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Introduction
Applied entomology is a branch of bi-

ology that studies insects that damage plants, 
forests, crop products, and studies methods 
of insect pests control. Applied entomology 
is given considerable attention in the con-
text of agronomy, which is quite rational, 
because the wrong defi nition of the type of 
insect pests on the fi eld area, the choice of 
the wrong method of insect pests control or 
application of crop protection untimely cause 
a signifi cant decline in yields and therefore 
loss of farmers. Classifi cation of insects on 
plantations, in order to use appropriate meth-
ods of protection, as well as the collection of 
statistical data on the quantitative character-
istics of crop damage by insect pests, is quite 
a diffi  cult task, especially in a situation when 
diff erent types of crops are grown on the 
single plantation. In addition, many species 
of insects migrate from one territory to an-
other, some of the species are quite similar to 
each other, insects can damage plantations at 
several diff erent stages of development. All 
of the above complicates the task of correct 
classifi cation of insect pests by humans. 

Artifi cial neural networks are an at-
tempt to transfer a set of biological mecha-
nisms occurring in the brain of animals to the 
category of computer systems [1]. Artifi cial 
neural networks can be used in facilities such 
as robotics [2], vehicle and unmanned aerial 
vehicle control, pattern recognition, analysis 
and decision making in IoT systems, space-

craft control, military equipment, and many 
other applications in modern technologies 
[3-5]. In these systems neural networks can 
be used for objects identifi cation, prediction 
of the state of objects, recognition, cluster-
ing, classifi cation, analysis of large amounts 
of data coming at high speed from a large 
number of devices and sensors, etc. [6-14]. 
Tasks that involve image classifi cation are 
mostly based on the use of convolutional 
neural network technology. A convolutional 
neural network (CNN) is a type of multi-
layer perceptrons designed to minimize the 
amount of pre-processing of input data [15]. 
This type of neural network architecture has 
become popular as a tool for solving image 
recognition problems, as it has several advan-
tages over other architectures, such as fewer 
learnable parameters; absence of image pix-
els memorization; the ability to perform part 
of the calculations in parallel; relative resis-
tance to rotation and shift of images [16].

The purpose of this work is to auto-
mate the process of recognizing insect pests 
through the development of a new model of 
CNN, as well as learning database creation 
and the development of software application 
based on this model. 

1. CNN model development
The CNN, in the general case, consists 

of 5 basic types of layers: input layers, con-
volutional layers,  pooling layers,  fully-con-
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nected layers and output layers. The general 
structure of the CNN is shown in Figure 1.

The input data is an image of  
pixels and with  channels of the color mod-
el. The input layer of the CNN is a matrix of 
size , each element of which is a 
numerical representation of the pixel regard-
ing a particular color channel.

Convolutional layers consist of a set of 
feature maps, each of which has a scanning 
kernel (fi lter). The kernel is a system of scales 
(synapses). The kernel slides across the map 
of features and detects certain features of ob-
jects. During sliding on the feature map, the 
kernel performs a convolution operation on 
the map elements, the result of which is en-
tered into the corresponding cell of the origi-
nal feature map of a particular convolution 
layer. The convolution formula is as follows:

where  – the matrix of elements of the 
input feature map;  – the core of the convo-
lution.

In this case, depending on the method of 
processing the edges of the output matrix, the 
output map of features may be less than, equal 

to, or greater than the input. According to the 
above, the convolutional layer, in a simplifi ed 
form, is described by the following formula:

where  – the output of the -th con-
volutional layer by the -th feature;  – the 
bias of the -th convolutional layer by the -th 
feature;  – the kernel of the -th convolu-
tional layer by the -th feature;  – activation 
function.

Unlike a standard neural network, each 
synapse in the convolutional layer of the CNN 
is not associated with all the synapses of the 
previous layer but is simply connected to 
nodes in a special region known as the local 
receptive fi eld.

The pooling layer is usually used af-
ter the convolution layer. This type of layer 
was designed to simplify information and re-
duce the scale of feature maps made by con-
volutional layers. In other words, pooling 
layers create a compressed feature map from 
each feature map in the convolutional lay-
ers. Pooling layers are needed to reduce the 
time of computations and resolve problems 
with overtraining of the CNN. The pooling 

Fig. 1. The general structure of the CNN



97

Моделі та методи машинного навчання

operation can be performed in diff erent ways, 
such as a geometric mean, harmonic mean, 
or maximum of passed arguments. Maximum 
pooling and average pooling are the two most 
common pooling operations. 

Formally, the pooling layer can be de-
scribed by the following formula:

where  – the output of the -th pool-
ing layer;  – the bias of the -th pooling 
layer;  – pooling operation;  – activa-
tion function.

