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SPECIFIC FEATURES OF THE USE
OF ARTIFICIAL INTELLIGENCE IN
THE DEVELOPMENT OF THE ARCHITECTURE
OF INTELLIGENT FAULT-TOLERANT
RADAR SYSTEMS

The problem of developing the architecture of modern cognitive radar systems in the form of a set of hetero-
geneous neuromultimicroprocessor modules using artificial intelligence technologies, taking into account
the requirements for the purpose, the influence of external and internal factors, is considered. The concept
of'a resource in general and an abstract reliability resource in particular and its role in the design of a neuro-
multimicroprocessor with fault tolerance properties are introduced. The change in the ratio of performance
and reliability of a neural network is shown, which is rebuilt in the process of solving a problem in real time
with a lack of reliability resources at the system level by means of the operating system which dynamically
changing the architectural appearance of the system with structural redundancy, using fault-tolerant tech-
nologies and dependable computations.
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Introduction

The growth of the use of radar tech-
nologies in various sectors of the economy:
medicine, military equipment, security, ag-
riculture, geology, IoT and others became
possible due to the miniaturization of the ele-
ment base, the development of artificial intel-
ligence technologies, cloud computing [1,2].
Cognitiveness of modern radars plays a key
role, and there is no alternative to this path
[3]. The main requirements for radars are
to minimize the negative impact on human
health, the surrounding electronic devices,
their invisibility, to obtain information about
environmental pollution, 3D images of the lo-
cation scene, information about the health of
the environment, the presence of viruses and
bacteria [4-9]. These requirements complicate
both the transmitting part of the radar and the
receiving part, which is associated with the
problem of extracting signals from the noise.
The development of technology explains the
failed attempts to build ground penetrating
radar (GRP), mine detection radars (Mine
Radar), Portable Smart through Wall 3D Im-
ager Radar (PSTW), marine radars with a low
probability of interception of the near and far
zone (“Low Probability of Intercept” (LPI))
and ways overcoming them. This is the intel-
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lectualization of radars: the use of neural net-
works and their deep learning [10-20].

The deployment of radar systems has
a multi-level system with continuous cover-
age and close connection between the levels.
The primary link forms a network of radars,
telecommunications environment, the sec-
ond link - the deployment of military, and se-
curity radars [21-24], the third link - IoT ra-
dars, radars built into gadgets located in cars,
pollution checkpoints, and virus detection
and others. The construction of radars of dif-
ferent links has significant differences. The
focus of the first link is on a reliable neural
network and its connections to cloud com-
puting and providing fast access. The second
link is characterized by the use of a neural
network to organize a neural computer and
the use of neural network computing through
deep learning. The third link is the most
widely used, characterized by small size, of-
ten placed in gadgets, which teach artificial
neural network, in contrast to the first two
links. In first two links the neural network
is designed and reproduced in hard ware
by large teams of developers, creating and
providing resources to the third link. Collec-
tion, processing, storage and reproduction of
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information are possible from other sensors
and information artificially entered for pro-
cessing and storage.

Existing architectural models are not
able to adequately display applied radar infor-
mation. Unfortunately, artificial intelligence
technologies do not yet have sufficient develop-
ment, developed neural network components,
experience of deep learning of the neural net-
work, developments in cognitive algorithms,
issues of achieving fault tolerance, providing
dependability of computations in real time.
Therefore, today we use a compromise option
that combines signal processing and in-depth
learning, neural networks with multiprocessing
[25-28]. This will help to use all the develop-
ments so far, to make new developments that
will be relevant in full intellectualization.

The use of neural network systems for
processing radar information has many advan-
tages. It is possible to gradually build up the
neural network and train the modified network.
Also, in the neural network, we lay the possi-
bilities of increasing fault tolerance by recon-
figuring the system in the process of solving the
problem. Fault tolerance of a radar system with
minimal time redundancy and deadlock termi-
nation is especially important in real-time sys-
tems [29-33]. An analysis of the problems as-
sociated with the processing of radar informa-
tion shows that many tasks of processing radar
information are solved using a neural network,
the architecture of which does not correspond
to the class of tasks. Thus, the tasks of process-
ing multidimensional fields are solved using
built-in micro-computers with a streaming ac-
celerator, the architecture of which reflects the
problems of organizing computations, ranked
by dependability levels.

