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MAPPING OF THE DESCRIPTIVE LOGIC INTO RDF USING
BINARY RELATIONAL DATA MODEL

This paper is dedicated to the data integration problem. The descriptive logic and the relational data model are
at the heart of a study. They have been used to create a mapping method on the theoretical level. The previous
studies are continued in this paper to prove on practice a mapping creation method between the descriptive log-
ic and the binary relational data model, which is a part of a mapping method. The method uses the binary rela-
tional data model as an integrating model. The task to prove the theoretical mapping method on practice was
formulated. A question how to map the binary relational data model into RDF-triples was considered. A brief
overview of the R2R ML conversion tool was given. Triple maps were created to convert a conceptual infor-
mation model of descriptive logic into RDF triplets with the help of R2R ML. Also, triples maps are described
to convert basic mapping mechanisms into RDF with the help of R2R ML.
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Introduction

A complex problem of data integration
in the semantic web exists in the modern sci-
entific field of research. An analysis of this
problem can be found in the [1]. A task to
establish an interaction between a descriptive
logic (DL) and a relational data model (RDM)
arises as a part of solution of the data integra-
tion problem. Such interaction is called map-
ping. To establish an interaction means to
create mapping mechanisms between the DL
and the RDM. A series of studies [1-7] is
dedicated to the analysis and solution of the
mapping creation problem. A binary rela-
tional data model (RM?) [6] was created as a
result of this series. The main task of RM? is
to be an integrating model for creating map-
pings. How to map the descriptive logic ALC
and its main components into RM? was de-
scribed in the study [8] as well as how to map
the classical RDM into RM2. This approach
was described purely on a theoretical level.
Until now, the lack of any practical approba-
tion was a significant drawback of the pro-
posed results.

A method to test mappings between
DL and RM? with the help of RDF graphs is
proposed in this paper. The main idea is to
map DL-to-RDM conversion formulas into
RDF, and then to test them for workability
within the unified RDF framework. The re-
sults of mapping DL expressions into RDF
using OWL 2 were published in [9]. This
study focuses on creation of mappings for
RDM expressions into RDF using R2R ML.

Section 1 is dedicated to the problem
statement. Section 2 provides a short over-
view of the R2R ML. Section 3 summarizes
the main theoretical aspects of the DL-RDM
mapping method. Section 4 describes the
RM? to RDF mapping rules using R2R ML.
Section 5 contains conclusions.

Problem statement

A theoretical approach how to de-
scribe mappings between DL and RDM is
presented in a series of studies [1-9]. A binary
relational data model (RM?) is proposed as an
integrating model. The approbation task of
this approach is based on a number of facts.

Firstly, it is known that DL is the
mathematical basis of any ontology descrip-
tion language. Thus, all the constructors of
concepts and roles of the underlying DL are
reflected in the toolbox of the corresponding
language. OWL 2 is not an exception.

Secondly, only binary connections are
allowed in RM?. Both binary and n-ary con-
nections are allowed in a classical RDM. A
result of [10] seems to indicate that any n-ary
relation can be represented by a set of binary
ones. Thus, any classic RDM can be ex-
pressed with RM?. A way how to convert
RDM into RM? is described in [6].

The idea of testing is not new. The
statements of the theory being proved are
transformed into statements of the established
theory. The converted expressions are then
checked for truth within the well-established
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theoery using its own methods and properties.
If the final expression is true in the existing
theory, then the original expression is also
true in the study area.

Thus, the problem statement ti test
mappings between DL and RDM is formulat-
ed as follows. On the one hand, DL state-
ments (expressed in OWL 2) are mapped to
the RDF triplets using OWL 2-to-RDF con-
version rules. On the other hand, relational
database (RDB) expressions are mapped to
the RDF triplets using R2R ML. The resulting
RDF triplets constitute a set of RDF graphs.
The resulting graphs are compared for equiva-
lence.

The implementation idea is schemati-
cally shown in Figure 1.

Figurel. Approbation scheme of the mapping

- | Mappings

; OWL-to-RDF R2R ML ;

RDF | RDF

RM?

method between DL and RM?

OWL 2-to-RDF conversion rules have
official W3C status [11]. R2R ML also has
official W3C status [12].

The algorithm for testing mappings
between DL and RM? is as follows:

Step 1. There is a DL expression. It is
mapped into the RM2 statement.

Step 2. The statement is mapped intto
an OWL 2-expression from the DL side.

Step 3. OWL 2-expression (step 2) is
converted to RDF-triples that form an RDF-
graph. OWL 2-to-RDF rules are used for
mapping.

Step 4. The statement is formulated in
terms of RDB from the RM2 side.

Step 5. RDB expression is converted
to the RDF-triples that form an RDF-graph.
R2R ML is used to create mappings.

Step 6. The RDF-graph (step 3) is
compared for equivalence with another RDF-

graph (step 5). If they are equivalent, then the
DL-to-RM2 mapping formula is true.

The mappings from step 1 are de-
scribed in [8] on the theoretical level. Also,
they are briefly described in section 3. The
mappings from steps 2 and 3 are described in
article [9]. The current work will present a
way to perform transformations from steps 4
and 5. The comparison from step 6 remains in
the field of future research.

It is known that OWL 2 is based
on the SROIQ descriptive logic. Thus,
the OWL 2-to-RDF mapping area is limited
to only those operations that are present
in DL SROIQ. DL SROIQ syntax include
the following: DL ALC syntax, DL axioma-
tics, numerical constraints,  nominals,
and inverse roles. The theoretical part of
DL-to-RM? mappings has been worked
out for several role constructors. The issue
of mapping some of the role constructors
in RDF (except the inverse role) remains
open.

There are a number of features in
R2R ML. It allows you to transform the struc-
ture and integrity constraints of an RDB into
RDF triplets. However, there are some fea-
tures of mapping the manipulative part of
RDM into RDF. Any operation can be
mapped only as part of an SQL query. Each
SQL query is represented as a logical table
within a triples map generated for such table.
Thus, there are no mechanisms to transform
directly each individual operation of relational
algebra (RA) within R2R ML itself. A small
overview of R2R ML is presented in
section 2.

A key question of the approbation task
is to prove the equivalence of graphs, ob-
tained as a result of pairwise mapping of the
DL and RM? statements. The results of [13]
demonstrate that RDF-graph is a special case
of a regular graph. This means that the ques-
tion of equivalence is reduced to proving their
isomorphism. In the work [13] RDF-graph is
analyzed as a special case of a usual graph.
Several criteria for graph isomorphism in the
general case are also studied. Based on these
criteria, three necessary and sufficient condi-
tions for the RDF-graphs equivalence of are
formulated. They are as follows:
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1. Equal number of vertices. Both
graphs must contain the same number of ver-
tices, otherwise they are not isomorphic.

2. Vertices equivalence. Each vertex
of one graph must have an equivalent in the
other graph in a pairwise comparison. Other-
wise, such graphs are not isomorphic.

3. Ribs equivalence. Each edge of
one graph must have an equivalent in the oth-
er graph in a pairwise comparison. Otherwise,
such graphs are not isomorphic.

Reducing a graph to a self-isomorphic
remains the last question in the problem
framework. As a result of mappings, the fol-
lowing situation may arise at the RDF level.
The vertex of one graph will semantically
correspond to a subgraph of the comparable
graph. Such a subgraph can consist of several
vertices connected by edges. This situation is
possible, since a large number of anonymous
(empty) nodes appears during the mapping
process. Such nodes have their own semantic
purpose. Thus, the question of reducing an
RDF-graph to the self-isomorphic remains
open.