Fully-connected layers are arranged 
after a sequence of convolutional layers and 
pooling layers. This part of the CNN contains 
a set of critical information obtained from all 
previous procedures performed inside of the 
CNN. The neurons of each map of the pooling 
layer (or convolutional layer, if it is the last be-
fore the fully-connected layers) are connected 
to one neuron of the fully connected layer.

The outputs of the last of the fully-
connected layers form the output layer, which 
is known as the classifi er. It determines the 
probability distribution of each label over  
classes. The size of the last layer is equal to 
the number of classes that are classifi ed by the 
neural network.

As part of this study, a number of deci-
sions were made regarding the choice of CNN 
architecture, the algorithms used for input 
data processing as well as CNN training and 
interpretation of source data.

The fi rst layer of the CNN is the input layer.
Input data must be normalized before 

processing by the CNN. For each specifi c pix-
el of the input image is its normalization in 
the range from 0 to 1 by the formula:

where  – value of pixel;  – mini-
mal value of pixel;  – maximal value of 
pixel. Images are passing to CNN in JPEG 
format with a RGB color model, which con-
tains 3 channels with pixel values for a specif-
ic channel in the range from 0 to 255. Chosen 
image size is . This image size is 
suffi  cient to classify insect pests.

The input layer is followed by fi ve con-
volutional layers, between which there are four 
pairs of normalization and pooling layers.

The size of the kernel in the convolu-
tional layers is usually taken in the range from 

 to . If the size of the kernel is too 
small, CNN will not be able to distinguish any 
features; if it is too large then the number of 
connections between neurons increases. Also, 
the size of the kernel should be chosen in a 
way to make the size of the output maps even, 
which allows to not lose information when re-
ducing the size of the data in the pooling layer 
described below.

The maximum pooling was chosen as 
the pooling operation, as it allows to better 
highlight sharp areas of the image, which is 
necessary to solve the problem posed.

In practice, the number of fully-con-
nected layers is chosen not too big, usually no 
more than three. In this paper, it was chosen 
equal to three, which was determined by em-
pirical method. Two dropout layers were also 
added between the fully-connected layers to 
avoid network overtraining.

The Adam algorithm [2] was chosen 
as an algorithm for gradient descent optimi-
zation, which was developed specifi cally for 
learning of deep neural networks. The Adam 
algorithm uses the power of adaptive learning 
methods that fi nd individual learning metrics 
for each neural network parameter. Formally, 
this algorithm is described as follows:

1. Calculate the fi rst and second-order 
moments of the gradient:

where  – the fi rst-order moment of 
the gradient with regard to model parameter 

;  – the second-order moment of the gra-
dient with regard to model parameter ;  
– gradient value with regard to model param-
eter .

2. Calculate bias-corrected moments 
of the gradient:

3. Update the values of model param-
eters:
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where  – learning rate;  – small con-
stant.

The authors of the Adam algorithm 
suggest the use of the following coeffi  cient 
values: .

The sparse categorical cross-entropy 
was chosen as a function of learning losses [17]. 
Cross-entropy losses determine the effi  ciency of 
the classifi cation model, the output of which is 
the probability value in the range from 0 to 1. 
These losses increase when the predicted prob-
ability deviates from the actual label. The for-
mula for cross-entropic losses is defi ned as:

where M – number of classes; y – bi-
nary indicator (0 or 1) that shows whether the 
label  is the correct classifi cation for obser-
vation ; po,c – the assumed probability that 
the observation  belongs to the class .

The only diff erence between sparse 
categorical cross-entropy and categorical 
cross-entropy is the label format.

Each layer of the neural network has 
inputs with a corresponding probability dis-
tribution, which in the learning process is in-
fl uenced by the randomness of the initializa-
tion of parameters and randomness in the input 
data. The infl uence of these sources of random-
ness on the probabilistic distribution of the val-
ues of the input data on the inner layers during 
training is described as the internal covariate 
shift. During the network learning phase, as the 
parameters of the previous levels change, the 
probability distribution of the input data to the 
current level changes accordingly, so that the 
current level requires constant readjustment to 
the new distributions. This problem is especial-
ly serious for deep networks, as small changes 
in the hidden layers closer to the input layer 
will be amplifi ed when they propagate within 
the network, which will lead to a signifi cant 
shift in the more distant hidden layers. There-
fore, a method of batch normalization [18] 
has been proposed to reduce these undesirable 
changes, speed up learning and make the CNN 
more reliable. Formally, the batch normaliza-
tion algorithm is defi ned as follows:

1. The mean  and the variance  of 
a batch of  elements are computed:

2. Normalization of layer inputs is per-
formed:

where  – value of the i-th element 
of normalization input layer;  – normalized 
value of the i-th element of normalization in-
put layer;

 – small constant.
To restore the representation power 

of the network transformation of normalized 
values performed:

where  – value of the i-th element of 
normalization layer output;  – parameters 
that are subsequently learned in the optimiza-
tion process.