We pay special attention to the infra-
structure of neural network design tools. Un-
fortunately, there are no neural network design
tools on the market, except for debugging tools
for individual components. The manufacture
of a neural network on a crystal is spreading.
Architectural models reflect the functional-
ity of hardware and software components us-
ing high-level abstraction in the form of data
streams and abstractly represent implementa-
tion technology over time. Architectural mod-
els contain arbitration schemes, can be param-
eterized and typed. Thus, the configuration
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parameters of the architectural model make it
possible to determine the relationship between
the implementation of functions by hardware
and software. System-level design using archi-
tectural modeling simplifies the design speci-
fication, makes a smooth transition from func-
tional requirements to formal requirements,
since it separates the problems of developing
functional requirements and design specifica-
tions, since there are usually no means to quan-
tify specifications [34-38].

The problem of reliability of real

-time radar intelligent systems

The problem of reliability plays an im-
portant role in the design of systems in net-
works for collecting, processing and trans-
mitting information. By reliability we mean
the probability that the system will perform a
given function in a given period of time under
specified environmental conditions. The anal-
ysis of the systems has shown that reliability
at a basic level is a fundamental parameter.
Since the systems are distributed in space,
failure leads to the collapse of the entire sys-
tem. Solution paths are changing all the time,
especially now when neural networks are si-
multaneously used to ensure reliability and to
solve an applied problem. On the one hand,
they simplify the solution of the problem of
reliability, survivability of systems, and on
the other hand, they complicate the hardware
and software. The article discusses design
methods for fault-tolerant neuromultimicro-
processor real-time systems. These methods
include software and circuit methods for de-
tecting failures, which must ensure the regu-
lar operation of each processor module, data
exchange between subsystems and the reli-
ability of information before using it.

The problem of reliability is always
considered at the design stage. Traditionally,
failure prevention has been achieved in various
ways, for example: by creating ultra-reliable
multiprocessor components; improving main-
tenance through the development of effective
troubleshooting methods; improving the pro-
cedure for controlling the technological pro-
cess of manufacturing, testing and certification
of finished products; implementation of hard-
ware redundancy; the creation of technology
for designing systems that have the properties
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of resistance to failures in conditions when de-
fects inevitably exist and manifest themselves
in the form of failures and random failures.
By fault tolerance, we mean such a property
of the architecture of a digital system that al-
lows a logical machine to continue working
even when a variety of component failures
occur in a real system that is its carrier [39].
The main task of the fault tolerance solution
is to restore the computational process from
the point of failure. To do this, it is necessary
to detect and isolate the failure. To restore op-
erability, knowledge of the state vector at the
current time is required. Recovery techniques
depend on the ability to isolate a detected fail-
ure in the system at the lowest possible level of
system abstraction. The recovery mechanism
proposed in this article not only ensures modu-
larity and simplicity of the system, but also en-
ables quick recovery and accurate prediction of
the task completion time.

Initially, fault-tolerant technologies
were developed for on-board electronic equip-
ment, for which a number of parameters are
critical: weight, dimensions, power consump-
tion, system unification, time and money spent
on designing a new system, the complexity of
modernization procedures, and high reliability
requirements. A typical system based on a re-
al-time multiprocessor, insensitive to failures,
should at least recognize 98% of all possible
errors and identify at least 95%. To do this, we
use built-in control systems, tests of accept-
ability and meaningfulness, and the implemen-
tation of reliability procedures.

After an error is detected, the faulty
components are localized and excluded from
the computational process. The system is re-
configured, the task is redistributed between
free processors, which are initialized and in-
cluded in the computational process from the
point of failure. A restore point is defined by
an application program that stores information
up to the restore point. If an error is detected in
the subsystem, recovery is possible through re-
start, which is impractical, since the computa-
tional process starts from the initial value, and
if the computational processes are intercon-
nected, then it becomes difficult to isolate the
refusal from affecting other parallel processes.
Therefore, when developing programs, paral-
lel processes must be carefully structured so,

that restore points in interacting processes are
mutually consistent.