Preliminaries: R2ZR ML Overview

Here is a brief overview of the
R2R ML. It will be used in Section 4 to map
RM? expressions into RDF.

The R2R ML has a development histo-
ry. Tim Berners-Lee published an article [14]
in 1998. It was entitled as “Relational Data-
bases on the Semantic Web”. This paper dis-
cusses the concept of presenting any database
in the semantic web. Its main idea is to use
RDF as an ER model. The ER model estab-
lishes a correlation between relational data-
base elements and RDF-triples. The author of
the concept proposes to use an XML-format
of serialization of RDF-triples. The paper also
presents the "bottlenecks™ of mapping of the
RDB information into RDF.

Then, in 2007, the conference "W3C
Workshop on RDF Access to Relational Da-
tabases"” was held [15]. It was dedicated to the
presentation of ordinary relational data in
RDF format, as well as the use of RDF in
RDB queries. The W3C RDB2RDF Incubator
Group was established in 2009 and operated
until 2012. It declared the following goals:
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e to study and classify existing ap-
proaches of mapping the relational data in
RDF,

e to determine the need for stand-
ardization of this area;

e to determine the mechanisms of
generation the RDF-triples from one or more
relational databases without the loss of infor-
mation;

e to study the possibility of
mapping OWL classes into relational
data, taking into account the developed ap-
proach.

As a result, a document with official
R2R ML recommendations was received and
published. Figure 2 shows the chronology of
R2R ML development [16].

Now it is necessary to consider the
main standings of R2R ML. It's important to
understand how RDF-triples are formed from
relational data. Let's turn to the official docu-
mentation [12].

R2RML - is a language for
expressing  customized mappings from
relational databases to RDF datasets. It
defines the mapping of the relational
database into the RDF. An R2RML mapping
refers to logical tables to retrieve data from
the input database. The input to an R2R ML
mapping is called the input database.
Figure 3 highlights a UML diagram
of the R2R ML language overview. The
picture is taken from the official R2R ML
website.

An R2R ML mapping — is a structure
that consists of one or more triples maps. A
triples map is a rule that maps each row in
the logical table to a number of RDF triples.
The rule has two main parts: a subject map
and multiple predicate-object map.

A subject map generates the subject
of all RDF triples that will be generated from
a logical table row. The subjects are often
IRIs that are generated from the primary key
column(s) of the table.

Predicate-object maps in turn consist
of predicate maps and object maps. Some-
times predicate-object map additionally has
referencing object maps.
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Figure 3. R2R ML overview
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Triples are produced as follows. Sub-
ject map is combined with a predicate map
and object map. These three are applied to
each logical table row. By default, all RDF
triples are in the default graph of the output
dataset. A triples map can contain graph
maps. Such graph maps place some or all of
the triples into named graphs instead of the
default graph.

Triples map (fig. 2) consists of the
three main components: a logical table, a
subject map, a predicate-object map. In detail
each of them is as follows.

A logical table is a tabular SQL query
result that is to be mapped to RDF triples. In
simple words a logical table is what will be
displayed. It can take one of the following
three forms:

e SQL base table;
e SQL view;

e R2R ML view (a valid SQL que-
ry). It got its name because it only emulates a
SQL view without modifying the database.

A logical table row is a row in a logi-
cal table. It can be a row of a base SQL table
or SQL view. It can also be a row of an
R2R ML view obtained with an SQL query.

A column name is the name of a col-
umn of a logical table. A column name must
be a valid SQL identifier. For example, the
name of a SQL object, such as a column, ta-
ble, view, schema, or catalog. Column names
do not include any qualifying table, view or
schema names.

The logical table in the triples map is
written using one of the properties:

e rr:tableName — specifies the table
or view name of the base table or view. Its
value must be a valid schema-qualified name.
It is a sequence of one, two or three valid
SQL identifiers, separated by the dot charac-
ter (“.”). The three identifiers name, respec-
tively, a catalog, a schema, and a table or
view. If no catalog or schema is specified,
then the default catalog and default schema of
the SQL connection are assumed.

e rr:sglQuery and rr:sqglVersion —
defines R2R ML view and SQL query ver-
sion. R2R ML view is a logical table whose
contents are the result of executing a SQL
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query against the input database. If
rr:sqlVersion property is absent, then the
rr:sqlQuery property value conforms to Core
SQL 2008.

Before considering the subject maps
and the predicate-object maps, it’s necessary
to give a number of definition.

An RDF term is either an IRI, or a
blank node, or a literal.

A term map is a function that gener-
ates an RDF term from a logical table row.
The result of that function is a generated RDF
term. Term maps are used to generate the sub-
jects, predicates and objects of the RDF tri-
ples. In turn, RDF triples are generated by a
triples map. Consequently, there are several
kinds of term maps, depending on where in
the mapping they occur: subject maps, predi-
cate maps, object maps and graph maps. The
referenced columns of a term map are the set
of column names referenced in the term map.
They depend on the type of term map.

A subject map is a term map. It speci-
fies a rule for generating the subjects of the
RDF triples.

In the triples map, the subject map is
specified as follows:

e rr:subjectMap is a property,
which value must be a specific subject map;

e rr:subject is a shortcut constant
property whose value is IRI.

The subject map can contain the
rr:class property. Its value must be an IR,
which is called class IRI. In this case, the
RDF expression generated by the subject map
will look like this. For each subject, a triple is
created with the rdf:type predicate and the
rr:class property as object value. A subject
map can contain several class IRIs at the same
time. There are cases when the class IRl must
be computed based on the contents of source
database. In such situations, a predicate object
map is used. The predicate value is indicated
by rdf: type. The value of an object is set
through a non-constant object map.

A predicate-object map is a function
that creates one or more predicate-object
pairs for each logical table row of a logical
table. It is used in conjunction with a subject
map to generate RDF triples in a triples
map. A predicate-object map is represented
by a resource that references: one or
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more predicate maps and one or more object
maps.

A predicate map is a term map. It can
be defined in two ways:

e rr:predicateMap is a property,
whose value must be a predicate map;

e rr:predicate is a constant shortcut
property whose value is IRI.

An object map is a term map. It can
be defined in two ways:

e rr:objectMap is a property, whose
value must be either an object map, or a refer-
encing object map;

e rr:object is a constant shortcut
property whose value is IRI or literal.

A referencing object map allows
using the subjects of another triples map
as the objects generated by a predicate-object
map. Since both triples maps may be based
on different logical tables, this may require
a join between the logical tables. However,
the join condition (one or more joins) is
optional.

A referencing object map is represent-
ed by the following resources:

e rr:parentTriplesMap is a proper-
ty, whose value must be a triples map. Such
triples map is known as the referencing object
map's parent triples map. The value of object
will be extracted exactly from the parent tri-
ples map.

e rr:joinCondition is a property
whose values must be join conditions options.

A join condition is represented by a
resource that has exactly one value for each
of the following two properties:

e rr:child is a property, whose value
is known as the join condition’s child column.
It must be a column name that exists in the
logical table of the triples map (that contains
the referencing object map).

e rr:parent is a property whose val-
ue is known as the join condition's parent col-
umn. It must be a column name that exists in
the logical table of parent triples map (of the
referencing object map's). The name of the
parent triples map was specified in the
rr:parentTriplesMap property.

