Software Environment and Tools

UDC 681.3 https://doi.org/10.15407/pp2021.02.054

Dmytro V. Rahozin, Anatoliy Yu. Doroshenko

EXTENDED PERFORMANCE
ACCOUNTING USING VALGRIND TOOL

Modern workloads, parallel or sequential, usually suffer from insufficient memory and computing perfor-
mance. Common trends to improve workload performance include the utilizations of complex functional units
or coprocessors, which are able not only to provide accelerated computations but also independently fetch
data from memory generating complex address patterns, with or without support of control flow operations.
Such coprocessors usually are not adopted by optimizing compilers and should be utilized by special applica-
tion interfaces by hand. On the other hand, memory bottlenecks may be avoided with proper use of processor
prefetch capabilities which load necessary data ahead of actual utilization time, and the prefetch is also ad-
opted only for simple cases making programmers to do it usually by hand. As workloads are fast migrating to
embedded applications a problem raises how to utilize all hardware capabilities for speeding up workload at
moderate efforts. This requires precise analysis of memory access patterns at program run time and marking
hot spots where the vast amount of memory accesses is issued. Precise memory access model can be analyzed
via simulators, for example Valgrind, which is capable to run really big workload, for example neural network
inference in reasonable time. But simulators and hardware performance analyzers fail to separate the full
amount of memory references and cache misses per particular modules as it requires the analysis of program
call graph. We are extending Valgrind tool cache simulator, which allows to account memory accesses per
software modules and render realistic distribution of hot spot in a program. Additionally the analysis of ad-
dress sequences in the simulator allows to recover array access patterns and propose effective prefetching
schemes. Motivating samples are provided to illustrate the use of Valgrind tool.

Keywords: workload, performance analysis, coprocessors, prefetch, computer system simulator.

Introduction

The ultimate goal of computer hard-
ware development activities is the improve-
ment of application performance some way.
During early days of microprocessor devel-
opment, the basic hardware features were ad-
opted — such as hardware pipeline, on-board
cache memory and SIMD instructions, so
one microprocessor instruction transforms
operands during minimal number of clock
cycles. After that the more advanced hard-
ware methods were adopted — for example,
the extraction of instruction-level parallel-
ism and introduction of complex instruc-
tions, for example RSA crypto support. Ex-
cessive amount of research efforts was spent
to gather the most often used computation
patterns, and so extra hundreds of complex
instructions were added. These instructions
apply complex computation pipelines over
small amount of data, and usually are used
only with help of sophisticated optimizing
compiler or direct assembly language in-
structions. The next level of performance
improvement is the use of specialized co-
processors, which not only apply the com-

54

plex computation pipeline, but also provide
sophisticated address generation so that the
coprocessor is able to access big memory
areas. The cornerstone problem of this so
called “next level” is the coprocessor com-
plexity and the absence of good optimizing
compilers which can transform original pro-
gram code and map it onto the hardware co-
processor. So, mapping of the original algo-
rithm to specialized hardware coprocessor is
usually done by hand and rises software de-
velopment costs. There are many examples
of different kinds of mappings: starting at
simpler RSA crypto-algorithm accelerators
in various platforms — x86/ARM/PowerPC,
where the coder just takes a code example
from an application note; up to programming
graphics card using shader concept, using a
complex compiler to generate parallel code
for GPU.

This so called “next level” of spe-
cialized hardware applications requires not
only analysis of computational patterns over
some scalar data, but also requires the analy-
sis of data flow and transformations in nested

© D.V. Rahozin, A.Yu. Doroshenko, 2021

ISSN 1727-4907. I1po6nemu nporpamyBaHHs. 2021. Ne 2

Software Environment and Tools

loops. The goal of the analysis is not only
code optimization, but gathering require-
ments for useful coprocessor employment to
accelerate complex computing patterns. Let’s
define the complex computing pattern as a
part of computing algorithm which includes
at least one single or nested loop and needs a
complex memory access pattern (much more
complex than just SIMD data path).

