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DECOMPOSITIONAL EXTRACTION
AND RETRIEVAL
OF CONCEPTUAL KNOWLEDGE

Dmytro Terletskyi, Sergiy Yershov

An ability to extract hidden and implicit knowledge, their integration into a knowledge base, and then retrieval of required
knowledge items are important features of knowledge processing for many modern knowledge-based systems. However, the
complexity of these tasks depends on the size of knowledge sources, which were used for extraction, the size of a knowledge
base, which is used for the integration of extracted knowledge, as well as the size of a search space, which is used for the
retrieval of required knowledge items. Therefore, in this paper, we analyzed the internal semantic dependencies of homogeneous
classes of objects and how they affect the decomposition of such classes. Since all subclasses of a homogeneous class of objects
form a complete lattice, we applied the methods of formal concept analysis for the knowledge extraction and retrieval within
the corresponding concept lattice. We found that such an approach does not consider internal semantic dependencies within a
homogeneous class of objects, consequently, it can cause inference and retrieval of formal concepts, which are semantically
inconsistent within a modeled domain. We adapted the algorithm for the decomposition of homogeneous classes of objects,
within such knowledge representation model as object-oriented dynamic networks, to perform dynamic knowledge extraction
and retrieval, adding additional filtration parameters. As the result, the algorithm extracts knowledge via constructing only
semantically consistent subclasses of homogeneous classes of objects and then filters them according to the attribute and
dependency queries, retrieving knowledge. In addition, we introduced the decomposition consistency coefficient, which allows
estimation of how much the algorithm can reduce the search space for knowledge extraction and improves the performance. To
demonstrate some possible application scenarios for the improved algorithm, we provided an appropriate example of knowledge
extraction and retrieval via decomposition of a particular homogeneous class of objects.

Keywords: internal semantic dependencies, decomposition consistency, decomposition of classes, knowledge extraction, knowledge
retrieval.

MozxnuBoCTi BUI0OyBaTH IPUXOBaHi Ta HESIBHI 3HAHHS, IHTETPYBaTH iX y 6a3y 3HaHb, a MOTIM 3/11HCHIOBATH MOIIYK HEOOXiNHUX elle-
MEHTIB 3HaHb € Ba)XIHUBHMHU OCOOIUBOCTSAMH 0OPOOKH 3HAHB JUIs 0araThoX Cy4acHUX CHCTEM Ha OCHOBi 3HaHb. OJHAaK CKIaIHICTH
IUX 3aj1a4 3aJeKUTh BiJ] pO3Mipy JUKepel 3HaHb, sIKi BEHKOPUCTOBYBAJIHCS A BHIOOYyBaHHS, 00cAry 0a3u 3HaHb, IKa BHKOPUCTO-
BY€TBCS JUIsl IHTErpaii BUIOOyTHX 3HaHb, @ TAKOXX PO3MIpy NPOCTOPY MOLIYKY, SIKAIl BUKOPHCTOBYETHCS [UIS IOIIYKY HEOOXITHHX
eJIeMEHTIB 3HaHb. TOMy y JaHilf CTaTTi MM IpoaHai3yBadM BHYTPINIHI CEMaHTHYHI 3aJIe)KHOCT] OZHOPiTHUX KiaciB 00’ €KTiB i Te,
SIK BOHHM BIUIMBAIOTh Ha JAGKOMIO3MLII0 TakuX KiaciB. OCKiNbKH BCi MiAKIACH OTHOPITHOTO Kiacy 00’€KTiB yTBOPIOIOTH IIOBHY pe-
LIITKY, MH 3aCTOCYBaJId METOIU aHai3y GopMalbHUX KOHLENTIB AJIs BUJIYyYSHHs Ta NOUIYKY 3HAHb y BIAMOBIAHIA KOHLENTyalbHii
rpatii. Mu BHSBHIIH, IO TAKUH MigXiJ HE BPaxoBY€ BHYTPILIHI CEMAHTHYHI 3aJ€KHOCTI B OAHOPIAHOMY Kiaci 00’€KTiB, a OTXKe,
1[e MOXE CIIPUYUHHUTH BUBEACHHA 1 MOUIYK (QOPMANbHHUX MOHSATH, SKi € CEMAaHTHYHO HEKOPEKTHUMHM y MEXKax raiysi 3HaHb, II0
MOJIETIOETHCS. MU alanTyBajiu ajJrOPUTM JASKOMIO3UIIT OZHOPIAHUX Ki1aciB 00’ €KTIB s Takoi MOZeINi NpeJCTaBICHHS 3HaHb, K
00’€KTHO-Opi€HTOBAHI AMHAMIUHI MEpPEXKi, TONABLIM JOAATKOBI MapaMeTpH (inbTpanii 1yisi AMHAMIYHOTO BUJOOYBaHHS Ta MOIIYKY
3HaHb. Y pe3yabTaTi alropuT™M BUAOOYBa€ 3HAHHS IUITXOM MOOYIOBH JIHIIE CEMAaHTHYHO KOPEKTHHX IiJKJIACiB OXHOPIJHHUX KIIAaciB
00’€KTiB, a MOTIM (iIbTpye iX BiANOBIAHO [0 3aIMTIB IOAO aTPUOYTIB Ta 3aleKHOCTEH, BUKOHYIOUM NOUIyK 3HaHb. KpiM Toro, Mu
BBEIH KOe(imieHT y3roJKeHOCTi NeKOMIO3HNLI{, SKHU [O3BOJSLE OLIHUTH, HACKUIBKH aJITOPUTM MOXE 3MEHIIUTH IPOCTIp MOLIYKY
JUIs BUIOOYBaHHS 3HaHb 1 HOKPAIUTH NPOAYKTHBHICTE. [l meMOHCTpamil AeIKUX MOXKIHBHX CIEHAPiiB 3aCTOCYBaHHS BJJOCKOHA-
JICHOTO aJTOPUTMY MU HaBeJIH BiJIOBIIHHH IpUKIaJ BHIOOYBaHHS Ta IOIIYKY 3HaHb 3a JOIOMOTOIO JJEKOMIIO3UIii KOHKPETHOTO
OJIHOPIZHOTO KJIacy 00’ €KTiB.

