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DEFINING DEGREE OF SEMANTIC SIMILARITY USING
DESCRIPTION LOGIC TOOLS

The purpose of this study is to determine effective approaches to define the value of semantic
similarity of information. The special functions to determine quantitative indicators of a degree of
semantic similarity of the information allow ranking the found information on its semantic proxim-
ity to search request/template. Forming such measures should take into account many aspects from
the meanings of the matched concepts to the specifics of the business-task in which it is done. A
combination of semantic and structural approaches is appropriate when constructing the similarity
functions. This allows to do descriptions of the concepts more detail, and the impact of syntactic
matching can be significantly reduced by using more expressive descriptive logics to represent in-
formation and by moving the attention to semantic properties.

The focus of this research is in the methods for evaluating similarity of concepts. Values of similar-
ity between individuals and between a concept and an individual are defined by finding the most
specific concept for individual(s) and evaluating the similarity between the appropriate concepts.
Using some of defined measures is demonstrated on a geometry ontology application.

Key words: semantic similarity of information, a similarity value, least concept subsumer, the most
specific concept, the most specific is-a ancestor, similarity measures, features-based models, se-
mantic-network based models, information content based models, existential concepts similarity.

Introduction

The task of discovery of concepts that
are semantically similar and evaluating a de-
gree of their similarity is very important both
for resolving applied problems (discovery of
semantic web services, effective semantic
search of information, data categorization,
etc.), and for more general problems in the
information technologies area, as, for exam-
ple, integration of onto- logies/knowledge,
information search, etc. There are a lot of ap-
proaches that try to resolve the problems of
finding similarity by methods of text analy-
sis or using special vocabularies as Wordnet
[1], for example. As a rule, in such approach-
es only atomic concepts are considered, but
more complex ones are out of the question.
In addition, the cases of identifying simi-
larities between individuals and between an
individual and a concept are omitted. Also,
note, that measures of information similar-
ity should be based on semantics because
the purely syntactic ap- proach is too weak
to ensure that standard in- ferences are ex-
ecuted, especially if expressive descriptive
logics (for example, ALC) are considered
as a language for knowledge re- presenta-
tion. It is clear that algorithms and functions
of similarity measures must be effective. If
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they are too complex, they can’t provide the
desired result in a reasonable period of time
and become commonly used.

Last time many studies have appeared
that emphasize the feasibility of using ontolo-
gies and based on them functions of semantic
similarity to compare concepts and / or indivi-
duals that can be obtained through the integra-
tion of heterogeneous sources of information
[2,3.4,5].

The main purpose of this study is the
analysis of methods, models and approaches
for creating quantity indicators that evaluate
a similarity degree of knowledges represented
with descriptive logic (DL) tools, their classifi-
cation and application.

Types and levels

of similarity determination

Information/knowledge similarity may
be considered and defined on different levels.
Namely, we can identify:

1) Conceptual level — determination
of similarity between concepts;

2) Knowledge level — determination of
the similarity between instances of concepts;

3) Mixed level — determination of the
similarity between an instance and a concept.
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Similarity measures, as a rule, use
the basic Set Theory and they are based on
objects commonality. In particular, the ba-
sic criteria to determine such measures can
be formulated as follows: the value of simi-
larity between objects is not only a result of
their common features but it is, also, a result
of their differences. This criteria corresponds
to the theoretical-informational definition of
si- milarity. The objects, in this case, are con-
cepts and instances of concepts.

We consider approaches for defining
similarity measures and corresponding models
for evaluating on the each level. But, first, we
introduce some definitions used by the most
existing models.

Basic concepts and definitions

Definition 1. LCS (Least Concept
Subsumer) [23, 24] — the least common sub-
sumer of concepts. Let L is DL. A description
of the concept E in DL £ is a LCS of concepts’
descriptions C1, - - - ,Cn in £ (shortly LCS(C1,
-+, Cn)), if:

)CicEfori=1, - -,nand

2) E is the least description of L-concept
that meets the first condition, so as, if EQ is
description of L-concept such that Ci = EQ for
alli=1, - -, n,then E = E0.