Here is one of the examples given in the
description of the R2R ML standard [12]. The
following example database consists of two
tables, EMP (table 1) and DEPT (table 2),
with one row each:

Table 1
EMP

DEPTNO
EName | Job Integer
. Varchar | Varchar | references
i”’"‘”y (100) | (20) | DEPT

e (DEPTNO)

EMPNO
Integer

7369 Smith Clerk 10

Table 2
DEPT
DEPTNO DName Loc
Integer Varchar (30) Varchar
primary key (100)
10 Appserver New York

The following R2R ML mapping doc-
ument will produce the desired triples from
the EMP table:

@prefix Ir:
<http://lwww.w3.org/ns/r2rml#>.

@prefix ex: <http://example.com/ns#>.

<#EmpMap>

rr:logicalTable [ rr:tableName "EMP" ];

rr:subjectMap [

rr:template
"http://data.example.com/employee/{EMPNQO}";

rr:class ex:Employee;

I

rr:predicateObjectMap [

rr:predicate ex:name;

rr:objectMap [ rr:column "EName™ ];

I

rr:predicateObjectMap [

rr:predicate ex:job;

rr:objectMap [ rr:column "Job" J;

I

rr:predicateObjectMap [

rr:predicate ex:department;

rr:objectMap [

rr:parentTriplesMap <#DeptMap>;

rrzjoinCondition [
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rr:child "DEPTNO";

rr:parent "DEPTNO";

I;

1.

The definition of a triples map that gener-
ates the desired DEPT triples follows.

<#DeptTableView> rr:sqlQuery

SELECT DEPTNO, DName, Loc,

(SELECT COUNT(*) FROM EMP
WHERE EMP.DEPTNO=DEPT.DEPTNO) AS
Staff

FROM DEPT;

<#DeptMap>

rr:logicalTable <#DeptTableView>;

rr:subjectMap [

rr:template
"http://data.example.com/department/{DEPTNO}

rr:class ex:Department;

I;

rr:predicateObjectMap [
rr:predicate ex:name;
rr:objectMap [ rr:column "DName" ];
1;

rr:predicateObjectMap [
rr:predicate ex:location;
rr:objectMap [ rr:column "Loc" ];
I;

rr:predicateObjectMap [
rr:predicate ex:staff;

rr:objectMap [ rr:column "Staff" ];

1

The desired RDF triples to be pro-
duced from this database are as follows:

<http://data.example.com/employee/7369
> rdf:type ex:Employee.

<http://data.example.com/employee/7369
> ex:name "Smith".

<http://data.example.com/employee/7369
> ex:job "Clerk".

<http://data.example.com/employee/7369
>ex:department<http://data.example.com/depart
ment/10>.

<http://data.example.com/department/10
> rdf:type ex:Department.

<http://data.example.com/department/10
> ex:name "Appserver".
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<http://data.example.com/department/10
> ex:location "New York™.

<http://data.example.com/department/10
> ex:staff 1.

Preliminaries: mapping DL into
RM?

The approbation task of testing map-
pings between DL and RDM is based on a
series of theoretical studies [1-7]. Here is a
brief summary of them. This summary will
be used in Section 4 to create mappings from
RM? to RDF.

Binary Relational Data Model (RM?)
[6] was developed to address the issue of
establishing relations between DL and RDM.
It has several advantages over the classic
RDM by Codd [17]. For example, RM? con-
tains support for the open world assumption,
while classical RDM works according to epy
closed world assumption. Unlike Codd's
RDM, RM? supports the implementation of
DL constructors and concepts and roles axi-
oms. The RM? is described in detail in [6].

To describe mappings, the first step
is to build a conceptual information model
of descriptive logic. The main task
of the conceptual information model
of any subject area is to define the
basic concepts and to describe their
properties and relations. The ER language
is one of the most used for this purpose.
It operates with the concepts of entity, attrib-
ute and relation. The Barker dialect
[18] of the ER language was used to describe
the conceptual information model of descrip-
tive logic (Fig. 4).

There are three basic entities in the
model:

e Concept — to present DL concepts
e Role —to present DL roles

e Clndividual — to present DL indi-
viduals

Each entity has a single attribute that
is called “Name”. This attribute uniquely
identifies the entities. The rest of entities are
relation entities. They represent binary rela-
tions between basic entities. Link entities do
not have their own attributes and are uniquely
identified only by their links.
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!

ConceptNesting RoleNesting
ConceptEquivalence Domain RoleEquivalence
Concept Role
#Name #Name
LinkCl LinkRRI
Range
Predecessor
Cindividual Rindividual
Successor

ClEquivalence

Figure 4. Conceptual information model of descriptive logic

The RM? scheme was built according
to the given ER-model. The transformation
algorithm described in [2, 6, 8] was used
to construct the scheme. Additionally, the
idea of placeholder attributes was used
to represent the primary keys. This idea first-
ly was proposed by E. Codd [17], the found-
er of RDM. Each entity is represented as a
RM? relationship, since the constructed ER-
scheme fits the 3NF requirement. The name
of the relationship is the same as the name of
the entity. Table 3 highlights all the ER-

model entities with their descriptions and the
corresponding relationships with the list of
attributes.

To describe mappings, the second step
is to express DL ALC in RM2. ALC is the
simplest variant of DL. It is included in all
widely used dialects of other DLs. It should
be recalled, that description logics uses con-
structs that have semantics given in predicate
logic. The ALC semantics is defined through
the concept of interpretation.
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Table 3
ER-model entities with their descriptions and corresponding relationships
tiltf:stilti)[’) )(l::l?;le Entity description Relationship attributes with description
Concept Presents concepts CPK — primary key
Name — concept name
Role Present roles RPK — primary key
Name — role name
IsTransitive — is role transitive
Clndividual Present individuals CIPK — primary key
Name — individual name
RIndividual Pesent role individuals RIPK — primary key
Domain Present role domain CFK — foreign key on Concept
RFK — foreign key on Role
Range Present role range CFK — foreign key on Concept
RFK — foreign key on Role
LinkCI Allows many-to-many rela- | CFK — foreign key on Concept
tions between concepts and | CIFK — foreign key on Clndividual
individuals
LinkRRI Allows many-to-many rela- | RFK — foreign key on Concept
tions between roles and their | RIFK — foreign key on RIndividual
Instances
Predecessor Presents the first individual of | CIFK — foreign key on Clndividual
a role individual RIFK — foreign key on RIndividual
Successor Presents the second individual | CIFK — foreign key on Clndividual
of a role individual RIFK — foreign key on RIndividual
Concept Represents the concept inclu- | CInFK — foreign key on Concept («child»)
Nesting sion (hierarchy) axiom COutFK — foreign key on Concept («parenty)
Concept Represents the concept equiva- | CForFK — foreign key on Concept («which is equal»)
Equivalence lence axiom CIsFK — foreign key on Concept («equals to whichy)
Role Represents the role inclusion | RInFK — foreign key on Role («child»)
Nesting (hierarchy) axiom ROutFK — foreign key on Role («parenty)
Role Represents the role equiva- | RForFK — foreign key on Role («which is equal »)
Equivalence lence axiom RISFK — foreign key on Role («equals to which »)
CIEquivalence | Represents the individual | CIForFK — foreign key on CIndividual («which is
equivalence axiom equal »)
CIIsFK — foreign key on Clndividual («equals to
which »)

Interpretation is a pair 1 = (A, ),
where

e A — a non-empty set called the
domain of interpretation,

e <] —interpretation function.

Interpreter function assigns each atom-
ic concept A a set A' € A, and each atomic
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role R a
RIcC AxA.

binary

Further, g2 Will denote the RM? re-
lationship extensional. This relationship cor-
responds to the interpretation of an arbitrary

concept C.

