatial orientation of the information sources most fully reflects the natural parallelization of the
tasks being solved in the multiprocessor whose architecture corresponds to this class. A set of functional modules
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designed for radar field processing has been developed, which is characterized by a large amount of information. The
central unit generates CFAR functions, organizes deep learning, provides diagnostics and initial start-up. There are
three stages of the operation of the CFAR calculator, aimed at managing the process of obtaining information and the
formation of probing signals through the CFAR interface: the task of recognizing the radar situation, developing a
decision strategy, implementing the decision.

The dynamics of the change of the radio frequency field of the radar can be analyzed in the abstract space of
states — the phase space in which you can enter coordinates describing the state of the system, such as the
electromagnetic field strength of points at different distances from the antenna at each time. We plot the trajectory in the
phase space, indicating the direction of field change along the phase trajectory over time. Note that the introduction of
such a phase space makes it easier to analyze the field if you move from a normal coordinate space to a phase space.
For example, if the propagation of oscillations in the space-time diagram of variables X, t is represented by a curve line,
then on the phase plane P, x (where P is the Power, x is the Coordinate), such motion is represented by a point and a
line respectively (first order curve). In phase space it is also easier to analyze the stability of the solution of the wave
propagation problem and to investigate the problem of stability and instability of the system. The basis for the
classification of the wave propagation and their models is the condition of the reproduction of solutions under given
initial conditions. Analysis of the radar system shows that over time, the phase trajectories of certain areas of space
concentrate around some points - the system seems to be drawn to these points in the course of its development. The
points attracting the trajectory are called attractors. An example of an attractor would be the propagation of energy from
the antenna to the target and in reverse order. Power and distribution are constantly changing, but the energy flow is
generally stable in space and does not go beyond certain limits.

To better understand the radar's internal links and, most importantly, the links between the information gathering
systems, namely, the sources of noise, both internal and external, the effects of random and directional interference,
antenna information and others, we will examine the "reticular” aspect of the radar LPI. Depending on the course of the
radar situation, the information content of the radar and its computing environment changes. The radar system has
reticular property due to the fact that its processors of different architecture and computing power have many contacts
with external sources of information, the ability to scale the number of computers and links). In the course of training,
different computers have different activity (priority when processing interrupts), blocking connections after operator
intervention, or receiving a directional interference. The role of the arbiter in the reticular system of the radar takes on a
central module that interacts directly and indirectly with almost all radar structures and systems, affecting its various
functions. One of the most important is the radar activation function associated with the process of changing the radar
environment.

The assumption is made that functional metastable structures of the neural network phase space are model
representations of the radar system. It is noted that the process of relaxation of the system initiates the reflection of
metastable structures of model representations of images in the cognitive space in the form of functional modes.
Cognitive memory space is defined as the phase space of functional image modes. The mechanism of influence of
functional modes on the process of forming model representations of images is investigated and of creation of model
representation of an image with consideration of chaotic change of parameters of system with time is studied.

Forming a generalized multidimensional CFAR function

The effectiveness of the radar recognition system as a whole depends directly on the efficiency of the technical
means and its mathematical support - software-implemented algorithms for constructing descriptions of classes of
objects and phenomena in sign language. The obtained radar information is divided into groups of similar but not
identical phenomena. We create a radar image of the object against the background of distorted information in real
conditions. The characteristic property of the images is manifested in the fact that after getting acquainted with the finite
number of manifestations of the object, we learn about any number of its representatives. Also, when teaching a radar
neurocomputer (rebuilding multiprocessor) at different observation sites, the same objects are classified equally and
independently of each other. The objective nature of the basic property of the images allows us to model the recognition
process.

As a result of deep learning, the recognition system acquires the ability to respond with the same reactions to all
objects of the same image and different - to all objects of different images. It is very important that the learning process
be completed only by displaying a finite number of objects, without any “clues”.

The objects of training are radar objects, interference, radar specifications. It is also important that only the
objects themselves and their affiliation with the image are indicated in the learning process. The training is followed by
the process of recognizing new objects, which characterizes the actions of the already learned system. Automation of
these procedures is a problem of pattern recognition training.

The most comprehensible to us is the spatial-temporal interpretation of tasks. Hence the problem of learning
pattern recognition has received its geometric (spatial) and temporal (dynamic) interpretation. Any radar image
resulting from the observation of an object in the course of training or testing can be represented as a vector, and hence
as a point of some space.