At once, it should be noted that LCS
doesn’t exist for everyone DL used to represent
knowledge, but if LCS exists, it is unique to
the point of equivalence. All measures that will
be discussed below are based on DL ALC. As
shown in [6], LCS always exists for ALC DL
and it is defined by the concepts’ disjunction.
In the case if the logic doesn’t support the dis-
junction operator, LCS is calculated by select-
ing general concept names in its descriptions
(within the concepts of the universum and ex-
istential constraints for the same role), not tak-
ing into account TBox as a whole [6]. But, in
this case the result of LCS evaluation may be
very common. Based on these considerations,
LCS is calculated relative to TBox, on the ba-
sis of which the concepts are defined [7].

Taking into account the TBox, LCS def-
inition can be reformulated as follows.

Definition 2. Let L1 and L2 are descrip-
tive logics such as L1 is sub-logic of L2, so
L1 includes less constructors which are used to
build expressions. For given TBox of L2 logic

T, L1(T) is set of concept descriptions that can
include concepts defined in F. C1, . .. ,Cn are
concept descriptions from L1(7), so LCS(C1,
....Cn) in L1(T) w.r.t. TBox T is the descrip-
tion of the most specific £1(T) concept that in-
cludes C1, . .., Cn on TBox 7. In particular,
it is such description of £1(T)- concept D, as:

CicrDfori=1,---,nand

2) If E is a description L1(T)- concept
suchas Ci=T E foralli=1, - - ,n, D= E.

If LCS for TBox doesn’t exist (for ex-
ample, in the case of cyclic TBox), its approxi-
mation is calculated. It is named Good Com-
mon Subsumer (GCS) [25] w.r.t. TBox and it
exists for general TBox. GCS is calculated by
defining the least conjunction of concepts and
their objections which can include a conjunc-
tion of concept names of top level for each
considered concept and the same conjunction
of concepts constituting the rank of existen-
tial and universal constraints on the same role.
GCS is the most specific covering than LCS
calculated unrelated to Tbox. But, in a general
case, it includes (or it is equivalent) LCS calcu-
lated w.r.t. TBox [7].

MSA (Most Specific is-a Ancestor)

[8] — the most specific ancestor in
the hierarchy of the taxonomy. It is defined
as binary relation on concepts taxonomy,
but semantically it is similar to LCS. Both
calculate the most specific generalization of
input concepts (w.r.t. the operator of sub-
sume). Their difference is next. MSA works
on a taxonomy of concepts and returns one
concept, which contains two original con-
cepts (there is their is-a ancestor) and it does
not include anyone else what meets the same
requirements. LCS is a description that cov-
ers input concepts, and, as a result, returns
all concepts included in it. If concepts only
related by generic relations (TBox is a tax-
onomy) then LCS is reduced to one ancestor
and LCS(C1,C2)=MSA(C1,C2).

MSC is the most specific concept. It is
unary relation on a set of individuals of ABox.

Definition 3. [25] Let given ABox A
and o is an individual from this ABox, then
the most specific concept for a w.r.t. ABox
A is a concept C, denoted as C = .#SCA(a),
such that AE=C(a), and VD such that AE=D(a),
CED (where E is the inference operator).
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At once, it should be noted that in the
general case of acyclic ABox in the expres-
sive DL #SC cannot be expressed by the fi-
nal description of the concept [2], it is pos-
sible to obtain only its approximation. So, the
existence of the most specific concept for an
individual of ABox is not guaranteed, or it is
difficult to calculate, and the approximation
is limited by some depth of a set. A maxi-
mal depth of the approximation, as defined
in [20], corresponds to the depth of ABox. In
this case, we can define the most specific con-
cept MSC(a) or its approximation MSC*(a)
for any instance o of ABox.

Defining a semantic

similarity of concepts

Today, a lot of researches exist that try
to transform semantic relations between con-
cepts into some quantitative indicators. It is
clear, that the principles of formation of such
measures are affected, first of all, by the es-
sence of the compared concepts, and the busi-
ness problem for the solution of which the
similarity functions are chosen or determined.
The most of existing studies use a seman-
tic approach in conjunction with a structural
one, which compares the descriptions of the
concepts under consideration. Certainly, this
allows to significantly detail the description,
and the influence of syntactic matching can be
reduced by using more expressive DLs to rep-
resent information and by moving the focus to
semantic properties of concepts.