Kitto4oBi ci10Ba: BHYTPINIHI CEMaHTUYHI 3aJI€KHOCTI, KOHCUCTEHTHICTh AEKOMIIO3UIIii, IEKOMITO3HIIis KJIACiB, BUAOOYBaHHS 3HAHb,
MOIIYK 3HAHb.

Introduction

The extraction and retrieval of knowledge are important features of many modern knowledge-based systems.
Such systems are capable to extract new knowledge by analyzing relevant knowledge sources, integrating it with
previously obtained knowledge, and allowing users to search for necessary knowledge items in the knowledge base.
Depending on the chosen knowledge representation model, the extraction of new implicit and hidden knowledge can
be implemented in different ways. For object-oriented knowledge representation models, knowledge extraction can be
performed via universal exploiters of classes, such as union, intersection, difference, and decomposition, which allow
the construction of new classes of objects based on the existed ones.

In this paper, we study the decomposition of homogeneous classes of objects, within such knowledge
representation model as object-oriented dynamic networks, to demonstrate that the algorithm for decomposition of
classes can be used as a tool for knowledge extraction and retrieval. For this purpose, we improved the algorithm
for decomposition of homogeneous classes of objects, which was proposed in [28], by adding more additional
parameters, that allow adaptation of the algorithm, developed for knowledge extraction, to dynamic knowledge
retrieval. We also discovered that classical methods of formal concept analysis do not cover internal semantic
dependencies among properties and methods of homogeneous classes of objects. In addition, we show how the
improved algorithm can reduce the search space during the retrieval of implicit or hidden knowledge, which cannot
be obtained using standard methods of formal concept analysis.
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Formal Concepts Analysis

Among the variety of formal systems for the analysis and processing of conceptual knowledge, formal
concept analysis is one of the most developed frameworks, which is based on the mathematical theory of lattices.
It provides tools for the construction, analysis, and processing of conceptual hierarchies, represented in terms of
two isomorphic complete lattices of objects and attributes. Since lattices consist of chains, which are posets, it
allows inference and retrieval of new concepts within the corresponding formal context. Let us consider the main
concept of the formal concept analysis described in [20, 21]. The first step is the definition of the formal context.

Definition 1. 4 formal context is a tuple (G, M, 1), where G is a set of objects of the context, while M is a set
of its attributes, and I is a relation between G and M, which express that an object g € G has an attribute m e M, i.e.
(g,m)el or gim.

Using this definition, any formal context can be represented by a corresponding cross table, where columns
mean attributes, while rows mean objects. It allows considering a set of common attributes for a set of objects, and
a set of objects that have attributes from a set of common attributes.

Definition 2. 4 set of common attributes for selected set of objects A < G is a setA' {m eM |glm Vg e A}

, L.e. all attributes from the set A" are common for all objects from the set A.

Definition 3. 4 sez‘ of objects with the common attributes B € M is a set set B = {g eG|glm Vme B} ie.
all objects from the set B® have all attributes from the set B.

Using these notions, we can define a formal concept based on a particular formal context.

Definition 4. 4 formal concept of the formal context (G, M, 1) zs a pair (4, B), where A < G is an extent of the
formal concept, while B — M is an its intent, and where A"=B, B" =4

Such definition of the formal concepts, i.e. using the notions of an extent and an intent, is similar to
combination of two ways of set definition, described in [22]. In the first case, a set can be defined by particular
elements (tabular form), while in the second one, it can be determined using the attributes, which must have all
elements of the set (set builder from). In addition, according to [16], the notion of a formal concept is also similar
to a combination of two theoretical forms of class consideration — an extensional and an intensional. From the first
perspective, a class can be defined by the list of its objects, while from the second one it can be defined by the set
of attributes. The definition of the formal concept proposed in [20] combines these two perspectives into a single
notion and provides an opportunity simultaneously to consider a particular formal concept using both of them.