Table 4 shows the DL ALC syntax
and semantics, as well as their corresponding

mapping formulas.

relationship
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Table 4
ALC syntax and semantics and their corresponding mapping formulas
Syntax Semantics Mapping
1 2 3
ALC Syntax Concepts
T T'=A TEMZ = Tiyame (CIndividual)
1 1'=9 Empty(Name)
E —
| | CRMZ B
C C'cA = TM¢Individual.Name (GConcept.Name:'C’
(CIndividual ™M ¢ipg=crrx (LinkCI X cpx—cpk Concept)))
RE{MZ = T[First,Second(pCIdividual.Name/Second(CIndiViduall
M cipk=crpk (Successor
R RIC Al x A MRirk=RIPK (PCIndividual.Name/First(CIndividual
- M crpr=cirk (Predecessor
MRIFK=RIPK (G_Role.Name=’R'(RlndiVidual
>gipk=rIFK (LINKRRI Mgpg-grpk Rol€)))))))))
-C | ANC (—C)E 2z = Tiname(CIndividual) — CE
(CcnD)=c'nD! . E
cnD (CnN D) = Cgyz N Dgy2
I _ (I I
cup |(CUDy=CUD (CuD) = CE,. UDE,;
JR.C={a € A|3b
I
iR.C E él()(;’ b) €ERAD (ER- C)EMZ = T[First(R];:{MZ Msecond=Name CEMZ)
VR.C = {a € A|VD
YR.C € A((a,b) € RIS b (VR. C)EMZ = T[First(RERMZ) - nFirst(R]}SzMZ n (ﬂFirst(R]}E{MZ)
’ € CI)} X (T[Second(R][S{MZ) - T[Name(CEMZ))))
Number restrictions, nominals
(GnR) | (=nR)! ={e €| (= nR)Ry2 = Trirst( O Ry.Second; # R;.Second;( *
I I<i<j<n 1<i<n
IRI(e)| > n} L
pRi(First,Secondi)(RRMZ)))
(<nR) | (€nR)! ={e € 4| (< nR)Ryz = Tiyame (Cindividual) — npirst(L, o Rj.Second; #
<i<j<n+
Rl(e)| < n}
| | Rj-Secondj (Ki:nﬂpRi(First,Secondi) (RE{MZ)))
(>nR.C) | (=nR.C)! = {e € A| (= nR.C)Ryz = Trirst( O Rj.Second; # R;.Second;( *
|Rl(e) N CII > n} o I<i<j<n , 1<i<n
pRi(First,Se(:ondi)(RRM2 Msecond=Name CRMZ)))
(=nR.C) | (€ nR.C)! = {e € A| (< nR.C)gpz = Tname(CIndividual) — mgipse( 6 R;.Second; #
I I I<i<j<n
|R (e)ncC | < n} . . .
Rj-Secondj (1gisn PR;(First,Second;) (RRM2 Msecond=Name CRMZ)))
{a3 | {a} {a}amz = {ague}
Role Constructors
R~ (R_)I = {(e' d) (R_)EMZ = (pR(Second,First) (RERMZ))

€ A x A|(d,e) € R}
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1 2

3

(=R)! = A x A\R!
—R

(_'R)]IE{M2 = (pName/First(T[Name(CIndiVidual))
X pName/Second(T[Name (CIndividual))) — RERMZ

RS |(RnS)!=Rns!

(RM S)kyz = Reyz N Spyz

RuS |(RusS)!=Rus!

(RUS)hyz = Rhyz U Sgye

(R°S)! = {(e,d) €
R-S A X A|3c € A((e, 0)
€ R'A (¢, d) € SH}

E _ E E
(R ° S)RMZ - T[R.First,S.Second(RRMZ ™MR.Second=S.First SRMZ)

d(C) (id(©))' = {(e,e)
EAXAle € Ch)

(id(c))EMZ = (pName/First (T[NameC[E{MZ )

E
M Eirst=Second (pName/Second (TIC.Name CRM2 ))

re | R =URY

n>1

(R+)]}E{M2 = (RE{MZ)-I_

(ROE 2
R (R*)[ — U(Rl)n RM

n>0

= (pName/First(T[NameCIndiVidual))
MFirst=Second (pName/Second(T[NameCIndiViduaD) U (R+)EM2

The DL axiom mapping has been
shown in the conceptual ER scheme. Each
axiom has its own entity. Each axiom has its
own binary relationship in RM?2. Each rela-
tionship has two foreign keys. Each of the
keys refers to concepts, roles or individuals
about which the axiom is formulated.

ConceptNesting (CInFK, COutFK)

cch

ConceptEquivalence (CForFK, CIsFK)
C=D

RoleNesting (RInFK, ROutFK)
RCES

RoleEquivalence (RForFK, RIsFK)
R=S

ClEquivalence (CIForFK, ClIsFK)
a=b

Role(RPK, Name IsTransitive)
TR(R)

Mapping RM? into RDF

RM? to RDF mappings can be mean-
ingfully divided into several parts. Firstly,
how to transform each RDB relationship of an
RM? will be shown. All RDB relationships
can be divided into the following groups:
basic relationships (concepts, roles, individu-
als), connective relationships and axiom rela-
tionships. The mapping of all ALC constructs
will be shown next. The description of map-
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ping mechanisms for number restrictions,
roles restrictions and nominals completes this
section.

Since empty relationships map to an
empty RDF graph, there are a number of rows
in each relationship to be an example. These
strings will be mapped to the RDF triples us-
ing R2R ML triple maps. These triple maps
are the mechanism for mapping RDB rela-
tionships into RDF.

Examples of mapping are present for
only one row of each logical table. This is
done to save space and to emphasize the rules
themselves, not just their use.

Turtle syntax was used to describe tri-
ple maps, as well as the following notation:

@prefix rr:<http.//www.w3.org/ns/r 2rmi#>
@prefix ex: http://example.com/Ch#

1. Basic concepts

1.1. Concept
SQL table Concept
CPK Name
1 C
2 D
3 E
4 F
R2R ML Triple Map
<#TriplesMap1>
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rr:logicalTable [ rr:tableName «Concept»];
r:subjectMap [
rr:itemplate
«http://example.com/Ch#/Concept/ { CPK } »;
rr:class ex:Concept;
]
rr:predicateObjectMap [
rr:predicate ex:name;
rr:objectMap  [rr:column «Name»];

RDF output example

<http://example.com/Ch#/Concept/1> rdf:type

ex:Concept.

<http://example.com/Ch#/Concept/1>ex:name “C

RDF output example graph
rdf:type
exname
1.2. Role
SQL table Role
RPK Name IsTransitive
56 R No
67 S No
89 T No
34 Z No
23 U Yes
R2R ML Triple Map

<#TriplesMap2>
rr:logicalTable [ rr:tableName «Role»];
r:subjectMap [
rr:template
«http://example.com/Ch#/Role/{RPK}»;
rr:class ex:Role;
]
rr:predicateObjectMap [
rr:predicate ex:name;
rr:objectMap  [rr:column «Namey];
]
rr:predicateObjectMap [
rr:predicate ex:IsTransitive;

rr:objectMap [rr:column «IsTransitivey];

RDF output example

<http://example.com/Ch#/Role/56> rdf:type
ex:Role.

<http://example.com/Ch#/Role/56> ex:name “R”.
<http://example.com/Ch#/Role/56>
ex.IsTransitive “No”.