In establishing the degree of semantic
correspondence between the concepts of the
same ontology, the similarity function, in fact,
is a mapping §: L(T)X L(T)—Y, where T is
TBox of this ontology represented in DL L,
and Y is real value, which quantifies the de-
gree of similarity. In measures that are based
on ratio Y € [0,1] but another measure models
also exist.

In general, the task is more complex. If
matching concepts from different ontologies
with TBoxes 7°1 and 72 of DLs £1 and £2,
respectively, it is needed to build the mapping
§: LI(THX L2(T2)—Y.

In any case, the similarity function must
have the following properties:

1) let E is a set of items (objects of the
same or different ontologies), for which the
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value of similarity should be determined, then
function § is defined on the set E X E;

2) the function § is positively defined,
so §(C,D)>0;

3) VC,D: §(C,D)< 8(C.C).

Defining the similarity function, it is
necessary to understand that concept similarity
may be considered both in terms of the degree
of their commonality and the degree of their
difference, and the similarity function should
have a positive correlation with the value of
commonality between the concepts and nega-
tive correlation with an indicator of the differ-
ence between them. It is clear this indicator
depends on many factors, namely: the specit-
ics of the content that is studied, the expres-
siveness and homogeneity of the languages of
representation of on- tologies, and so on. But
the key question in determining a similarity
function is “how to calculate the value of com-
monality (difference) of concepts”, which, in
turn, is related to the question “how we collect
an investigated information”. It is unlikely that
the similarity indicator can be considered as an
absolute value, but it should provide the possi-
bility of a reliable ranking of concepts by sim-
ilarity values. As the main approaches to the
defining such function can be distinguished:

1) defining similarity as function of
a path-distance between taxons in hierarchy
which underlies this ontology [10, 11, 12];

2) evaluating a feature—based semantic
similarity [13];

3) defining a value of similarity by in-
formation content [14,15];

4) existential similarity of concepts.

The first approach may be applied only
based on one ontology, so its usage may be ap-
propriate only if the evaluation is performed on
the basis of a single source of information, and
the matched information items are concepts of
a same ontology or an integrated ontology of
information sources. Another approach for cal-
culating semantic similarity uses both general
and discrimination features between concepts
and/or individuals. Methods of third group are
based on Theory of information. They deter-
mine measure of similarity between two con-
cepts in the hierarchy from the point of view
of the amount of information transmitted di-
rectly by the super-concept, which includes the
matched concepts. We may name all measures
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that are based on features of concepts as the
measures of intentional similarity. Under the
existential similarity of concepts we will un-
derstand the degree of their closeness by the
sets of instances that they include.

In the case of matching concepts of
different, probably heterogeneous, ontologies
listed approaches works only when certain
conditions and restrictions are carried out.
First, formal representation of these ontolo-
gies should support inference engines such as
subsume. (Note that subsume engine is sup-
ported by basic DL as, for example, ALC).
Second, applying the calculation approaches
are based on using a general ontology, and
local concepts in different ontologies should
inherit the structure of des- cription from their
general ontology. In [16] some approaches
for matching such concepts from different
ontologies by their individuals are proposed.
Namely, it is made an assumption that when
the restrictions are performed the criteria of
matching two concepts may be intersection
of sets of their individuals. To match descrip-
tions of the concepts that may be united in the
general ontology, three main approaches are
applied:

* filtering based on path-distance be-
tween concepts in the general ontology;

* defining measures based on matching
graph that establish one-to-one corresponden-
ce between elements of the concept descrip-
tions;

* defining probabilistic measures that
give the correspondence in terms of the joint
distribution of concepts.

Also, if computation of similarity val-
ues is performed for concepts belonging to
different ontologies, it is necessary to take
into account a difference between formaliza-
tion levels of specification of these ontolo-
gies. Particularly, in [17] a similarity func-
tion determines classes of similar entities
by matching using synonym sets, semantic
neighborhood, and discriminating features
that are classified into parts, functions, and
attributes. In [9] another approaches are pre-
sented. It is aimed at finding common fea-
tures among concepts or statements.