The goal of this paper is to make a
step forward in the topic of software perfor-
mance analysis and optimization for solving
the following cases: 1) semi-automatic ex-
traction of the information for possible opti-
mization of the complex computing patterns
with the help of co-processors with pro-
grammable memory access; 2) analysis of
mapping of complex computing patterns for
co-processors with programmable memory
access. We consider off-the-shelf software
and possible optimization cases for it and
we propose techniques for this software op-
timization using performance analysis tools.
We consider the extensions for Valgrind
software (especially its subtool Cachegrind)
which enable additional analysis of complex
computing patterns.

1. Application performance analysis

So, complex computational patterns
we are looking for usually reflect commonly
used computation procedures, for example
convolutions, matrix multiplication loops,
loops similar to high-level BLAS kernels,
neural network computational kernels, vari-
ous DSP kernels. For many cases we already
have appropriate tools, there iterative opti-
mization techniques are employed for the
existing code [1] and this greatly improves
developer experience and reduces efforts
necessary to optimize software. Another way
which allows to simplify development and
decrease efforts is the use of formal methods,
were the development system already oper-
ates with parallel algorithms [2]. Although
many complex systems can be modeled using
high-level formal models, usually the model
formalization is the second or third step of
technology adaptation. Let us consider the
modern topic of convolutional neural net-
works with popular implementations from
Nvidia [3] and Berkeley [4]. Both implemen-

tations, despite a neural network can be well
described as the formal models, are brilliant
high-level frameworks for neural networks
implementation, but still are hardly portable
to any architecture except initial targets -
Nvidia video cards and x86-compatible mul-
ticore processors. If a different hardware is
required to run the neural network back-end
and this hardware includes special coproces-
sor, we need to analyze the initial programs
for “hot spots” — kernels or loop nest where
the program spent the most of time. As soft-
ware became more and more complex we
need to have appropriate tools to analyze the
code and there is no a trend to use highly
formal techniques to define neural networks
due to high complexity of infrastructure for
formal models for parallel applications. In-
stead, we see the use of simpler tools such
as Darknet [5] for implementing complex
pipelines such as Yolo-v4 [6]. The analysis
of such complex applications [7] made us to
start looking for effective tools for analyz-
ing the programs which can be optimized on
modern multiprocessors minimizing human
effort need to be spent on this analysis.
Today in practice neural network al-
gorithms can be efficiently optimized with
the use of a specialized coprocessor (such as
Qualcomm’s Neural Processing Engine [8])
and this is the common trend in system-on-
chip design. The number of workloads, which
performance can be improved with various
coprocessors, quickly increases, so the in-
terest of employing a coprocessor in appli-
cation constantly increases. The impressive
application — Al Benchmark (ai-benchmark.
com), which uses QNPE SDK [8] for neural
network processing — enables optimized neu-
ral network processing for system-on-chips
widely used in off-the-shelf smartphones.
But this is the only side of hardware
development. The fact is that the perfor-
mance of some applications is bounded by
execution speed (e.g. cryptographic hashes
computations), another by memory perfor-
mance (matrix multiplications, neural net-
work convolutions), another by both mem-
ory performance and execution speed. Mod-
ern software is extremely complex and can
be analyzed and optimized mostly in parts,
but the common rule is that 90% of execu-

55

Software Environment and Tools

tion time is spent in 10% of code, for some
workloads this ratio is 99%/1%. Even basic
analysis shows that the most of modern ap-
plications are memory bounded, but the more
detailed analysis is able to detect the most
time consuming “hot spots™ in application,
as is successfully done using e.g. Intel Vtune
performance analyser [9], or another similar
software. Anyway, Intel Vtune and another
analysis software are based on statistical ap-
proach and shows only “hot spot” with quite
accurate number of memory traffic per ex-
ecuted instructions. But the high-level infor-
mation about address sequences for memo-
ry-related instructions is not gathered during
this analysis, but this missed information is
the key for understanding the algorithm be-
havior and possible algorithm mapping on
the coprocessor.