A replay of one process can propagate
to other processes and events, which is called
replay propagation. Sometimes there is an ava-
lanche of repetitions. In such cases, the process
goes back a few steps. In this case, redundancy
in the recovery process and loss of productivity
are inevitable. We have considered the issues
related to the resource management of a fault-
tolerant real-time neuromultimicroprocessor,
now we will try to cover in more details the
issue of the impact of resource management on
the fault-tolerant system.

In the design of radar systems, solu-
tions are still being sought to improve reliabil-
ity through redundancy but their architecture is
outdated. When building special-purpose sys-
tems, especially airborne, radar, telecommuni-
cations, there is no alternative to fault-tolerant
architectures. The challenge of building fault-
tolerant systems lies in the complete revision
of ingrained design principles and ideology.
The value of reliability is calculated and laid
down at the system level and depends not only
on hardware and software resources, but to a
greater extent on their interaction, resource
management. As a result, reliability acts as an
abstract resource of the system and varies de-
pending on the task being performed.

Fault tolerance is provided by hard-
ware, software or hardware-software redun-
dancy. Failure of an individual processor mod-
ule manifests itself in a limited loop. Fault tol-
erance during operation is determined by error
detection, reconfiguration of system compo-
nents and restoration of error-free operation of
the neuromultimicroprocessor.

The greatest recovery efficiency in case
of failures of a neuromultimicro-processor ele-
ment is achieved at the hardware level. To re-
store processor operation means to restore the
correct state of the processors. The software
implementation of the control process based on
breakpoints is ineffective and is determined by
the application problem and the requirements
for the reliability of the computing system.
When a malfunction is detected, diagnostic
tests isolate the malfunction and rule out the
defective processor element.

A neural network for solving loosely
coupled processes is based on the principles
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of functional separation and has a structure
consisting of multi-microprocessor sets, a
communication network and a system mod-
ule. Each processor element is able to inde-
pendently solve the assigned tasks using the
internal structure and exchanging messages
over the communication network. The sce-
nario for diagnostics, recovery and degrada-
tion is embedded in the system module. With
this architecture, the multiprocessor has its
own local and system resources available to
all processor elements.

The base module has a bus architecture
neuromultimicroprocessor and includes serial,
parallel and local bus exchange, private re-
sources and resources that are shared by pro-
cessor subsystems. Such architecture of the
basic module allows processor expansion with
homogeneous and heterogeneous modules,
having previously agreed on the bus exchange
protocol. It is important to allocate system re-
sources related to share multi-microprocessor
resources and individual local resources. This
allows you to organize the reliability, integra-
tion, performance, efficiency of the base mod-
ule at the level of system resources. Local re-
sources provide the functioning of individual
consumer tasks: exchange with cloud resourc-
es, provision of high-performance computing,
and receiving data from multidimensional in-
formation sensors. Local resources are isolated
from errors that appear in other parts of the
system, which increases the reliability of the
entire system.

We introduce a message space for the
synchronous exchange of information in blocks
at maximum speed without using the processor
resource. Basic modules are identified by the
central service module, initializing all modules
in the system by geographic principle. With the
geographic distribution of the base modules,
information is exchanged over a radio channel.
The coding of the exchange channel, protec-
tion, exchange rate depends on the application.
We use the local serial bus in the base module
to control and diagnose system resources.

The capabilities of the multi-micro-
processor are flexibly rebuilt. The function
of the interface module is responsible for the
transmission and reception of expected and
unexpected messages, access to the compo-
nents of the system module: I / O registers
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and system memory. Dividing messages into
expected and unexpected will optimize the
transmission of short and long messages. The
system module assigns arbitration, generates
a system reset, provides data protection in the
event of a power failure, and resumes starting
when it occurs.

The work of a neuromultimicro-proces-
sor begins with initialization, transferring sys-
tem components from an undefined state to a
known one. The initialization process includes
resetting, initializing individual modules, ini-
tializing the entire system, and booting. Initial-
ly, the processor boards have the same priority,
during initialization, you can assign the mod-
ules by priority and assign the master, that is,
assign the highest priority.

If the task is divided into N processes,
then, if available, we assign N processor ele-
ments. Saving the state of a task involves sav-
ing the state of these processor elements. The
device for storing the state of the task repre-
sents the stack memory, that is, the current
state is the last write to the memory and is
taken out first.