Listed groups of approaches for simi-
larity computation are based on appropriate
models.

The most common evaluation models
include:

- feature-based models;

- semantic-network based models;

- models based on information content.

In feature-based models concept C is
characterized by set of its features, denoted
ftrs(C). In [18] two groups of measures for
such model are proposed:

1) contrast model where the similarity
between two concepts C and D is defined by
the linear function

contra(C,D) =0f(ftrs(C) n

ftrs(D)) - af (ftrs(C)\ftrs(D)) -

Bf (ftrs(D)\ftrs(C)), where \ is op-
eration of sets difference, a,  and 6 non nega-
tive constants, and f(.) expresses a number of
features in the set;

2) anormalized model of the ratio where
similarity is defined as quotient of the sets:

f(ftrs(C) n ftrs(D))

sim(C,D) =

If suppose that similarity function is
symmetric then a = = 0,5. Assuming that the
function f is distributive on intersected sets
then sim(C, D) may be transformed as follows:

m(C.D) = 2f (ftrs(C) n ftrs(D))
St % f(ftrs(0)) + f(ftrs(D))

In the semantic-network based mod-
els a reference information is given in the
semantic-network form that includes nodes-
concepts and, at least, is-a edges (sometimes
it contains more complex relations as in

et f(ftrs(C) n ftrs(D)) + af (ftrs(C)\ftrs(D)) + Bf (ftrs(DI\ftrs(C))

WordNet). It is an example of the case when
similarity computation is based on measures
of path-distance between concepts in the
network. As concepts are in the taxonomy
(linked by generic relations) so the similar-
ity value between two concepts is computed
by calculating edges on the path from consid-
ered concepts to their closer ancestor. If the
entities are divided by only some connections
then they are rated as similar. The more con-
nections they share, the less similar they are
[8, 19, 12, 20]. So, to evaluate similarity of
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concepts C and D it is found the most specific
is-a ancestor E = MSA(C,D) of C and D and
a similarity measure is computed as the sum
of path distances from C to E and from E to
D. More advanced estimates may take into ac-
count the depth of the concept MSA(C, D),
the density of the edges at the path nodes, and
the weight of the edges.

In the models based on information
content the information pr(C) about the prob-
ability that entity is described by the concept is
used as well as semantic network. This prob-
ability, as usual, is estimated based on an initial
particular task.

The value of information content is
measured based on the probability pr(C) as
IC(C) =def—log pr(C). In [21] it is proposed
the measure of the similarity of the concepts
C and D based on probabilistic estimation of
their MSA:

sim(C, D) =def IC(MSA(C, D)) =def-log
pr(MSA(C, D)).

In [22] it is proposed the measure of the
path distance in the network based on their in-
formation content. It takes into account such
factors as the depth and density of the edges of
the path between the concepts is:

dist(C,D) =_def IC(C)+IC(D)-2IC(MSA(C,D))

In [18] it is proposed the similarity mea-

sure that defined by the ratio:
sim(C,D) =_def (2IC(MSA(C,D)))/
(IC(C)+Ic(DY)

Defining similarity values

for DL descriptions of concepts

All metrics above are defined for
atomic concepts. But these measures may be
reformulated for complex DL concepts. Note,
we suppose that the concept descriptions are
represented in basic DL which support
only operation of intersection of concepts.
Any description of a comsplex concept may
be normalized, namely, deicomposed in such
way that it will contain only atomic con-
cepts.Usually, this is done simply by substitut-
ing the concept descriptions in the definition
instead of non-atomic concepts. Denote as
nf(C) the set of atomic concepts which is
in the normal form of the concept C. Note
that CED (where E - structural subsumption),
if nf(D) < nf(C).

Taking into account given structural de-
scription of the concept, the measures above
can be reformulated as follows.

For feature-based model, we will con-
sider features of the concept as atomic concepts
and a complexconcept as conjunction of these
atomic concepts. Considering the peculiarities
of the intersection and the difference of the sets
of atomic properties, the similarity measures,
under the conditions of their symmetry, can be
determined as follows:

contra(C, D) =def f(lcs(C, D))

- 0,5 * f(diff(C, D))

- 0,5+ f(diff(D, C))

2xf((C,D))

sim(C,D)

Note, the function f is a counter of prop-
erties, possibly weighted, in these measures.