In addition to reducing the internal co-
variate shift, group normalization provides 
many other benefi ts. With using batch nor-
malization technique, the network can use a 
higher learning rate without problem of gradi-
ents values vanishing or exploding.

2. Creating a learning dataset for CNN 
The fi rst step in creating a dataset for CNN 

learning was to determine the classes of insects 
that will be recognized and the minimum num-
ber of image examples in each class. As result, 20 
most typical classes of insect pests were selected. 
The requirement to have at least 40 diff erent im-
ages of insects of each class was set. In order to 
reduce the possibility of the CNN overtraining on 
the spatial location of insects in the images, for 
each original image in the database was added 3 
more copies with diff erent angles of rotation rela-
tive to the original (90°, 180°, 270°). After that 
images of each class were divided into training 
and test samples, in a ratio of 2:1.

Note that if the image size is too large, 
the computational complexity will increase, 
respectively, the restrictions on the speed of 
response will be violated. If too small images 
will be chosen, then the network will not be 
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able to detect the key features of the objects 
depicted on them. In our case, the optimal im-
age size was 100 × 100 pixels.

The dataset was partially populated with 
images from the IP102 dataset, which contains 
images of 102 classes of insects, with a total 
size of 75,000 images. However, most of the in-
sect classes in this set not belong to the catego-
ry of pests, so the rest of the classes were fi lled 
with images obtained through the use of Flickr 
API. Since the developed CNN is designed to 
recognize insects in images, the background 
information is irrelevant. Therefore, in order to 
improve the accuracy of classifi cation, before 
scaling and expanding the number of images, 
an operation was performed to remove excess 
parts of the image using saliency maps [19]. 
The purpose of the saliency map is to display 
the degree of “informativeness” of each pixel, 
which is respectively greater for the pixels be-
longing to the part of the image where the in-
sect is located, and less for the background pix-
els. An example of a saliency map is shown in 
Figure 2. During the learning dataset prepara-
tion, based on the saliency map obtained from 
the image, the excess parts of the images were 
cropped. The cropping process started from the 
image edges until the total “informativeness” 
of the pixels at the edge of an image passes the 
specifi ed threshold. Testing on the selected set 
of images shows that the use of saliency maps 
allows to increase the insect to background ra-
tio by an average of 30%.

In total, the created dataset contains 
3000 images, which are arranged hierarchi-
cally by directories, according to their class 
and purpose (for training or testing).

3. Software application development
 The developed application for insect 

pests recognition consists of three modules:
1. The graphical user interface module;
2. The module of customer accounting 

and service;
3. The module of image classifi cation 

and processing.
The purpose of the fi rst module is to 

provide a full graphical user interface con-
sisting of a home page, pages for registration 
and login, a page for manual classifi cation, a 
page for downloading new images of insects 
(for system administrators), and a page for 
viewing personal statistics. This module was 
implemented on the basis of Angular frame-
work, using TypeScript language.

The module of customer accounting and 
service  deals with such tasks as customer-relat-
ed information processing and customer autho-
rization and authentication. To implement this 
module, it was decided to choose Java program-
ming language and frameworks such as Spring 
Security, Spring Boot, Spring Data.

The module of image classifi cation and 
processing is the core of the developed applica-
tion. This module consists of two main layers: 
the layer of classifi cation and the layer of image 
processing and loading. The classifi cation layer 
uses a trained CNN model to classify insects 
in the images that come with the request (im-
ages are pre-processed using saliency maps and 
scaled). The layer of image processing provides 
functionality that allows making such image 
transformations as rotation, scaling, highlight-
ing the main part (using saliency maps), and so 
on. This module was implemented in Python 

Fig. 2. Image of an insect (on the left) and its saliency map (on the right)
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programming language. Tensorfl ow and Keras 
libraries were used to work with neural net-
works. OpenCV and Pillow libraries were cho-
sen for imageprocessing. Numpy library was 
used to work with multidimensional arrays.