As current optimizing compilers are
not able to map nested loops and complex
addressing patterns on complex hardware,
the co-processor should be utilized by hand
using the SDK such as described in [8]. In
order to simplify the handmade optimiza-
tions, performance analysis software should
analyze addressing patterns, addressing pat-
terns spatial locality and issued operations.
This type of reporting is used in two ways:
1) reporting potential computation pat-
terns, which can be optimized by hands; 2)
reporting “hot spots” which are potentially
optimizable if a corresponding coprocessor
is included into system-on-chip. Another
valuable point is the definition of prefetch
scheme, which may be used for cache uti-
lization optimization. Data access analysis
is able to recover at least simple addressing
patterns, which may be used for hand-made
prefetch optimization.

An important trend is that commonly
used hardware employs more and more mi-
croprocessor kernels (usually ARM in latest
system-on-chips as ARM hardware kernel
are small and energy efficient), and these ker-
nels share or sit on common cache memory.
Each kernel has enough computation power
— with up to 3.5GHz clock frequency, with
limited instruction level parallelism extrac-
tion (as in Cortex-A57/A75/A77) — and is
able to process complex modern algorithms
even without coprocessors. Note, that copro-

56

cessors also use the common cache memory
for operations, so executing a computational
thread on coprocessor hardware just heavily
increases load on cache memory bus. This
can be illustrated by the old fact related to
employment of hyperthreading technology,
when a processor core is able to execute
instructions of two threads simultaneously.
Running parallel threads which does not
operate on same data effectively halves the
cache size, which reduces performance de-
spite employing two threads. The same works
e.g. for typical conjugate gradient solver — it
scales well only for several threads. Cache
behavior analysis helps to determine cache
bottlenecks and check if the bottleneck can
be avoided, and additionally cache prefetch
scheme can be defined for a pattern.

2. Efficient cache memory use

and prefetch techniques

Memory bounded applications (such
as mentioned above conjugate gradient solv-
er) performance may be improved by proper
prefetching scheme. The cache memory nev-
er works foreheads, so the cost of L1 cache
misses remains extremely high. For high pro-
cessor frequencies (~3 GHz) one L2 hit (i.e.
L1 miss) costs up to dozen of clock cycles,
one L3 hit (i.e. L2 miss) costs up to 70 cycles
for cache interconnection type typical for In-
tel multicore processors. Read from DRAM
costs up to 300 cycles. If compared to usual
floating-point operations time, which equals
to 1-2 clock cycles, memory access in case
of L1 cache miss looks extremely high.

Farther in the paper while consider-
ing processor operations speed, we omit
time spent for computational operations. It
was mid-1980s when the off-the-shelf pro-
cessor executed numerical operations taking
multiple clock cycles. Starting at 32-bit pro-
cessors in 1990s we never expect that basic
floating-point operations (addition, multipli-
cation) takes more than 1 clock cycle. On the
other hand, if in early-1980s DRAM mem-
ory access appeared without additional wait
cycles even at ancient ISA bus, each time af-
ter processor clock speed was significantly
increased, the memory access time raised
and the complexity of memory hierarchy in-

Software Environment and Tools

creased up to be enormously complex. Sure,
that the main focus was moved from “how
to compute fast” to “how to feed a processor
with data fast”.

A thoughtful reader may note that
some memory-hungry operations may be in-
troduced into memory controller, especially
so called “reduction™ operations, when some
scalar operation is executed over large data
array, for example convolution operation.
Talking more precisely, a coprocessor which
is able to speed up various BLAS kernels
may improve significantly the performance
of operations in many current workloads,
but BLAS kernels work fast only if cache
memory is used efficiently, that’s why mod-
ern BLAS libraries always make a tuning for
BLAS library before compiling it for partic-
ular machine for processor type and its cache
memory configuration. This also applies for
graphics processors, as BLAS package is
compiled separately for each GPU architec-
ture and modification type to use GPU regis-
ters in efficient way. So prefetch here is able
to set the cache memory into desired con-
figuration to avoid L1 cache misses. Modern
prefetch instructions are able to move data
between cache layers in order to hide even
L2/L3 latencies. Anyway, this does not look
a silver bullet — multithreaded applications
perform side-effects on cache contents and
Cachegrind [10] is a good tool to check ef-
ficiency of cache utilization in application
regardless if application works on CPU or on
GPU, as the memory traffic requirements are
practically the same.