RDF output example graph

@
rdfitype ex:name
>
ex:IsTransitive

1.3. CIndividual
SQL table ClIndividual
CIPK Name
100 abc
101 def
102 aaa
103 bbb
104 cce
105 ddd
R2R ML Triple Map

<#TriplesMap3>
rr:logicalTable [ rr:tableName «CIndividual»];
r:subjectMap [
rr:template
«http://example.com/Ch#/Clndividual/{ CIPK } »;
rr:class ex:Clndividual;
]
rr:predicateObjectMap [
rr:predicate ex:name;
rr:objectMap  [rr:column «Namey];

RDF output example

<http://example.com/Ch#/CIndividual/100>
rdf:type ex:Cindividual.
<http://example.com/Ch#/CIndividual/100>
ex:name “abc”.
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RDF output example graph

ex:name
CIndividual
/100

1.4. RIndividual
SQL table RIndividual

RIPK
10
11
12
13
14
15

R2R ML Triple Map

<#TriplesMap4>
rr:logicalTable [ rr:itableName «RIndividualy];
r:subjectMap [
rr:template
«http://example.com/Ch#/RIndividual/ {RIPK } »;
rr:class ex:RIndividual;

]
rr:predicateObjectMap [

rr:predicate exX:RIPK;
rr:objectMap  [rr:column «RIPK»];

RDF output example
<http://example.com/Ch#/RIndividual/10>
rdf:type ex:RIndividual.
<http://example.com/Ch#/RIndividual/10>
ex:RIPK 10.

RDF output example graph

RIndividual

A

rdfitype

ex:RIPK

Rindividual
/10
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2. Relationship-bundles

2.1. Domain

SQL table Domain
CFK RFK
1 56
2 67
R2R ML Triple Map
<#TriplesMap5>

rr:logicalTable [ rr:tableName «Domainy];
r:subjectMap [
rr:itemplate
«http://example.com/Ch#//Domain/{ CFK}; {RFK
2
rr:class ex:Domain;
]
rr:predicateObjectMap [
rr:predicate ex:CFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition [
rr:child «CFKy;
rr:parent «CPKy;
111
rr:predicateObjectMap [
rr:predicate ex:RFK
rr:objectMap [
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr:joinCondition [
rr:child «RFKx»;
rr:parent «RPKy;

1

RDF output example

<http://example.com/Ch#/Domain/1;56>rdf type
ex:Domain.
<http://example.com/Ch#/Domain/1;56>ex: CFK
<http://example.com/Ch#/Concept/1>.
<http://example.com/Ch#/Domain/1;56>ex:RFK
<http://example.com/Ch#/Role/56>.
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RDF output example graph

rdfitype ex:CFK v.

2.2. Range
SQL table Range
CFK RFK
2 56
1 67
R2R ML Triple Map
<#TriplesMap6>

rr:logicalTable [ rr:tableName «Range»];
r:subjectMap [
rr:itemplate
«http://example.com/Ch#/Range/ { CFK }; {RFK}»;
rr:class ex:Range;
]
rr:predicateObjectMap [
rr:predicate ex:CFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition |
rr:child «CFKy;
rr:parent «CPK»;
111
rr:predicateObjectMap [
rr:predicate ex:RFK
rr:objectMap |
arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «RFKx»;
rr:parent «RPK»;

i
RDF output example

<http://example.com/Ch#/Range/2,;67>rdf:type
ex:Range.

<http://example.com/Ch#/Range/2,;67>ex:CFK
<http://example.com/Ch#/Concept/2>.
<http://example.com/Ch#/Range/2,;67>ex:RFK
<http://example.com/Ch#/Role/67>.

RDF output example graph

rdfitype ex:CFK 1‘
ex:RFK ‘.

2.3. LinkCI

SQL table LinkCI
CFK CIFK
1 100
1 101
2 102
2 103
2 104
2 101

R2R ML Triple Map

<#TriplesMap7>

rr:logicalTable [ rr:tableName «LinkCI»];
r:subjectMap |
rr:itemplate
«http://example.com/Ch#/LinkCI/{CFK};{CIFK}
»;
rr:class ex:LinkClI;
]
rr:predicateObjectMap [
rr:predicate ex:CFK
rr:objectMap |
arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition [
rr:child «CFK»;
rr:parent «CPKy;
111
rr:predicateObjectMap [
ex:CIFK
rr:objectMap [

rr:predicate
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arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap3>
rr;joinCondition [
rr:child «CIFK»;
rr:parent «CIPKy;

1

RDF output example

<http://example.com/Ch#/LinkCI/1;100>rdf:type
ex:LinkClL.
<http://example.com/Ch#/LinkCl/1,;100>ex: CFK
<http.//example.com/Ch#/Concept/1>.
<http.//example.com/Ch#/LinkCI/1,;100>ex.:CIFK
<http://example.com/Ch#/Cindividual/100>.

RDF output example graph

rdfitype | ex:CFK »

ClIndividual/

o o S
ex:CIFK 100

2.4. LinkRRI

SQL table LinkRRI
RFK RIFK
56 10
56 11
67 12
67 13
67 14
56 15

R2R ML Triple Map

<#TriplesMap8>

rr:logicalTable [ rr:tableName «LinkRRI»];
r:subjectMap [

rr:template
«http://example.com/Ch#/LinkRRI/{RFK}; {RIFK
I

rr:class ex:LinkRRI;

]
rr:predicateObjectMap |
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rr:predicate ex:RFK
rr:objectMap [
arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «kRFK»;
rr:parent «RPKy;
111
rr:predicateObjectMap [
rr:predicate ex:RIFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap4>
rr:joinCondition [
rr:child «RIFK»;
rr:parent «RIPK»;

RDF output example

<http://example.com/Ch#/LinkRRI/56, 10>
rdf:type ex:LinkRRI.
<http://example.com/Ch#/LinkRRI/56, 10>
ex:RFK <http://example.com/Ch#/Role/56>.
<http://example.com/Ch#/LinkRRI/56, 10>
ex:RIFK
<http://example.com/Ch#/RIndividual/10>.

RDF output example graph

ex:RIFK ™

2.5. Predecessor

SQL table Predecessor
CIFK RIFK
100 10
101 11
100 15
102 12
103 13
104 14
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R2R ML Triple Map

<#TriplesMap9>
rr:logicalTable [ rr:tableName «Predecessor»];
r:subjectMap [
rr:template
«http://example.com/Ch#/Predecessor/ {CIFK}; {R
IFK}»;
rr:class ex:Predecessor;
]
rr:predicateObjectMap [
rr:predicate ex:CIFK
rr:objectMap |
arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap3>
rr;joinCondition |
rr:child «CIFK»;
rr:parent «CIPKy;

11
rr:predicateObjectMap [

rr:predicate ex:RIFK
rr:objectMap |
a rr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap4>
rr:joinCondition [
rr:child «RIFK»;
rr:parent «RIPK»;

111
RDF output example

<http://example.com/Ch#/Predecessor/100, 10>
rdf-type ex:Predecessor.
<http://example.com/Ch#/Predecessor/100; 10>ex
:CIFK
<http://example.com/Ch#/Clndividual/100>.
<http://example.com/Ch#/Predecessor/100; 10>ex
‘RIFK
<http://example.com/Ch#/RIndividual/10>.