Now, let consider the model of the se-
mantic network. When the network is an hier-
archy and the concept C has is-a ancestor: U1,
U2, U3, ..., Un-1, Un, introduce the concept C*
such that C := C*n U1n U2n U3n...nUn-1N
Un. In the result T-Box the defined concept
has the same hierarchy as initial nodes in the
semantic network. Moreover, if the source
network U1, U2,...Un = T is the path to the
root of is-a hierarchy then the normal form
of the concept U1 in DL is nf(U1) = U_(1)"*N
U_(2 )*n..nU_(n-1 )**, Other words, if the
network is a tree then concept’s cardinality
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% 2x £ (Isc(C, D)) + f(diff(C,D) + F(dif (D, C))

is the normal form of the concept C - |nf(C)|
and it is equal to the distance of the path from
node U1 to the root. Paths from C and D to
the root are intersected in E= MSA(C,D), that
is the same as LCS(C,D) on the subsumption
hierarhy. Then the distance between the con-
cepts C and D may be defined as follows:
dist(C,D)  =_def  [nf(C)[+[nf(D)]-
2*Inf(LCS(C,D))/, where |X]| is the cardinality

of the concept X.

Respectively, for information models:

dist(C,D) = def  IC(C)+IC(D)-
2*[C(les(C,D)),

sim(C,D) = def  (2*IC(Isc(C,D)))/
(IC(C)+IC(D))
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Existentional measures

of the concept similarity

In the existeontional approaches a
similarity value is calculated by counting joint
instances of the concept extensions [26] or by
measuring a content variation between
concepts [27, 28, 29].

As a rule, an ontology has a structure
which is more complex that simple taxonomy.
So, similarity measures that are based on dis-
tances in the taxonomy or based on usage of
MSA can’t be applied.

Note that the semantic relation of sub-
sumption is based on canonic interpretation of
ABox and assumption of unique namespace
(UN A) of DL. It follows that the interpreta-
tion of the instances of ABox are themselves,
and different individuals, corresponding to dif-
ferent objects of the business -area, have dif-
ferent names in the namespace. So, we will de-
termine the similarity measure based on their
extensions in the canonical interpretation of
DL [25].

Let Zis a set of concepts in DL ALC, a
A is ABox with the canonical interpretation J.
The semantic similarity of concepts 8 is a func-
tion: 8:LXL—[0,1], that is defined as:

J
8(C,D) = | oy * max(|171/

cI|+|p?|- 17|
€L 1P 1/1D7)),
where /=CMND and (.)’ is an extension
of the concept in the interpretation J.

The measure above may be justi-
fied as follows. If the concepts C and D are
equivalent (both CED and DEC are true)
then s=1. If the concepts are different at
whole and intersection of their extensions
is empty, then the similarity value is a mini-
mal, so itis equal 0. In the case of non-emp-
ty intersection of the concepts the measure
has a value in the rank from 0 to 1. So, this
measure expresses a degree of the simi-
larity of the concepts C and D reduced on
|)- This value presents a difference of these
concepts. [t means that the similarity is con-
sidered as value weighted respectively the
similarity degree (it is not absolute value).
This measure corresponds to a rather strict
semantic relation between the concepts,
which is provided by the subsumption.

Measures of GCS-similarity

of the concepts

The measures of GCS-similarity are
determined based on the term of GCS-cov-
er. They may be applied in the cases when
other measures, namely, ones based on con-
cept extensions intersections, information
content or path distance, don’t work. The
measures based on GCS also use the term
of a concept extension but the similarity
value is defined as variation of number of
instances in the concepts’ extensions rela-
tively the number of instances in the exten-
sion of their super-concept instead of count-
ing common instances of the concepts. The
common super-concept is defined by GCS of
the concepts and the measure w.r.t. TBox T
of ALC is formally determined as follows.