Several dozens of prefetch application
schemes are considered in [11], but the fully
automatic prefetch is extremely limited by
adopting only simpler addressing schemes
and compiler ability to determine loop con-
structions. Hardware prefetch schemes are
also considered in [11], still they work for
simpler addressing schemes.

Current prefetch hardware includes
not only prefetch instructions, but also cache
lines locking instructions, data invalidating
instructions, changing priority of data in-
validation/eviction in set and other service
commands. The most complex case includes
one or more separate prefetch coprocessors,
which are able to prefetch arrays of large data

blocks with stride synchronously with main
thread(s) or prefetch linked lists of large
data blocks. Here the prefetching coproces-
sor needs to be programmed by a full-blown
control code and looks to be quite complex
hardware.

Although current optimizing com-
pilers use powerful algorithms, complex
prefetch schemes are too hard for them —if a
simple loop can be analyzed usually success-
fully, the loop nest is harder to analyze. The
analysis of memory accesses sequence (ad-
dress patterns) is the valuable way to check
possible “hot spots” potentially optimizable
by prefetch patterns.

3. Valgrind performance

analysis tool

Valgrind tool [10] basically emulates
a microprocessor instruction set, memory
state of Intel x86, ARM and several other
processors. Valgrind is able to emulate basic
operation system libraries and run a program
on the top of emulated system. The program
is not modified any way (except special cas-
es extending the program to control Valgrind
behavior in run-time). Several useful tools
are based on the simulator: a usual debugger
gdb, a memory error detector (it checks for
incorrect heap memory use), a cache mem-
ory and branch predictor simulator (a.k.a.
Cachegrind), a call-graph generator, a con-
current thread error checker and even more
profiling tools. Our target sub-tool is Ca-
chegrind, the cache memory simulator and
profiler. The sub-tool simulates two-level
cache memory with a bunch of program-
mable parameters, and the most important
parameter is the size of cache memory lev-
els storage. Basically, the cache simulator
provides tracking of: 1) traffic from register
file to cache memory, 1% level, this is the ap-
plication data throughput; 2) data traffic to
2" level cache as the result of cache misses
for 1% level cache memory for both reads and
writes; 3) cache misses for 2" cache level
which is the final traffic to memory. The ratio
(1) to (3) is the cache memory utilization ef-
ficiency, which depends on application type,
compiler optimizations and applied thread-
ing model. With help of changeable cache

57

Software Environment and Tools

parameters Cachegrind analyzes cache per-
formance deeply even for multithreaded pro-
grams. The simplest analysis case is graph
of memory traffic (3) vs cache size, which
allows to define the most comfortable cache
size for application.

Before considering why we are lim-
ited in Cachegrind functionality we need to
introduce types of workloads we are going to
analyse with Cachegrind tool.

Microprocessor performance is still a
keystone for enabling computing technolo-
gies for mass market, and more and more
computing performance nowadays is reached
by introducing more and more parallelism
to newer hardware. Well-known Moore law
says that the number of gates (transistors) on
(silicon) die doubles every 18 months, but
these extra transistors do not help to com-
pute faster, so they need to be used in com-
putational units which are able to perform in
parallel and the computing task should have
enough level of coarse-grained parallelism.
The ultimate case is a video card equipped
with a massive parallel processor, which ini-
tially was used to compute pixel color in-
side a rendered triangle, which is a highly
parallel task performed on independent data.
But the performance bottleneck for any vid-
eo card is the memory channel, so the huge
number of architectural solutions in video
cards solves the problem of hiding memory
latency. For less specialized computing soft-
ware the matrix processing operations still
are championing the race for computing re-
sources. Modern neural network processing
is based on large matrix multiplications, and
despite the matrix multiplication optimiza-
tions are well studied, they are combined
with another memory operations. This com-
bination is not studied well due to its nov-
elty, so it is our main case for performance

2] a 2]

203,502 (0.00%)) @
128,693,815 (@.33%) 6,173,888 (©.11%) 18 (9.808%)
64,296,832 (9.17%) 6,912,576 (©.12%) 4,818,684 { 9.28%)
128,653,898 (@.33%) 3,881,313 (@.85%) @

51%)

32,167,924,337 (B3.