If it is claimed that radar images can be uniquely assigned to one of two (or more) images, then it is claimed that
in some space there are two (or more) areas that have no common points, and the images shown are points from these
areas. Each such area can be assigned a name, that is, give a name to the corresponding image.
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During deep training, points randomly selected from these areas are presented and information is given to which
area these points belong. No additional information about these areas, ie the location of their borders, is reported during
the training.

The purpose of the training is either to construct a surface that separates not only the points shown in the
learning process, but all other points belonging to these areas, or the construction of surfaces that limit these areas of
points so that each of them is only one point insult. That is, deep learning is about constructing such features from
image vectors that would be, for example, positive at all points of one and negative at points of another image.

Due to the fact that the areas do not have common points, there are always a whole lot of such separating
functions, and as a result of training one of them must be built. If the displayed images do not belong to two, but to a
larger number of images, then the task is to build on the points shown in the course of training, separating all the areas
corresponding to these images from each other. This problem can be solved, for example, by constructing a function
that takes over the points of each area the same value and the points over the different areas different.

A deep learning mechanism is used to build the CFAR function. First of all, we solve the problems of object
classification. Let there be some set of investigated objects Q ={w}, each of which is determined by the vector of its

values in the phase space of some m given signs:
2 1 1 19+
o > X ={X,%,..., Xy}

o, > X ={x,..., X},

m

® > X ={X, X5, X}
We divide objects into homogeneous classes (their number can be specified or may be unknown), which we call
clusters, and methods for finding them - by cluster analysis. There is no training sample in this case, that is, it is
unknown to which classes the objects in the set belong Q ={w}. We define patterns of structure of objects in clusters.

In particular, a "compactness hypothesis" can be used as a similar pattern, ie the requirement that objects belonging to
the corresponding classes be located in a given characteristic space X ={x,X,,..., X, }"compactly”. This means that

the "distance" between objects assigned to this class is no more than specified.

Other requirements may be formulated in the automatic classification, namely, the generated classes in the sign
space must be spaced apart at certain distances. Essentially, with the help of a multidimensional function defined on an
arbitrary grid, we construct some sign or a generalized image of a class, by which one can uniquely determine the
belonging to one of two points of a point in the phase space of measurements of the values of some predefined features.

To separate the sets of points of two different visions, we use hyperplanes or their sets, but only if the sets of
points of the visions are so far apart in the phase space of the signs that a separating hyperplane can be constructed
between them. When this is not present, then we move on to a new signs space. As a rule, we are going to add new
signs to existing ones and to increase the dimension space of the signs space. In this case, to obtain a guarantee of
separation reliability, it is necessary to significantly add the number of training sample points.

The main task of training is not to keep all the available information about the object, but to minimize the
irrelevant, highlight the most informative and leave only the essential, that is, what can only be called information about
the object, not just a random set of data. Sets of image points can also be reliably separated in spaces with fewer
features when the surfaces of the sets are of rather complex configuration and do not intersect. For this case, we write an
algorithm for constructing a separating hypersurface in the form of a multidimensional function defined on an arbitrary
grid. But first, let's write an algorithm for determining a multidimensional function on an arbitrary grid, which we will
use to construct the function itself. To do this, we:

1) We set the points of the grid of ordinates in the multidimensional coordinate space - the number of these
points and the values of the coordinate vector of each point;

2) Determine the values of the parameters for all components: Green's function for solving the wave equation
from grid points plus elements of the polynomial kernel.

Let some arbitrary grid of ordinates P be given in the form:
P=(PY,P®, ., PM)
The system of randomly arranged at R" different unique points is given in the form:
P® = (R®,..,P®)eR", k=LN

Define as follows on the grid P a multidimensional function c(E;?T;P), which at points of the grid takes some
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already set values: r,, i =L_N :

o(P;P)=r,i=1N, (1)
and has a simple look - as a sum of some functions:

c(ﬁ;??;P)Zi)\,ivan(P—P(”)-l- > v P, 3

\a\sm—l

where P* =R .R2.....P™" P"=(P,..,P,), P’ ; k - coordinate in o, — degree, Z — the sum of all possible

‘a‘sm—l

combinations: when o = 0- is the free ratio.