CNN implementation code in Python:
def get_model(image_size, classes_

num):
model = keras.Sequential([
keras.Input(image_size),  # Input layer

keras.layers.experimental.preprocess-
ing.Rescaling(scale=1/255.0),  # Image scaling

keras.layers.Conv2D(fi lters=16, 
kernel_size=(7, 7), activation=’relu’, 
padding=’same’),  # Convolutional layer

keras.layers.BatchNormalization(),  # 
Normalization layer

keras.layers.MaxPooling2D(pool_
size=(2, 2), strides=2),  # Pooling layer

keras.layers.Conv2D(fi lters=32, 
kernel_size=(5, 5), activation=’relu’, 
padding=’same’),

keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D(pool_

size=(2, 2), strides=2),
keras.layers.Conv2D(fi lters=32, 

kernel_size=(3, 3), activation=’relu’, 
padding=’same’),

keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D(pool_

size=(2, 2), strides=2),
keras.layers.Conv2D(fi lters=64, 

kernel_size=(3, 3), activation=’relu’, 
padding=’same’),

keras.layers.Flatten(),  # Layer dimen-
sionality reduction

keras.layers.Dense(units=2048, 
activation=’relu’),  # Fully-connected layer

keras.layers.Dropout(rate=0.5),  # 
Dropout layer

keras.layers.Dense(units=2048, 
activation=’relu’),

keras.layers.Dropout(rate=0.5),
keras.layers.Dense(classes_num, 

activation=’softmax’)  # Output layer
    ]) 

return model

CNN training code in Python:
def train_model(
dataset_path=CURR_DATASET_

PATH,  # Path to the dataset root folder                                                                                                                           

write_path=CURR_MODEL_PATH,  # 
Path to the pretrained CNN model
    lr=0.0001,  # Learning rate
    epochs_num=15,  # Number of learning ep-
ochs
    image_size=(100, 100, 3),  # Image size    
classes_num=20  # Number of classifi ed classes
):     

training_data = keras.preprocessing.
image_dataset_from_directory(dataset_
path + ‘/train’, batch_size=32, image_
size=image_size[:2])
    test_data = keras.preprocessing.image_da-
taset_from_directory(dataset_path + ‘/test’, 
batch_size=32, image_size=image_size[:2])
    if (os.path.exists(write_path)): shutil.
rmtree(write_path)

model = get_model( image_
size=image_size, classes_num=classes_num)

model.compile( optimizer=keras.opti-
mizers.Adam(lr=lr),   

loss=keras.losses.SparseCategorical-
Crossentropy(),

metrics=[‘accuracy’])
    model.fi t(training_data, epochs=epochs_
num, verbose=2)
    model.evaluate(test_data, verbose=2)
    model.save(write_path)

Optimal values   of parameters such as 
kernel size and number of fi lters for convo-
lutional layers, number of neurons for fully-
connected layers, dropout value and learning 
rate are based on general recommendations 
for CNN construction and training described 
in section 2, as well as on values got using the 
Keras Tuner library, which provides ready-
made solutions for neural network parameter 
optimization problems.

In addition to the modules described 
above, the structure of the software solution 
also includes the PostgreSQL database, which 
is accessed by the module of accounting and 
customer service.

4. Software application testing
PC characteristics on which the appli-

cation was tested:
1. Processor clock speed – 2.6 GHz;
2. 6 physical cores, 12 logical proces-

sors;
3. 16 GB of RAM.
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4. GPU integration absent.
The following technical requirements 

were set for the development system:
Accuracy of image classifi cation –
not less than 95% on the training data-

set, and not less than 60% on the test dataset;
     2. The number of epochs of learning 

the neural network – 15;
3. The average image classifi cation 

time – less than 0.5 s;
4. The average download time of the im-

age from an external service – less than 0.5 s.
     The learning results of the devel-

oped CNN model are follows:
     1. Accuracy of image classifi cation 

on the training set – 96.6%;
     2. Accuracy of image classifi cation 

on the test set – 65.4%;
     3. The average training time for the 

era – 24 seconds.
     The results of time testing for dif-

ferent request:
     1. Classifi cation of the image by the 

trained CNN – 115 ms;
     2. Adding a new image to the train-

ing set (excluding the execution time of asyn-
chronous processes) – 39 ms;

     3. Downloading an image from an 
external service – 434 ms;

     4. Obtaining classifi cation statistics 
– 5 ms.

     Testing results of the application are 
satisfying the technical requirements.

Conclusion
The model of the CNN and the train-

ing dataset have been developed to solve the 
problem of classifi cation of typical insect 
pests. A software application for solving the 
problem of typical insect pests recognition by 
the transmitted image has been implemented, 
which allows to automate preventive protec-
tion against insect pests in case of integration 
with IoT-devices on fi elds. The implemented 
application satisfi es the technical require-
ments for speed and quality of classifi cation.

Further improvement of the quality of 
the CNN classifi cation can be done with the 
help of such methods: GPU calculation ac-
celeration; parallelization of data processing; 
construction of structurally more complex ar-
chitectures of the CNN, etc.
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