T is ALC- TBox. L is descriptive logic
that include ALC. C and D are concept de-
scriptions in £L(J7). Then a semantic similarity
measure § is a function §: (T)X(T) —[0,1]
that determined as follows

min(|C7|,|D?|)
|(GCS(C,D))I|
|(6esce, py)’|
1A

S(C, D) =

_min(IC7),107))
|(Gesce,my)’| ) |

where (. )J calculates a concept’s extension
w.r.t. interpretation J (canonical interpretation
[2, 9D.

So, if two concepts are semantically
similar they should have good common super-
concept that is close to both concepts, namely,
it is extension of super-concept which con-
tains a lot of individuals that are common with
initial concepts. In such case the value of the
function is approaching 1. Vise versa, if the ini-
tial concepts are very different, then their GCS
and their super-concept contains many instanc-
es that do not belong to the source concepts,
i.e. the value of the similarity will approach 0.
This measure doesn’t require the intersection
of the concepts and doesn’t take into account
the path distance between them. Moreover, to
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avoid obtaining an incorrect value of similarity
in the case when one concept is very similar to
the super-concept and very different from an-
other concept, which is compared, the minimal
extension of concepts is considered in the mea-
sure’s definition.

Defining the similarity
measures

at knowledge and mixed levels

Recall that similarity metrics of
knowledge and mixed levels are measures for
determining values of matching individuals
and an individual and a concept, respectively.
Determining measures involving individu-
als is based on the term of the Most Specific
Concept (MSC). We can compute MSC or its
appro—xi-ma—tion for each instance in ABox.
These terms are equivalent in some cases.

Let a and b are two instances of ABox,
A*=MSC*(a), B¥=MSC*(b). Then, semantic
similarity measures may be applied to the de-
scriptions of the concepts A* and B*, and a re-
sult value will express the degree of similarity
of corresponding individuals:

Va,b: s(a,b) = s(A*,B*) = s(MSC*(a),
MSC*(b))

Likewise, the value of similarity bet-
ween the descriptions of the concept C and the
individual a may be calculated by determining
the approximation of MSC of the instances and
further applying the similarity measure to the
concept C and the approximation MSC* of the
instance a:

Vva,C: s(a,C) = s(A*,C) = s(MSC*(a), C)

So, both measures are reduced to deter-
mining the similarity of the concept descrip-
tions after preliminary approximation of in-
stances. In this case, any of the above models
can be used to calculate the value of similarity
of concepts.

It should be noted that the complexity
of the proposed methods depends on the com-
plexity of the standard methods of inherits in
DL.

Applying the similarity measures
based on the DL ontology
POGeometry (an example)

Consider the application of the mea-
sures of similarity of concept descriptions
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based on their extensions in canonical interpre-
tation DL on an example of the domain ontol-
ogy POGeometry.

TBox of the domain ontology POGeometry:
Coordinate, GeometricFigure

Vertex E has.XCoordinate

Vertex E has.YCoordinate

XCoordinate E Coordinate

YCoordinate E Coordinate

Coordinate E hasValue.NUMBER

Vector E Zhas.Vertex

Vector E has.VectorLength

Vector E has.VectorAngle

VerterxLength £ hasType.NUMBER
VerterxAngle E hasType.NUMBER

Height E hasType.NUMBER

EdgeLenth = hasType.NUMBER

Polygon = GeometricFigure M=has.Vertexn
=has.Vector

Circle E GeometricFigure

Quadrangle = Polygon M=4has.Vertexn
=4has.Vector

Triangle = Polygon M =3has.Vertex =3has.
Vector

Polygon E has.Vertex

Polygon E has.Vector

Triangle E =3has.Height

Square E hasType.NUMBER
GeometricFigure E has.Square

Circle E GeometricFigure

ABox:

Triangle(ABC), Triangle(XYZ),
Triangle(A1B1C1), Triangle(B1C1D1),
Triangle( A1C1D1), Triangle( A1B1D1),
Triangle(X1X2X3), Triangle(X2X3X4),
Triangle(X3X4X5), Triangle(

X4X5X6), ..., Quadrangle(A1B1C1D1),
Polygon(X1X2X3X4X5X6.), Circle(O1),
Circle(02)

Taking into account the definitions
of the concepts Quadrangle and Triangle
we may inherit the subsumption of the con-
cepts Triangle E Polygon and Quadrangle =
Polygon. So, all individuals of the concepts
Triangle and Quadrangle are instances of the
concept Polygon.