Suppose that the task is distributed
among N processors (i =1, 2 ... n). Saving the
state of the task means saving the state of the
processors. Repeating the process is equivalent
to restoring the states of the corresponding pro-
cessors. Due to the ambiguity of the interac-
tion of processes and the asynchronous nature
of saving states, restarting other processes or
multi-step recovery may be required. To solve
the problem of reconfiguration, network man-
agement and other system issues, a system
monitor and a switch controller are included
in the neuromultimicroprocessor. The control-
ler analyzes replays and multi-step recovery.
Performance Monitor receives a command to
execute processes and allocates processors and
system memory for it. Physically, the system
monitor is located in the system unit or a sepa-
rate processor is allocated and is endowed with
the functions of a monitor and a communica-
tion network controller.

When an error occurs, System Monitor
indicates that the operation has been restart-
ed, and if it repeats, all processor modules are
suspended. It detects the failed processors and
resumes solving the problem using the pro-
cessors in which there were no errors. In the
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Fig.1. The architecture of an intelligent m-ensemble fault-tolerant neuromultimicroprocessor with a
high-speed radio communication channel and a built-in recovery mechanism

presence of free processors, the task is redis-
tributed taking into account them; in the ab-
sence of an adequate replacement, processes
are distributed taking into account the avail-
able ones. When the number of processors
decreases below the critical value, the system
degrades, that is, processes are redistributed
among the available processors, in which case
the system performance decreases without de-
terioration in quality.

Let the failure of one processor mod-
ule entail restarting a part of the computational
process in all processor modules interacting
with the data. We will assume that the restart
process P, entails a restart process P,, that
is, there is a propagation of restarts. Let’s us
denote the n-interval P,asT.(n), and the ini-
tial time when P, it retained its value asz,(n) .
Then, if a computation error occurs at the be-
ginning of the time interval, and at the moment
t,(n) the state is saved, interaction between
processes is possible. In this case, the first pro-
cess is restarted, and the interacting processes
are suspended until the first is restored.

Consider a probabilistic model for esti-
mating the restart propagation of a part of the
computational process, with multi-step recov-
ery. If an error occurs in calculations at a point
in time 7, during the interval 7';(k), a check is
made for the possibility of recovery in one step.

This will enable us to evaluate the effectiveness
of this built-in failover mechanism. We assume
that the processor module has (N +1)ms cells
for storing valid flags, and the task is distrib-
uted among M processor modules.

Let’s calculate the range of multi-step
recovery. It can be argued on the basis of the
above stated that there was at least one call
from module i to module j during the state sav-
ing interval. Formally, you can write it like this:

f=f.-g+2,-8¢8,
where f jin is the average probability of
the propagation of restarts from the processor
module 7 to the processor module j due to n-
step recovery in the module? ;
1 e
gU=VII§(1—e )
represents the average probability of ac-
cess from module 7 to module j in one interval.
N ;: The total number of states of the
processor unit saved until the completion of
the task, provided that there were no failures.

N.=lr, AT,-T.)

where: T';(k): Duration of the k -ro
interval of the i processor module. Let us
assume that the signal of persistence and
self-preservation are equal in time. That is

T = T,;(k)=const.
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T of: The total running time of the task,
provided that there are no errors. The uptime is
not included, for example, test sequences, re-
covery unit generation, etc.

T ., : Recovery unit generation time.

Because the total number of calls be-
tween modules 1 is j equal to

N
aijl:Tef / ;aim eim:l and

N
kZ:luijk(Tss - Tsu)>

where: u;x The average intensity of the
processor module I to the module j during k
- ro the module interval 1 .

Suppose that the messages obey Pois-
son’s law of distribution of the probability of a
sequence of appeals. Given that the number of
states of the processor module is large, it Uk
can be considered constant during the k- ro
interval, we obtain the following relation:

The maximum value of the intensity
of memory 3 jk accesses must be less than or
equal to the inverse value ej - that is:

1
—2 (i) Zup 20
€ij

where [ : Matrix[e, )i, j=12,... M, and
e;,; represents the average execution time of
calls from module? to module ;.