RDF output example graph
Predecessor
Clndividual/
rdf:type 100

Predecessor/
100;10

Rindividual/

10

2.6. Successor
SQL table Successor

CIFK RIFK
102 10
103 11
104 15
100 12
101 13
101 14
R2R ML Triple Map
<#TriplesMap10>

rr:logicalTable [ rr:tableName «Successor»];
r:subjectMap |
rr:itemplate
«http://example.com/Ch#/Successor/ { CIFK } ; {RI
FK}»;
rr:class ex:Successor;
]
rr:predicateObjectMap [
rr:predicate ex:CIFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap3>
rr;joinCondition [
rr:child «CIFK»;
rr:parent «CIPKy;

111
rr:predicateObjectMap [

rr:predicate ex:RIFK
rr:objectMap [
a rr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap4>
rr:joinCondition [
rr:child «RIFK»;
rr:parent «RIPK»;

111
RDF output example

<http://example.com/Ch#/Successor/102; 10>
rdf:type ex:Successor.
<http://example.com/Ch#/Successor/102;10>
ex.CIFK
<http://example.com/Ch#/CIndividual/102>.
<http://example.com/Ch#/Successor /102;10>
ex:RIFK

<http://example.com/Ch#/RIndividual/10>.
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RDF output example graph
Successor
C ClIndividual/
rdf:type C 102

Successor/
102;10

Rindividual/
10

ex:RIlr"Kx' =
3. Axioms
3.1. ConceptEquivalence

SQL table ConceptEquivalence

CForFK CIsFK

3 4
R2R ML Triple Map
<#TriplesMapl1>
rr:logicalTable [ rr:tableName

«ConceptEquivalence»];
r:subjectMap [

rr:template
«http://data.example.com/ConceptEquivalence/{C
ForFK}; {CIsFK}»;

rr:class ex:ConceptEquivalence;

]
rr:predicateObjectMap |

rr:predicate ex:CForFK
rr:objectMap |
arr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition |
rr:child «CForFKy;
rr:parent «CPKy;

11
rr:predicateObjectMap [

rr:predicate ex:CIsFK
rr:objectMap |
a rr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition [
rr:child «CIsFK»;
rr:parent «CPK»;
11
RDF output example
<http://example.com/Ch#/ConceptEquivalence/3;
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4> rdf:type ex:ConceptEquivalence.
<http://example.com/Ch#/ConceptEquivalence/3;
4>ex:CForFK
<http://example.com/Ch#/Concept/3>.
<http://example.com/Ch#/ConceptEquivalence/3;
4>ex:CIsFK
<http://example.com/Ch#/Concept/4>

RDF output example graph

ConceptEqui
valence

rdf:type ex:CForFK #

ConceptEqui
valence/3;4

cx:Clsﬁ( »

3.2. ConceptNesting

SQL table ConceptNesting
CInFK COutFK

3 1
R2R ML Triple Map
<#TriplesMap12>
rr:logicalTable [ rr:tableName
«ConceptNestingy];

r:subjectMap [

rr:itemplate
«http://data.example.com/ConceptNesting/{ CInF
K};{COutFK}»;

rr:class ex:ConceptNesting;

]
rr:predicateObjectMap [

rr:predicate ex:CInFK
rr:objectMap [
a rr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap1>
rr;joinCondition [
rr:child «CInFK;
rr:parent «CPKy;
111
rr:predicateObjectMap [
rr:predicate ex:COutFK
rr:objectMap |
a rr:RefObjectMap ;
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rr:parentTriplesMap <#TriplesMap1>
rr:joinCondition [
rr:child «COutFKy;
rr:parent «CPKy;

111
RDF output example

<http://example.com/Ch#/ConceptNesting/3,; 1>
rdf:type ex:ConceptNesting.
<http://example.com/Ch#/ConceptNesting/3; 1>ex
:CInFK <http://example.com/Ch#/Concept/1>.
<http://example.com/Ch#/ConceptNesting/3; 1>ex
:COutFK <http://example.com/Ch#/Concept/1>

RDF output example graph

rdfitype ex:CInFK

Cindividual/

ex:COutFK 1

3.3. RoleNesting
SQL table RoleNesting

RInFK ROutFK
89 56

R2R ML Triple Map

<#TriplesMap13>
rr:logicalTable [rr:tableName «RoleNesting»];
r:subjectMap [

rr:itemplate
«http://example.com/Ch#/RoleNesting/ {RInFK}; {
ROutFK}»;

rr:class ex:RoleNesting;

]
rr:predicateObjectMap [

rr:predicate ex:RInFK
rr:objectMap |
a rr:RefObjectMap ;

rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «RInFK»;
rr:parent «RPK»;

1

rr:predicateObjectMap [
rr:predicate ex:ROutFK
rr:objectMap [
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «ROutFKy»;
rr:parent «RPKy;

1

RDF output example

<http://example.com/Ch#/RoleNesting/89;56>
rdf:type ex:RoleNesting.
<http://example.com/Ch#/RoleNesting/89;56>
ex:RInFK
<http://example.com/Ch#/RoleNesting/89>
<http://example.com/Ch#/RoleNesting/89;56>
ex:ROutFK
<http://example.com/Ch#/RoleNesting/56>

RDF output example graph

Rindividual/

rdf:type : o\ 39

RoleNesting
/89,56

~ s Rindividual/
ex:ROutFK 56

3.4. RoleEquivalence

SQL table RoleEquivalence

RForFK RIsFK

89 34
R2R ML Triple Map
<#TriplesMap14>
rr:logicalTable [ rr:tableName
«RoleEquivalence»];

r:subjectMap [

rr:template
«http://example.com/Ch#/RoleEquivalence/ {RFor
FK};{RISFK}»;

rr:class ex:RoleNesting;
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rr:predicateObjectMap [
rr:predicate ex:RForFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «RForFK»;
rr:parent «RPK»;
111
rr:predicateObjectMap [
rr:predicate ex:RISFK
rr:objectMap |
arr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap2>
rr;joinCondition [
rr:child «RISFKy»;
rr:parent «RPK»;

111
RDF output example

<http://example.com/Ch#/RoleEquivalence/89, 34
> rdf:type ex:RoleEquivalence.
<http://example.com/Ch#/RoleEquivalence/89, 34
>ex:RForFK
<http://example.com/Ch#/RoleEquivalence/89>
<http://example.com/Ch#/RoleEquivalence/89, 34
>ex:RISFK
<http://example.com/Ch#/RoleEquivalence/56>

RDF output example graph

RoleEqui
valence

RIndividual/

rdf:type ex:RForFK #\ %9

RoleEquiva
lence/89;34

cx-l-{isFK"' »/ Rindividual/

34

3.5. Transitive role

SQL table Role
RPK | Name IsTransitive
56 R No
67 S No
89 T No
34 Z No
23 U Yes
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R2R ML Triple Map
<#TriplesMap15>

rr:logicalTable [ rr:tableName «Role»];
r:subjectMap [
rr:itemplate
«http://example.com/Ch#/Role/ {RPK} »;
rr:class ex:Role;

]
rr:predicateObjectMap [

rr:predicate ex:IsTransitive;
rr:objectMap [rr:column «IsTransitive»];

RDF output example

<http://example.com/Ch#/Role/23> rdf:type
ex:Role.

<http://example.com/Ch#/Role/23>
ex:IsTransitive “Yes”.

RDF output example graph

Role

rdfitype

Role/23 ===

ex:IsTransitive

3.6. CIEquivalence

SQL table CIEquivalence

ClForFK | ClIsFK

105 104
R2R ML Triple Map
<#TriplesMap16>

rr:logicalTable [ rr:tableName «CIEquivalence»];
r:subjectMap |

rr:template
«http://example.com/Ch#/CIEquivalence/{ CIForF
K};{CIIsFK}»;

rr:class ex:RoleNesting;

]
rr:predicateObjectMap [

rr:predicate ex:CIForFK
rr:objectMap [
a rr:RefObjectMap ;
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rr:parentTriplesMap <#TriplesMap3>
rr:joinCondition [
rr:child «CIForFKy;
rr:parent «CIPK»;
111
rr:predicateObjectMap [
rr:predicate ex:CIIsFK
rr:objectMap |
a rr:RefObjectMap ;
rr:parentTriplesMap <#TriplesMap3>
rr;joinCondition [
rr:child «CIISFK»;
rr:parent «CIPKy;

111
RDF output example

<http://example.com/Ch#/ClEquivalence/105; 104
> rdf:type ex:CIEquivalence
<http://example.com/Ch#/ClEquivalence/105; 104
>ex:CIForFK
<http://example.com/Ch#/Cindividual/105>.
<http://example.com/Ch#/ClEquivalence/105; 104
>ex:CIlIsFK
<http://example.com/Ch#/Cindividual/104>.