237,419 (0.00%) 33,917 (@.00%) 2,752 (©.00%)

237,419 { 0.00%) {

33,017 (0.00%)

271,336 (©.00%)
5,680,796,154 (99.02%) 1,433,439,177 (98.49%) 16,083,979,127 (86.44%)

analysis as 1) neural networks are emerging
topic for mass market and challenging topic
for computer hardware; 2) huge industrial
demand for object and environment recog-
nition, which is potentially solved by neural
networks technology.

Recently we conducted a research [7]
where we simulated neural network runs in
order to project this workload performance
for an embedded platform. We proved that
Valgrind/Cachegrind is able to simulate huge
modern neural networks runs with getting
full performance results for cache memory
from Cachegrind. Let us consider a result got
from Cachegrind run simulating Yolo-v4 run
on Intel x86 platform, details can be found
in [7]. Note, that original program — Darknet
infrastructure [5] was not changed anyway.

Fig 1. shows the “hot spot” in Dark-
net Yolo-v4 run, which is gemm nn func-
tion, providing general matrix multiplica-
tion. The function generates 83.5% misses
in 1% level cache memory and 98.5% misses
in 2" level cache memory and due to analy-
sis, it is the main source of memory traffic in
the application. This information looks very
short in terms of the performance analysis
of parallel or coprocessor-supported execu-
tion of the sample. Looking at fig. 1 we con-
sider the matrix multiplication information,
which can benefit from blocked matrix mul-
tiplication, but no one can easily determine
if some particular threading affinity con-
figuration makes the program faster due to
sharing cache data among threads or makes
the program slower due to extra data spills
from cache. Cachegrind simulation poten-
tially can provide such type of analysis, but
current output at fig. 1 limits a Cachegrind
user in ability to analyze the software run —
practically all the memory resource is spent
in one gemm_nn function.

void gemm_nn(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)

int i, j, k;
for (i =@; 1 <« M; +i) {
for (k= @; k < K; ++k) {
PUT_IN_REGISTER float A_PART = ALPHA * A[i * lda + k];
for (j =8; j < N; ++5) {
C[i*lde + j] += A _PART*B[k*1db + j];
}
}
}
1

Fig. 1. Excerpt from Yolo-v4 run performance result: D1mr, D1mw, D2mr, D2mw values

58

Software Environment and Tools

4. Performance analysis
shortcomings
Let us consider fig. 2. It includes three
functional elements (FEs), #1, #2, #3, which
represent three separate neural network lay-
ers, each calls several kernels from library.

FE #1 FE #2
‘ Exec A — ExecC ‘ ‘Exec B — ExecC ‘
| I |
Ll = !
Kernel A Kernel B Kernel C

— T)

FE #3 ‘ExecA —— > ExecB — ExecC |

Fig. 2. A sample call graph for an excerpt
from neural network.

So, FE #1 call kernels 4 and C, FE #2
calls B and C, and FE #3 calls all 4, B and
C. So, kernel 4 collects cache events from
FE #1, #3; B from #2, #3 and C from all
FEs. Therefore the performance gathering
via Cachegrind does not reflect real distri-
bution of spent resources per original FEs.
Fig. 3 shows the sequence of basic neural
network layers, forming Yolo-v4 pipeline.
In practice, Valgrind mixes performance in-
formation from all the layers at fig. 3 into
one function gemm nn, generating the re-
port at fig. 1, where gemm_nn gathers prac-
tically all memory operations into one func-
tion. This prevents proper analysis, as there
is no information for each separate network
layer, which calls gemm_nn function. Simi-
lar considerations work for sharing cache
contents between several execution threads,
here we have the case that the cache memo-
ry is simulated correctly, but it is unknown
how each execution thread influences the
cache content and how to compare one-
threaded and multithreaded program ex-
ecution in terms of cache behavior and cal-

culate the [non]efficiency of cache use if
threading model and number of threads are
changed in run-time.