Function [, — a monotonically in-
creasing function ffom a bounded concave
function of an argument g i has the maxi-
mum value when ;1 = U2 == U;n: and

the minimum value \_fNJ, when there are /A
. 1l
intervals. /

eijTefaij

" {(T -T Su)ga,-m e,-,,l

where Uik = l/e,-j, when (N, —h—1)
intervals and 244 =0 when one interval,

Tefa,'j h

Uijk = M B
( ss_Tsu) Aim€im v
m=1

The value f}; can be considered as the
probability of a direct connection between
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nodes i and j. To determine the probability of
restarting 7;: in the processor module j, we
use calculations from the theory of network re-
liability:
ri=U(Dy.¢)
q

where Dj; , represent the probability
of what is g - way out of the node I to node
j and U - probabilistic operation unification.
Let us introduce an additional proposition that
the occurrence of a fault in the static sense is
uniformly distributed over the entire set of
modules. Then the range of one-step recovery
is determined as follows:

M M M
=M S 1[5,
-1 j= =

Calculations show that it is enough to
have a small number of cells for registering
states to achieve a satisfactory recovery result
through restarting the task processes. Reducing
access to resources leads to an increase in the
memory value of the valid flags.

Architecture of a fault-tolerant
neuromultimicrocomputer with
a high-speed radio exchange
channel for processing

multidimensional radar signals

The optimal choice of architecture is
ensured by its maximum approximation to
the class of problems to be solved. Digital
radar signal processing refers to the process-
ing of signals that can be represented as a se-
quence of multidimensional arrays of num-
bers, such as sampling signals continuously
varying over time from multiple sensors.
Since field processing tasks are distinguished
by a large amount of information that needs
to be processed in real time, it is advisable
to develop neural network ensembles in the
form of a set of functional modules aimed at
solving them.

Ensembles perform computations on
data and interact with other ensembles to gen-
erate computations on distributed data. A mul-
timicroprocessor ensemble organization de-
fines an adaptive organization and distribution
of functions for control, computations, data
transfer and restructuring of a neural network
in the process of a reliable solution of a given
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task and ensuring the necessary fault tolerance.
Information exchange between ensembles is
provided by a wireless communication chan-
nel. We introduce the central processing unit
as a system unit for testing, diagnosing and
ensuring the initial startup of the neuromicro-
computer.

When building systems with an inter-
ensemble exchange radio channel, we will use
the system backbone for high-performance
systems with advanced functionality associ-
ated with the presence of additional address
spaces - message space and interconnection
space. Using the architecture of a neural net-
work with a radio channel and removing sys-
tem bus operations from the central processor
makes its processor independent.

The traditional way of communicat-
ing and transferring has been to use a shared
memory space when using two or a maximum
of three ensembles on the backbone, but it is
not efficient for a larger number. As the num-
ber of neural network components grows, the
time required to access the data increases un-
acceptably. More efficient is the exchange of
data through the message space (see Fig. 1).
Just as mail decouples sender and receiver,
so processors are decoupled from the task
of passing messages. To transfer a message,
the sending ensembles prepare the message
in a local buffer and indicate to the commu-
nication processor the transfer address. If the
recipient is ready to accept the message, he
gives his consent to the transfer of data. The
coprocessors then perform the actual trans-
fer and inform their processing units that the
transfer is complete. This is the ability to im-
plement a standard network protocol for data
transmission and work within one neurosys-
tem to various operating systems.

A neurocomputer can use a virtual inter-
rupt scheme: an interrupt is carried out not by
physical interrupt signals, but by transmitting
a special interrupt message. A virtual interrupt
is a message that contains the interrupt source
address, destination, and qualified information.

The interconnection space allows for
easy system configuration, simplifies unit test-
ing and system reconfiguration. When a faulty
module is found, the latter can be program-
matically removed from the structure of the
neuromultimicroprocessor and replaced with

another one in hot standby. Diagnostic soft-
ware is located in each module. Each module
can perform a built-in self-test. This operation
can be carried out over the network from a re-
mote terminal.