RDF output example graph

CIEquival
ence

'y CIndividual/
rdf:type ex:CIForFK «
v'//
CIEquivalence 7 g
/105;104
o/ Rindividual/
ex:CIIsFK 104

4. ALC syntax mapping
4.1. Concept
RA? term

E
CRM2

= TCIndividual.Name (GConcept.Namez’C’ (CInleldual

X crpr=cipk (LInKCI X cpg=cpkx Concept)))

R2R ML Triple Map
<#TriplesMapl7>

rr:logicalTable [ rr:sqlQuery

“»” SELECT ci.Name

FROM Clindividual ci, Concept c, LinkCl Ici,
WHERE ci.CIPK = lci.CIFK. AND Ici.CFK =
¢.CPK AND c.Name = ‘C* “];

r:subjectMap [

rr:itemplate «http://example.com/Ch#/{Name} »;
rr:class ex:Clndividual;

]

rr:predicateObjectMap [

rr:predicate ex:name

rr:objectMap [ rr:column: Name;]

]
RDF output example

<http://example.com/Ch#/Clndividual/abc>
rdf:type ex:Clndividual.
<http://example.com/Ch#/Clndividual/abc>
ex:name “abc”.

RDF output example graph
Clndividual

A

rdf:type

ex:name

abc

4.2. Role
RA? term

E
RRM2

= TFirst,Second (pCIdividual.Name.Second (CIndiVidual

M cipk=crpk (Successor

MRrirk=RIPK (PCIndividual.Name.First(CIndividual
M cipk=cirk (Predecessor

MRrirk=RIPK (ORole.Name="r'(RIndividual
XRripr=rirk (LINKRRI

Mrrk=rpk ROI€)))))))))

R2R ML Triple Map
<#TriplesMap18>
rr:logicalTable [ rr:sqlQuery
“» SELECT first Name AS First, second,Name
AS Second

FROM Role r, RIndividual ri, LinkRRI
Irri , Predecessor p, Successor s

Clndividual first, CIndividual.second
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WHERE rRPK = 1mi.RFK AND
Irri.RIFK = ri.RIPK AND ri.RIPK = p.RIFK AND

p.CIFK = first.CIPK AND ri.RIPK =
s.RIFK AND s.CIFK = second. CIPK AND
r.Name="R” “*];

r:subjectMap [

rr:itemplate
«http://example.com/Ch#/{First} {Second}»;

rr:class ex:RIndividual;
]
rr:predicateObjectMap [

rr:predicate

rr:objectMap

ex:first

[ rr:column: First;]

]

rr:predicateObjectMap [
rr:predicate
rr:objectMap

ex:second
[ rr:column: Second;]

RDF output example

<http://example.com/Ch#/abc_aaa>rdf:type
ex:Role;
<http://example.com/Ch#/abc_aaa>ex.first
“abc”
<http://example.com/Ch#/abc_aaa>ex:second

“« 2

aaa

RDF output example graph

@
>

rdf:type ex:first

abc_aaa —
ex:second

4.3. Concept negation

RA? term

(-0)E 2z = Tname(CIndividual) — CE,

R2R ML Triple Map

<#TriplesMap19>
rr:logicalTable [ rr:sqlQuery
“» SELECT ci.Name
FROM Clndividual ci
EXCEPT
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SELECT ci.Name
FROM Clndividual ci, Concept ¢, LinkCI Ici,
WHERE c¢i.CIPK = Ici.CIFK. AND Ici.CFK
¢.CPK AND c.Name = ‘C* “*”’];

r:subjectMap [

rr:itemplate
«http://example.com/Ch#/{Name} »;

rr:class ex:ClIndividual;

]
rr:predicateObjectMap [

rr:predicate

rr:objectMap

ex:name
[ rr:column: Name;]

RDF output example

<http://example.com/Ch#/Clndividual/ccc>
rdf:type ex:Clndividual.
<http://example.com/Ch#/Clndividual/ccc>
ex:name “ccc”.

RDF output example graph

Clndividual

F Y

rdfitype

cxnamec

CCC

4.4. Concept union
RA? term

(CUD) = Cpyz U Dpye
R2R ML Triple Map

<#TriplesMap20>
rr:logicalTable [ rr:sqlQuery
“» SELECT ci.Name
FROM Clndividual ci, Concept ¢, LinkCI Ici,
WHERE c¢i.CIPK = Ici.CIFK. AND Ici.CFK
¢.CPK AND c.Name = ‘C’
UNION
SELECT ci.Name
FROM Clndividual ci, Concept ¢, LinkCI Ici,
WHERE ¢i.CIPK = Ici.CIFK. AND Ici.CFK
¢.CPK AND c.Name = ‘D’ “*”’];

r:subjectMap [

rr:template
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«http://example.com/Ch#/{Name}»;
rr:class ex:ClIndividual;

]

rr:predicateObjectMap [
mr:predicate  ex:name

rr:objectMap [ rr:column: Name;]

RDF output example

<http://example.com/Ch#/Clndividual/bbb>
rdf:type ex:Clndividual.
<http://example.com/Ch#/CIndividual/bbb>

ex:name “bbb”’.

RDF output graph
Clndividual
A
rdfitype
ex:name
bbb

4.5. Concept intersection
RA? term

(CND) = Cpyz N Dhy2

R2R ML Triple Map
<#TriplesMap21>
rr:logicalTable [ rr:sqlQuery
SELECT ci.Name
FROM Clndividual ci, Concept ¢, LinkCI Ici,
WHERE c¢i.CIPK = Ici.CIFK. AND Ici.CFK
¢.CPK AND c.Name = ‘C’
INTERSECT
SELECT ci.Name
FROM Clndividual ci, Concept ¢, LinkCI Ici,
WHERE ci.CIPK = Ici.CIFK. AND Ici.CFK
¢.CPK AND c.Name = ‘D’

“””],
>

r:subjectMap [

rr:template
«http://example.com/Ch#/{Name}»;

rr:class ex:ClIndividual;

]

rr:predicateObjectMap [
rr:predicate
rr:objectMap

ex:name
[ rr:column: Name;]

RDF output example

<http://example.com/Ch#/Clndividual/def>
rdf:type ex:Clndividual.
<http://example.com/Ch#/Clndividual/def>
ex:name “def”.

RDF output example graph
Clndividual
7'y
rdfitype
ex:name
def

The following notation is introduced:

e a table RE(First, Second) was get
after mapping REMZ (<#TriplesMap18>);

e a table CE(Name) was get after
mapping C§M2(<#TriplesMap17>).
4.6. Existential quantification
RA? term
(AR.O)fpz = Trirst(Repz
Msecond=Name Chmz)

R2R ML Triple Map

<#TriplesMap22>

rr:logicalTable [ rr:sqlQuery

“”” SELECT RE.First

FROM RE, CE

WHERE RE.Second = CE.Name “’];
r:subjectMap [
rr:template

«http://example.com/Ch#/{First}»;
rr:class ex:Clndividual;

]

rr:predicateObjectMap [
rr:predicate  ex:first
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rr:objectMap [ rr:column: First;]

RDF output example

<http://example.com/Ch#/Clndividual/bbb>
rdf:type ex:Clndividual.
<http://example.com/Ch#/CIndividual/bbb>

ex:name “bbb”’.