The only way to overcome this limi-
tation is to instrument (add the functional-
ity for controlling performance analysis)
the code, so that the performance account-
ing for all FEs is separated. “From-the-box”
Cachegrind is not controllable someway, but
Valgrind has extensible API to control the
behavior of other Valgrind tools.

5. Extending Valgrind tool

Valgrind includes a mechanism which
allows user to control Valgrind-based execu-
tion of a program. The user is able to place
“specific client requests” into program to
control several Valgrind components, for
example for Callgrind and add new client
requests.

To control the tool user should use
callgrind.h file from Valgrind distribution
and use predefined macros, for example
CALLGRIND START INSTRUMENTA-
TION. This “C-style” macro definition and
any other client request macros are directly
translated into a specific processor instruc-
tion for target platform (x86, PowerPC),
which is “void” i.e. does not change micro-
processor state, but allows to pass arguments
to Valgrind kernel. Client request parameters
are passed into Cachegrind in similar way to
standard function argument list. In run-time
Valgrind core intercepts the compiled binary
instruction and passes control to appropriate
Cachegrind handler, which provides neces-
sary functionality to analyze or change Ca-
chegrind internal state.

Cachegrind handles cache memory
state in separate data structures, includ-
ing cache memory contents, memory tags
state, eviction candidates information and
statistics for cache misses/loads/traffic to

3x3 cony, 32, s 3x3 conv, 64, . Residual block 3x3 conv, 128, Residual block 3x3 conv, 256, Residual block
/1 /2 (32, 64) /2 (64, 128) x2 /2 — (128, 256) x8
]
7
3x3 cony, 512, Residual block 3x3 conv, Residual block Global Avg 1x1 conv, Soft max
/2 —>| (256,512)x8 [1024, /2 | (512, 1024) x4 [Pool 1000, /1

Fig 3. Computational structure of Yolo-v4 blocks.

59

Software Environment and Tools

memory. In order to improve cache simu-
lation, we provide several copies of cache
statistics — we call it “context” - and each
context copy is filled with statistics sepa-
rately by Cachegrind simulator. The num-
ber of contexts is set by user during Val-
grind compilation. Basically, we add two
new client requests — CG_PUSH CON-
TEXT and CG _POP _CONTEXT. “CG”
stands for “Cachegrind”. A new client re-
quest CG_PUSH CONTEXT switches cur-
rent context to another enumerated one
so that the further statistics about cache
misses and data traffic is added to another
context. Default context number is 0, it is
used from the start of cache simulation.
After the context switch the previous con-
text number is saved in the stack of context
numbers, so that the following request CG
POP CONTEXT is able to restore the pre-
vious context. Appropriate client requests
for changing cache context are inserted
into the source code so that the selected
hot spots and kernels are separated in dif-
ferent cache contexts. Another improve-
ment is adding an “old context” bit into
cache content descriptors per each cache
memory line. This bit is set in the case of
cache context switch for all data stored in
cache and is cleared in the case if a cache
“hit” into the cache data was detected or in
the case of data eviction from cache. The
accounting for the number of bit clears of
the “old context™ bit in the case of a cache
hit gives us the amount of data which was
reused across different hot spots/kernels in
the program code.

Some useful inter-thread data usage
statistics may use the similar principle —
track the thread identifiers (ids) and variable
operations (read/write) to analyze variable
sharing efficiency. Valgrind already have the
tool analyzing the multithreaded program for
dangerous data races, but we leave this re-
search for near future.