The transmission of information in the
message space is transmitted continuously
and the channel is not blocked. Thus, real-
time mode is provided, information “freez-
ing” during the exchange of ensembles mod-
ules is excluded. Messages are transmitted in
quanta - data packets by means of a commu-
nication processor through the message space
used to identify, configure and test the board.
Each of the neurocomputer processors runs
under its own operating system. To solve the
problem of testing, initialization and initial
loading of the system, neurocomputer archi-
tecture with a system bus has been developed,
the physical transmission medium of which is
a radio channel. The order of starting, testing
and loading the system has been determined.
Thus, openness, flexibility, and deep systemic
development allow using the radio channel
as a system bus for building highly reliable
fault-tolerant neural network systems of high
performance.

Neural network architecture is optimal
for solving loosely coupled problems with nat-
ural parallelization. The tightly coupled central
service module uses the radio channel at the
bus-resident level, significantly increasing the
bus bandwidth and ensemble performance as a
whole and implements the following functions:
system initialization at power-on, power sup-
ply control and switching to a backup source,
timeout control. It can isolate failed modules,
allowing other modules to continue to function
normally. The functions of the central service
module can be taken over by any other module
in the event of its failure, without impairing the
reliability of the neurocomputer.

The architecture of the real-time neuro-
computer ensemble belongs to the systems of
the MIMD type [40] with distributed memory
and consists of a plurality of processors that
autonomously execute various instructions on
different data, i.e. are asynchronous systems
with decentralized control.

The Central Processing Unit (CPU) ar-
chitecture provides parallelism at the level of
individual instructions, the level of loops and
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iterations, the level of subroutines, the level of
job steps, and the level of independent jobs and
programs. Independent processor nodes pro-
vide parallelism at the level of individual in-
structions, but the efficiently of parallelization
at the levels of loops and subroutines will al-
ready depend on the speed of the communica-
tion structure connecting the processor nodes.
As for the levels of steps of a task and inde-
pendent tasks and programs, they are usually
associated with the multitasking mode of the
system and when mapping tasks to individual
processors or processor ensembles should not
impose special requirements on the speed of
data exchange between processors.

In a splitjob system, supervisory
functions are performed by each processor
in accordance with its own needs and the re-
quirements of the programs executed by that
processor. Since the supervisor modules are
executed by multiple processors, we provide
for their re-entry or load copies of them into
each processor. The number of conflicts as-
sociated with locking system tables is small,
since each processor can have its own set. At
the same time, the number of common control
tables will not be large.

Systems with separate execution of
tasks in each processor impose certain limit-
ing requirements on the type of initial infor-
mation, because systems work efficiently only
when the tasks solved by individual processors
of the system are well balanced, that is, they
use the equipment approximately equally ef-
fectively. From the point of view of reliability,
all processors in the system are a bottleneck,
because failure of any processor means the loss
of its program and violation of all program ex-
changes in which this processor participates.
Restoring the system to work requires long-
term external intervention. Extending the sys-
tem without changing programs is impossible.

Systems with symmetric, or homoge-
neous, processing in all processors are most
fully implemented when using a set of func-
tionally homogeneous processor units. Each of
the processors can equally effectively perform
supervisory functions that “flow” from one
processor to another and perform those super-
visory functions that are inextricably linked to
the problem being solved, and those functions
that are necessary for a new task, in the case
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when the current one is interrupted or com-
pleted completely. However, any processor can
perform all or most of the system-wide func-
tions. Due to the fact that the processors are ho-
mogeneous and can be used in the same way,
any task during its execution can be processed
by different processor units of the system. We
use different sets of processors for its success-
ful implementation. System-wide control is
continuously redistributed between processors:
at a time, only one processor can be the control
one; a certain priority can be set for the proces-
sors, firstly, to resolve conflicts and, secondly,
to rank control functions.

The neurocomputer does not impose
strict requirements on the nature of the input
information. When processor modules fail,
performance gradually decreases (system deg-
radation). The expansion of the system is pos-
sible without any functional limitations.