When o =1 - this is a free coefficient + components in linear formvo+2kak, at a=2 —sum at a=1+

k=1
components at quadratic form Zn: Zn:vklPkP, etc, (total % components);
k=1 1=1 n:(m-1)!
6 (xpy- =PI n|x=P].n=2k
[x=P[""", n=2k-1

n 1
Pl =304 RS2
i=1
P=(R,PR,..., Pn)* ,

X = (X, Xy eern X, )

The continuity of Green's G (x—P)functions requires that the condition m>n/2 be satisfied. By
summarizing the variation theory of constructing multidimensional functions on a chaotic grid to simple algebraic
conditions, we can consider finding the coefficients of a multidimensional function as a solution of some system of
linear equations. To do this, we simply introduce a continuous linear indexing for the coefficients v of formula (2).
Then we find the values of the coefficients
A,i=LNand v,,1=19 ,

where
—1I
9=-Cn - (n+m l).,
n!(m-1)!
. . S m  (n+m-=D! . s
by solving two algebraic conditions: and, where 3 =C" = W to solve two algebraic conditions:
n!(m-1)!

1) coincidence of values of multidimensional - function at given points P (1);
2) and the orthogonality of the polynomial kernel functions at each other at the same points. In matrix form it
has the following generalized form:

C-A=r,
where the matrix C has dimension

(N+3)x(N+9),

or A= (7\41,7\«2;---17\'[\] !Vl!vzi""vx‘))*’

r= (1 P ,0,0,...,O)* — vectors of dimension N +9 each, * — is the sign of transposition,

PO = (X, %, %), i=LN.

For the system to have a solution, a condition is required N > §.Consider constructing a separating hypersurface
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in the form of a multidimensional function defined on an arbitrary grid. Suppose two sets of m - measurable points
X and Y with the number of points M and L respectively:

where

X ={,%,...x}, i=LM, ¥ ={yl,y,....y: },i=1L.

We find a multidimensional function on an arbitrary grid that can sufficiently reliably divide sets of points
Xand Y, that is, divide into two intersecting regions by two sets in some multidimensional space of phase features,
which are initially represented as two arbitrary sets of multidimensional points. The automatic construction of such a
rule is the algorithm of machine learning. This is achieved by constructing a surface that separates not only the points
shown in the learning process, but also all other points belonging to these areas.

To construct a multidimensional function on an arbitrary grid, we define a grid P of N, — dimensional points
and the values of the function in themr,, i =1, N . Due to the fact that we have not determined the direction from which

to build the separating hypersurface, we have the opportunity to do so in the direction of each of the m coordinates. To
do this, we use the value of one of the m coordinates as the value of a multidimensional function, and we use all other
(m-1) coordinates as the values of points to determine the grid of ordinates with the dimension n = (m-1). With this
approach, there are only m options for constructing a multidimensional function on an arbitrary grid. In addition, it can
be built both from the side of the set X , checking for Y and vice versa. You can also try moving around the points of
one set, searching for the closest points of the other and finding some averages and already, on them to look for a
hypersurface. In total, we have at least 2m + 1 options for constructing a multidimensional function of which we choose
the most acceptable.

Conclusions

In this article, we have considered the construction of a multidimensional CFAR function for LPI radars and
have made a comparative analysis of the most typical variants of the function construction based on materials of
domestic and foreign publications in scientific publications. [1-5] They also noted a small number of practical
implementation of theoretical developments. This is due to the complexity of forming a multidimensional CFAR
function, the requirements for creating a computing environment, which is formed on the basis of a real-time
multiprocessor, which is reconstructed in the process of processing radar information with wireless high-speed
backbone, conveyor computing, neural networks, parallels. In addition, information for CFAR function formation is
collected at all levels of the radar LPI: antennas, transceiver unit, primary and secondary processing units and,
accordingly, primary processing influence generation, signaling probe generation, and radar receiver. The laboratory is
testing the CFAR processor on a crystal (SoC). This is a promising direction for the development of a key element for
LPI radars and the ability to modularly formulate a line of destination radars.

Formalizing a recognition system to investigate and analyze the real processes of collecting, processing, and
visualizing radar images whose mathematical models we are not yet able to build is very important when building
radars and learning in the application process. To date, a formal apparatus designed to construct mathematical models of
sufficiently complex phenomena and processes adequate to simulated phenomena or processes has not yet been
developed, which opens up great prospects for the best solution of the problem as it is sufficient to accurately quantify
the development of processes solely on the basis of accumulated information about processes.

Another feature of smart radars using artificial intelligence technologies is the ease of use, just like using
smartphones. This will simplify the work of professional users of LPI radars (marine radar operators, subsurface
sensing, etc.) and will allow for the introduction into everyday life, such as the 10T segment.
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