We decided to research in steering
for generated addresses — handling a pool
of last used addresses, keeping a record of
possible increments for each address and
establishing a sequence of accessed mem-
ory cell for addressing schemes in a loop
allows a user to analyze an address patterns

60

and form a report notifying about structural
accesses i.e. data accesses with some spe-
cific address change pattern over one vari-
able, structure, array, array of structures.
The similar functionality is embedded into
x86 processors: hardware-based automatic
data prefetch. For example, the loop:

For(int i=0; i<N; i++)

{ c[i] = A*a[i] + B*b[i] + P; }

has the following structural accesses
(we use the pattern variable name[start
index:step:end _index]: read a[0:1:N], read
b[0:1:N], set c[0:1:N]. This analysis helps in
cases of mapping cache accesses and real ar-
rays and allows to determine how much time
the array was accessed and reused in cache.
The address steering information is dumped
at the end of simulation and does not require
additional user control.

6. Use of extended Valgrind

functionality
Let us return back to figure 2 and con-
sider block FE #1, #2, #3, where the kernels
A, B and C are called in some sequence. De-
fault cache simulation shows, that the num-
ber of cache misses is distributed as follows:

Kernels A B C
22% 45% 25%
The same distribution for FEs is:
FE #1 #2 #3
0.7% 1% 0.5%

These tables show just that all memory
traffic is utilized in library kernels 4, B and C
but says nothing about actual memory traffic
distribution across FEs, which is necessary
to get real distribution of memory accesses
per FE. Note that the use of hardware coun-
ter in e.g. Intel Vtune shows the same picture
for this case. To improve the analysis let us
use cache context 1, 2, 3 for FEs #1, #2, #3
and add corresponding Cachegrind controls
CG_PUSH/POP CONTEXT into the source
code of FEs. Passing the updated program
into the simulator shows the next picture:

Kernel A B C
FE #1 3% 6% 3%
FE #2 11% 21% 14%
FE #3 8% 18% 8%

Now we clearly see how much memo-
ry traffic is utilized in each FE. The difference

Software Environment and Tools

between the default performance data and im-
proved data does not require any comments.

Conclusions

The article considers the use and
extension of a microprocessor and system
simulator Valgrind for performance account-
ing and performance analysis of big modern
workloads. As a conclusion, we accent sev-
eral points which are helpful for studying of
efficiency of modern workloads:

1. Even big modern workloads such
as object detection neural networks are able
to be analyzed by system simulator using
off-the-shelf computers in short time. Also,
memory behavior simulation is the main
hardware subsystem we need to analyze in
order to understand the workload perfor-
mance bottlenecks.

2. Valgrind tool may be easily extend-
ed for research purpose to control or change
the simulation process behavior via client re-
quests.

3. Our extensions for Cachegrind con-
trol allows to analyze big pipelines in parts
and determine bottlenecks in memory sub-
system (cache memory and memory bus).

4. We have checked methods for ana-
lyzing data address streams for recovering
prefetch pattern for nested loops and found
that basic memory addressing schemes are
recovered good enough to provide data for
necessary cache traffic. This works extreme-
ly good jointly with (3).

5. Data stream recovery allows to sep-
arate automatically cache misses while load-
ing several data arrays (streams) and com-
pare cache performance for each array (and
its prefetch method) for various data layouts
and prefetch methods.

6. Cachegrind allows to simulate vari-
ous cache behavior, so we can change e.g.
cache data eviction policies in order to check
if this can improve performance while ex-
ecuting some parts of workloads.

This kind of performance statistics
gathering and grouping allows the qualified
software engineer to find potentially optimi-
zable part of code much faster and enable
various preprocessors for a workload or ap-
ply profitable prefetch schemes. Simulator
analysis here works more efficiently than di-

rect workload runs as the simulations allows
to gather and keep information which is lost
while fast direct software runs.

These results give us some pros-
pects for future work. Valgrind supports
multithreaded execution and memory races
analysis for several threads. One of inter-
esting ways to use Valgrind is to run dif-
ferent combinations and affinity of soft-
ware threads in a multithreaded workload,
checking performance effects on shared
cache data, and this topic is the research
target for near future.