The peculiarity of the architecture of
the neurocomputer lies in the combination of
ensembles by means of a high-speed system
highway with a physical transmission medi-
um over a radio channel. A fast and efficient
messaging service is implemented using a
specialized operating system with a distrib-
uted kernel. The program being executed is
represented as a set of simultaneously running
processes that exchange data and synchronize
their work by sending messages [41]. In other
words, the program is viewed as a network
of processes. The network consists of logi-
cal nodes, each of which contains a subset
of processes that, from the point of view of
the programmer, should run together in one
physical node. The radio channel is divided
between network subscribers in time, provid-
ing multiple accesses to the channel. There
are no conflicts through the use of a code
modulation radio channel. You can neglect
the transit time of the signal through the radio
channel. The concept of a network category
as a short-range or long-range network loses
its meaning. As the main characteristics when
assessing the quality, we use the average mes-
sage delay and the channel capacity (or the
channel utilization factor, which is defined as
the part of the channel capacity attributable
to conflict-free transmission). A common way
to match network traffic to incoming user re-
quests is through flow control procedures.
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Approbation of the technology for pro-
cessing radar information was carried out in
the SPE “Quantor” laboratory using an en-
semble in the form of a multi-microprocessor
for collecting radar information from multidi-
mensional sensors in the THz range (75-115
GHz). Spatial configuration is provided by
base stations in the 40 GHz range. The re-
search was carried out for the study of hidden
prohibited items, the study of the structure
of the coatings of special devices, receiving
through wall 3D-Image.

The possibility of 3D-radar calibration
is studied in the exploring of material proper-
ties to the example of Plexiglas, depending on
the distance between the sample and the an-
tenna using an absorber. The results of prelimi-
nary studies indicate the possibility of measur-
ing the thickness of the material.

In the implementation of 3D scanning
small objects is used FMCW radar at operating
frequency 100 GHz and bandwidth about 40
GHz of terahertz frequency range, Fig. 2.

We have developed algorithms and
have obtained the required accuracy - less than
3 mm. In reality, we can accurately assess the
environment model to take it into account in
processing. For it we previously will try to cal-
ibrate the radar.

On the calibration, a small metal plate
and several measurement cycles for averaging
the noise were used. It is shown that the ac-
curacy of measurements is influenced by the
width of the radiation pattern, the number of
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measurement cycles at one point, the accuracy
of positioning and moving the head during the
measurements, and the time interval between
the calibrations.

As a result of the measurement cycle,
a frequency dependence of the attenuation in
the microwave channel D (f) =Uret (f)/Uinc (f)
was obtained.

Unknown parameters of the dielectric
structure are determined by procedure of glob-
al minimization of discrepancy between the
measured attenuation in channel D(f) and one
calculated theoretically Du(f, p)

F(p)=;ID(J’)—Dm(f,p)I2

Here D, (f. p) is defined according to
the formula
V-V, °
+ I
(=3 A= k¥ )=k V|

and ko(f)..., k3(f) are complex co-
efficients, which are determined experimen-
tally using reference samples and describe
properties of the microwave channel; f'is the
frequency of sounding waves; V. (f) is the
complex reflection coefficient (CRC) of the
reference arm 3; V (f, p) is a theoretically cal-
culated CRC of the dielectric structure, which
depends on a vector of the structure param-
eters p (thickness of layers and electrical pa-
rameters of materials).

We consider that in free space extends
a plane electromagnetic wave and normally in-

Dy, = kg

absorber

Fig.2. System for testing 3D FMCW Terahertz Radar
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cident on the infinite (M-1)-layer medium with
flat boundaries. The CRC V (f, p) is related of
the CRC of the structure in free space V (f, p)
through the scattering matrix of the antenna S,
which is determined experimentally:

SV

The CRC of the structure in free space
depends on the thickness and electrophysical
parameters of structure layers:

VEV(fhl..hm ,€l.. e ,tgd ... tgdm),

where 2, ¢ , tgd is thickness, per-
mittivity and loss tangent of m-th layer. The
CRC of the plane wave from dielectric plane-
layered medium V(f.,p) is determined by the
known formulas:

V:S11+

W -1
B W, +Y,

We see an Average Basic Function (BF)
of 40 response signal from 6x6mm metal at
40 different distance — estimation of Non Re-
movable response from constructive elements
(horn and others), and Average BF of 40 re-
sponse signal from Absorber Only without
metal plane. [2] We can see a small difference
between Absorber Only Average BF and Cali-
bration (by metal) Average BF (Fig.3).