RDF output graph
Clndividual
7 Y
rdfitype
ex:name
bbb

4.7. Value restriction
RA? term
VR.C)E 2 = MirstRepz — Trirst (RE
( g )RMZ = TrirstRpM2 T[Flrst( RM?
E
n (T[FirstRRM2
E
X (T[SecondR]:u\/[2

- “NameCEMZ)))

R2R ML Triple Map

<#TriplesMap23>
rr:logicalTable [ rr:sqlQuery
“”’SELECT RE.First
FROM RE
EXCEPT
SELECT First
FROM (SELECT
FROM RE
INTERSECT
(SELECT *
FROM (SELECT RE.First
FROM RE),
(SELECT RE.Second
FROM RE
EXCEPT
SELECT CE.Name
FROM CE))) “1;
r:subjectMap [
rr:template «http://example.com/Ch#/ {First}»;
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rr:class ex:Clndividual;

]
rr:predicateObjectMap [

rr:predicate  ex:first
rr:objectMap [ rr:column: First;]

RDF output example

<http://example.com/Ch#/ClIndividual/aaa>
rdf:type ex:Clndividual.
<http://example.com/Ch#/CIndividual/aaa>
ex.first “aaa”.

RDF output graph

rdfitype

ex:first

5. ALC extensions

The mappings to only several number
restrictions are shown in the paper. Mappings
for the rest of extensions uses the recursive
SQL.

5.1. Functional restrictions
RA? term

E —
(2 ZR)RMZ - T[First(O_Secondl:tSecondZ
E
(pSecond/Secondl(RRMZ) N Eirst=First

(pSecond/SecondZ (RgMZ))))

R2R ML Triple Map

<#TriplesMap24>

rr:logicalTable [ rr:sqlQuery

“»”SELECT one.First

FROM RE one, RE two

WHERE one.First = two.First

AND one.Second <> two.Second “’];
r:subjectMap [

rr:template «http://example.com/Ch#/{First}»;
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rr:class ex:Clndividual;

]
rr:predicateObjectMap [

rr:predicate  ex:first
rr:objectMap [ rr:column: First;]

RDF output example

<http://example.com/Ch#/CIndividual/abc>
rdf:type ex:Clndividual.
<http://example.com/Ch#/CIndividual/abc>
ex:name “abc”.

RDF output graph

rdf:type

RA? term
(< 1R)E .2 = Tyame(CIndividual)

— (= 2R)},2

R2R ML Triple Map

<#TriplesMap25>
rr:logicalTable [ rr:sqlQuery
“”SELECT ci.Name
FROM Cindividual ci
EXCEPT
SELECT one.First
FROM RE one, RE two
WHERE one.First = two.First
AND one.Second <> two.Second “””’];
r:subjectMap [
rr:template «http://example.com/Ch#/{Name} »;
rr:class ex:Clndividual;
]
rr:predicateObjectMap [
rr:predicate ex:name
rr:objectMap [ rr:column: Name;]

RDF output example
<http://example.com/Ch#/Clndividual/ccc>
rdf:type ex:Clndividual.
<http://example.com/Ch#/Clndividual/ccc>

€ »”
ex:.name ccc .

RDF output graph
Clndividual
rdf:type
ex:name
cee >

5.2. Several quality restrictions
RA? term
E —
(2 2R O)E,2 =
T[First(o-Secondl:tSecondz (pSecond/Secondl
E
(RRMZ) MSecond=Name(pSecond/SecondZ

(RERM2 Msecond=Name C12(M2))))

R2R ML Triple Map

<#TriplesMap26>
rr:logicalTable [ rr:sqlQuery
“»”SELECT one.First
FROM
(SELECT First, Second
FROM RE, CE
WHERE RE.Second = CE.Name) one,
(SELECT First, Second
FROM RE, CE
WHERE RE.Second = CE.Name) two
WHERE one,First = two.First
AND one.Second <> two.Second*”””];
r:subjectMap [
rritemplate «http://example.com/Ch#/{First}»;
rr:class ex:Clndividual;
]
rr:predicateObjectMap [
rr:predicate  ex:first
rr:objectMap [ rr:column: First;]
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RDF output example

<http://example.com/Ch#/CIndividual/aaa>
rdf:type ex:Clndividual.
<http://example.com/Ch#/CIndividual/aaa>
ex:first “aaa”.

RDF output graph

CIndividual

ex:first

RA? term
(< 1R)E 2 = Tyame(CIndividual)

— (= 2R.0E .

R2R ML Triple Map

<#TriplesMap27>
rr:logicalTable [ rr:sqlQuery
“”SELECT ci.Name
FROM Clindividual ci
EXCEPT
SELECT one.First
FROM
(SELECT First, Second
FROM RE, CE
WHERE RE.Second = CE.Name) one,
(SELECT First, Second
FROM RE, CE
WHERE RE.Second = CE.Name) two
WHERE one,First = two.First
AND one.Second <> two.Second “”’];
r:subjectMap [
rr:template «http://example.com/Ch#/{Name} »;
rr:class ex:Clndividual;
]
rr:predicateObjectMap [
rr:predicate ex:name
rr:objectMap [ rr:column: Name;]
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RDF output example

<http://example.com/Ch#/Clndividual/def>
rdf:type ex:Clndividual.
<http://example.com/Ch#/Clndividual/def>

ex:name ‘“def”.

RDF output graph

rdfitype

ex:name

6. Role restrictions

Despite the number of role restrictions
only role inverse mapping into RDF is
considered in the paper. As known [19] the
OWL 2 is based on the DL SROIQ. This logic
includes only role inverse through all the role
restrictions amount. So, the mapping for other
role restrictions is out of scope of this
research.

6.1. Role inverse
RA? term

(R7) EMZ = (pR(Second,First) (RERMZ )

R2R ML Triple Map

<#TriplesMap28>
rr:logicalTable [ rr:sqlQuery
“”SELECT second.Name AS First, first.Name
AS Second
FROM Role r, RIndividual ri, LinkRRI
Irri, Predecessor p, Successor s
Clndividual first, CIndividual.second
WHERE r.RPK = Immi.RFK AND
Irri. RIFK = ri.RIPK AND ri.RIPK = p.RIFK AND
p.CIFK = first. CIPK AND ri.RIPK = s.RIFK
AND s.CIFK = second. CIPK AND r.Name="R”

u””] .
b

r:subjectMap [
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rr:template «http://example.com/Ch#/{Name} »;
rr:class ex:Role;
]
rr:predicateObjectMap [
rr:predicate  ex:name
rr:objectMap [ rr:column: Name;]

RDF output example

<http://example.com/Ch#/aaa_abc>rdf:type
ex:Role;
<http://example.com/Ch#/aaa_abc>ex:first
“aaa”
<http://example.com/Ch#/aaa_abc>ex:second

uabc ’»

RDF output example graph

rdf:type ex:first

aaa abc —

ex:second

Conclusions

The article outlines a method how to
check mappings between the descriptive logic
and the binary relational data model using
mappings into RDF. The task is set. The de-
scription of the theoretical aspects is present-
ed. The publication provides mappings for the
binary relational data model into an RDF tri-
ples using the R2R ML language. The paper
also outlines the rules for converting the DL-
to-RM? mapping formulas into RDF.

The issue of converting a number of
role constructors into RDF remains open.
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