So, |Polygon’|=47, |Triangle’|=29,
|Quadrangle’ |=17.

Then, the similarity of the concepts Tri-
angle and Polygon may be determined based
on sets of their instances as follows:
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Let I=TriangleMPolygon, then
s(Polygon, Triangle) -
|17
- |Polygon’| + |Triangle’| — ||
|1’ |17
* max (IPolygorﬂI ’ |Triangle7|>
29 29 29)

T 47+ 29— 29 47’29
= 0,62

29

*max( :E

Taking into account that the interpreta-
tions of the concepts Triangle and Quadrangle
have no intersection
|I’| =0,where I = Triangle N Quadrangle,
their values of similarity by instances will also
be equal 0. In this case, certainly, the feature-
based similarity measures or similarity mea-
sures using the least common subsumer are
more reliable.

It should be noted that shown ex-
ample is based on basic DL which use only

the inter-section constructor, and TBox,
in fact, is a taxonomy. So, LCS always ex-
ists for their con-cepts, and for any con-
cepts C and D from this Tbox the statement
LCS(C,D)=MSA(C,D) is the true. Particular-
ly, Polygon =LCS(Triangle, Quadrangle) =
MSA(Triangle, Quadrangle).

The function of the similarity concepts
based on LCS may be defined based on the
path distances between concepts or based on
intersections of extensions of corresponding
concepts (their sets of individuals).

dist(Triangle, Quadrangle) = def
|nf(Quadrangle)|+|nf(Triangle)|-
2*nf(lcs(Triangle, Quadrangle))|=
|nf(Quadrangle)|+|nf(Triangle)|-
2*|nf(Polygon)|=2+2-2*]=2

Using feature-based model the similar-
ity measure is:

2f (ftrs(Triangle) N ftrs(Quadrangle))  2x1 1

s(Triangle, Quadrangle) =ger

Taking into account that, in this case,
GCS=LCS=MSA the similarity value is:

S(Triangle, Quadrangle)

f(ftrs(Trangle)) + f(ftrs(Quadrangle))  3+3 3

_ min(|Triangle?|, |Quadrangle?|)

"~ |(LCS(Triangle, Quadrangle))?|

x| 1—

| (LCS(Triangle, Quadrangle))(7 |

|A7]

min(|Triangle?|, |Quadrangle?|)

- |(LCS(Triangle, Quadrangle))‘j|

B min(|Triangle?|,|Quadrangle?|)

|Polygond|
|Polygon? |
*(1_T* !
17 47 17
= 1——*(1——
47 49 47

min(|Triangle?|,|Quadrangled |)>>

)

|Polygond|
17 19 0.14
= —%—=
47 49 ’
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Conclusions

In this paper the analysis of semantic
similarity indicators, classified by approach-
es and estimation models is carried out. De-
scribed measures use semantic reasoning
such as, for example, instances checking of
given ABox (it means calculating the con-
cepts extensions). The internal complexity
of expressive DL languages, such as ALC,
causes the non-effectiveness of structural ap-
proaches to reasoning, so the definition of
similarity functions is based on the use of
The Set Theory. This allows the use of nu-
merical approaches at the symbolic level of
representation of DL.

The estimation models and similarity
measures on different estimation levels are an-
alyzed in the article. The main is defining simi-
larity between concepts (models of conceptual
level). The tasks of calculating the values of
similarity between individuals or between an
individual and a concept reduced to finding
MSC for individual(s) and estimating similar-
ity of appropriate concepts.

The most of described measures are built
based on basic DLs which support only inter-
section constructor. But described approaches
may be applied for any DL that provides basic
reasoning services, namely: instances checking
and MSC (approximation).

Proposed similarity measures may be
useful for resolving a lot of different problems
of different types, particularly big data prob-
lems such as, for example, information re-
trieval in the context of terminological systems
of knowledge representation, data classifica-
tion and categorization, etc.
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