Step x 104 Average BF and BF Series
after 0 compensation. SPC “Quantor”, Ukraine

We have developed algorithms and
have obtained the required accuracy - less than

N

3 mm. But in reality, we cannot accurately as-
sess the environment model to take it into ac-
count in processing. For it we will test the radar
system, having previously calibrated it.

Conclusions

This article discusses the architecture
of intelligent fault-tolerant radar systems based
on a neurocomputer. Fault tolerance is provid-
ed by varying the ratio of performance and reli-
ability with a shortage of reliability resources
of a real-time neural network. We briefly got
acquainted with resource management, special
attention was paid to the impact of fault toler-
ance on the reliability resource and the ability
to manage it when solving an applied problem.
The discussion covered the issues of building
a hypothetical model of a real-time multipro-
cessor with a resource of performance and reli-
ability, as well as their relationship. The proto-
type of the original neurocomputer operating
system was the real-time operating system
“RMX-86". The architecture of this real-time
multiprocessor system is determined by the ap-
plied task of processing radar information. The
elements of fault tolerance and survivability
were introduced into the system, initial and di-
agnostic test support during the execution of an
applied task, control of the system backbone,
and majorization.

When forming an article on neural
network systems for processing radar infor-

2

CONONALN-D

os 1

-3
x 10

Fig.3 Comparing and Average BF and Series of BF
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mation, the number one task was to highlight
the principle of organizing the computation-
al process. Unfortunately, the volume of the
article did not allow highlighting the issues
about the basis of the organization of mac-
ro-pipeline calculations of a fault-tolerant
neurocomputer, the description of abstract
system resources and the management of the
reliability resource of a fault-tolerant real-
time neurocomputer, the organization of the
computational process for solving an applied
problem of multidimensional radar informa-
tion. Also, the issues of building a model-
ing complex for solving radar problems on
neural network structures with deep learning
are not covered. In the future, special atten-
tion will be paid to the tools for debugging a
neurocomputer, since the debugging tools of
a multiprocessor are difficult to design, and
debugging a neurocomputer requires the de-
sign of original tools that are not supplied in
a finished form by manufacturers of conven-
tional processor components.

Collection, processing, technical
implementation features, testing, diagnos-
tics, calibration of systems based on neural
networks will be covered later. They do not
affect the general understanding of the or-
ganization of computations using neural net-
works, although the difference is significant
in comparison with conventional calculators.
In our last works, the elements of construc-
tion of THz radars, LPI of marine radars,
construction of trained neural radar networks
are touched upon. [42] Modeling of process-
es in a neural network showed the nonlinear
nature of the system’s behavior from the in-
fluence of external and internal disturbances
of various powers, information in a neural
network is often heuristic. The reliability of
computations is ensured by the fault toler-
ance of neural networks and depends on the
reliability resource.

Biomimetic methods are gaining pop-
ularity in the construction of radar systems
and one of its important characteristics. That
is, the external environment affects the op-
eration of the radar system and, in turn, the
radar system generates a sounding signal,
takes into account the indicators of the en-
vironment. Most clearly it sees when using
radar in an loT environment. The second

important biomimetic indicator is “reticular
function”. And if early cognition was real-
ized through adaptability, albeit to an in-
complete extent, then the reticular function
was realized through the fault tolerance of
multiprocessors, but in practice it was not
implemented at all, due to the high cost of
design. For the first time, we applied reli-
ability improvement by fault-tolerant meth-
ods in control systems, collection, process-
ing and display of information on board
Ukrainian aircraft AN of the Antonov De-
sign Bureau, where the author was the Chief
Designer of the fault-tolerant multiproces-
sor system. When using neural network
technologies, this function is modified and
becomes more understandable, providing
“homeostasis” of the neural network system
for collecting and processing multidimen-
sional information. An example of the use
of cognition and a complete disregard for
reticularity was demonstrated by the latest
publications on research on radar technolo-
gies within the framework of NATO, where
issues related to the fight against failures,
solutions to the problem of fault tolerance,
survivability, and dependability of computa-
tions were practically ignored. Neural net-
work architecture assumes the solution of
both problems as interconnected.
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