References

1. A. Doroshenko, O. Beketov. Large-Scale
Loops Parallelization for GPU Accelera-
tors. //In Proc. of the 15th Int. Conf. on
ICT in Education, Research and Industrial
Applications. Integration, Harmonization
and Knowledge Transfer. Vol I. Kherson,
Ukraine, June 12-15, 2019. CEUR-WS, vol.
2387 (2019).-P.82-89. http://ceur-ws.org/
Vol-2387/

2. A. Doroshenko, O. Yatsenko. Formal and
Adaptive Methods for Automation of Par-
allel Programs Construction: Emerging Re-
search and Opportunities. IGI Global, Her-
shey, Pennsylvania, USA. 2021, 279 p. DOI:
10.4018/978-1-5225-9384-3

3. Abadi, M., Barham, P., Chen, J., Chen, Z.,
Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M. & others (2016).
TensorFlow: A System for Large-Scale Ma-
chine Learning.. OSDI (p./pp. 265--283)

4. Y. Jia and Evan Shelhamer and J. Donahue
and S. Karayev and J. Long and Ross B. Gir-
shick et al. Caffe: Convolutional Architec-
ture for Fast Feature Embedding. // In Proc.
of the 22nd ACM international conference
on Multimedia, 2014

5. J.Redmon. (2013) [Online]. Darknet: Open
Source Neural Networks in C. — Available
from https://pjreddie.com/darknet/

6. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M.
YOLOv4: Optimal Speed and Accuracy
of Object Detection. arXiv 2020, arXiv:
2004.10934.

7. D. Ragozin, A. Doroshenko. Memory Sub-
systems Performance Analysis for CNN
Workloads. // In Proc. of AUTOMATION
2020: 26-th Scientific conf. in memory of

61

Software Environment and Tools

L. Pontryagin, N. Krasovsky and B. Psh-
enichny, 2020, Kyiv, Ukraine. P. 12-122.

8. lIgnatov A. et al. (2019) Al Benchmark:
Running Deep Neural Networks on An-
droid Smartphones. In: Leal-Taixé L., Roth
S. (eds) Computer Vision — ECCV 2018
Workshops. ECCV 2018. Lecture Notes
in Computer Science, vol 11133. Springer,
Cham. https://doi.org/10.1007/978-3-030-
11021-5_19

9. J. Rainders and J. Jeffers. High Perfor-
mance Parallelism Pearls. Morgan-Kauft-
mann, 2015. 502 p., https://doi.org/10.1016/
C2014-0-01797-2

10. J. Weidendorfer. Sequential Performance
Analysis with Callgrind and KCachegrind.
/I In Proc. of the 2nd International Work-
shop on Parallel Tools for High Performance
Computing, July 2008, HLRS, Stuttgart, pp.
93-113

11. Mittal, Sparsh. (2016). A Survey of Re-
cent Prefetching Techniques for Proces-
sor Caches. ACM Computing Surveys. 49.
10.1145/2907071.

12. Kim, Yoongu; Yang, Weikun; Mutlu, Onur
(2016): Ramulator: A Fast and Extensible
DRAM Simulator. Carnegie Mellon Uni-
versity. Journal contribution. https://doi.
org/10.1184/R1/6469208.v1

Received: 17.05.2021

62

About authors:

Dmytro V. Rahozin, candidate of tech. sci-
ences (PhD)

More than 10 publication in Ukrainian and
foreign journals.
https://orcid.org/0000-0002-8445-9921

Anatoliy Doroshenko, Doctor of Sciences in
Physics and Mathematics, Professor,

Head of the Department of Computing The-
ory, Institute of Software System of the Na-
tional Academy of Sciences of Ukraine,
Professor of Department of Automation and
Control in Technical Systems

Igor Sikorsky Kyiv Polytechnic Institute.
Number of scientific publications in
Ukrainian publications - more than 180.
Number of scientific publications in foreign
publications - more than 70.

Hirsh index - 6.
http://orcid.org/0000-0002-8435-1451

Affiliations:

Institute of Software Systems, NAS of
Ukraine

03187, Kyiv-187, Acad. Hlushkov avenue,
40

Tel. +38 068 575 91 25

E-mail: dmytro.rahozin@gmail.com