Since a formal context can define a certain number of formal concepts, there is a sense to define a set of all
formal concepts.

Definition 5. A set of all formal concepts of the formal context (G,M 1) is a set PS(G,M,I).

Formal concept analysis has different applications within an area of knowledge processing. According
to [31], conceptual knowledge retrieval is one of the main categories among the variety of methods of formal
knowledge processing. On another side, these methods allow the implementation of corresponding functionality
within knowledge-based systems developed based on formal concept analysis. In general, the knowledge retrieval
task can be simply described as querying a knowledge base to find the required knowledge items. According to [7,
9-11, 15, 17, 18, 31], the formal concept analysis allows defining a formal context, where the intent of the context is
defined by pieces of knowledge, for example, keywords or part of sentences, while the extent is defined by the list
of documents, that contain or do not contain such knowledge items. The corresponding concept lattice, constructed
based on the formal context, describes the search space, consequently, the retrieval process can be interpreted as
the matching of the search query with the formal concepts, which are represented by lattice nodes, using different
search strategies based on the relations of generalization and specialization defined between formal concepts. The
performance of the retrieval process depends on the size of the search space and the corresponding search strategy.
Therefore, as was noted in [32], one of the main goals for many retrieval algorithms is to reduce the search space as
much as possible. Another issue related to query matching is the correspondence level of each formal concept to the
query, as it can be rather partial than complete. Thus, in the many search strategies queries are described in a form
of inclusion conditions, which allow the handling of partial query matching within the concept lattice.

Morphology of Classes

Nowadays, there are a few approaches, which propose the application of the formal concept analysis to
studying dependencies within the procedural program constructions. One of such was proposed in [30], the main
idea of which is to construct the concept lattice of decomposition slices of the program. It provides an opportunity
to analyze groups of the ordered program statements, called decomposition slices, related to a particular context,
for example to a variable. In other words, each particular variable, which is a part of the program, depends on
the corresponding ordered sequence of operators, which somehow use or change its state. However, the proposed
approach was designed for procedural programs, but not for object-oriented ones. Consequently, it is more suitable
for the structure analysis of procedural knowledge than for the analysis of declarative knowledge represented in
terms of classes. A similar approach, but for the analysis of class methods cohesion, was proposed in [29]. The
main idea is to consider dependencies between different program statements within a particular method of a class
and define the corresponding formal context using them, and then construct the concept lattice called a cohesion
lattice. However, the approach does not pay the attention to the external dependencies of class attributes used
in the method with other properties and methods of the class, which are important for the decomposition of
homogeneous classes of objects.
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Usually, a formal context is defined using a set of attributes and a set of objects, where attributes have
corresponding values encapsulated in a particular object. However, a formal context can also be determined using
a set of classes and a set of attributes. This idea was used in [13, 14] to analyze the structure of classes in the Java
programming language, in particular, to consider the interrelation between methods call of a class and then optimize
its structure. The embedded call graph provides additional information about the interaction between methods of the
class, which is absent in the corresponding concept lattice. However, such an approach covers only dependencies
between methods of the class and does not pay the attention to other kinds of dependencies, for example, between
properties, properties and methods of the class. Another application of the class formal context was proposed in [23],
which was used to analyze the class cohesion via the construction of the corresponding concept lattice called cohesion
lattice. They capture the cohesiveness of a class and its members, which provides an opportunity to reorganize the
class structure more efficiently, increasing cohesion. However, cohesion metrics are rather quantitative measures
of dependencies among class members, than qualitative. Many approaches to class cohesion measurements pay the
attention to dependencies’ existence but not to their semantics and consistency within a modeled domain, which is
crucial for the decomposition of homogeneous classes.

One of the known approaches, that considers dependencies between the attributes of an object, is
the detection of functional dependencies in relational databases. As it was noted in [4-6, 8, 32], a functional
dependency is defined as the implication over the relation pairs, determined on the set of attributes, which
are mapped into columns of particular tables. The main idea of functional dependencies is to conclude that if
two particular tuples of attributes in the relation contain a certain attribute X, which is called an antecedent,
then they also contain another attribute Y, which is called a consequent. Such facts can be considered new
knowledge, which is hidden or implicit. In addition, there is a generalized form of functional dependency
called a similarity dependency [4-6, 8], the main idea of which is the satisfaction of functional dependency
for any two tuples in the relation. However, such kinds of dependencies do not cover the internal semantic
connection within classes and objects because they consider only the availability of a particular attribute for
an object, rather how the different attributes of the object are related to each other, or more precisely, how
they depend on each other. They do not consider how the presence or absence of one particular attribute for an
object or a class affects their semantic consistency.

An alternative approach to the analysis of dependencies between attributes of objects was proposed in [25],
according to which an attribute m, depends on another attribute m, , i.e. m, > m,, whenever the presence of m, is
not significant without the presence of m,, where m, and m, also may be atomic, as well as conjunctive or disjunctive
attributes. However, such an explanation of the dependency between attributes is quite fuzzy because it is unclear how
to verify that presence of one attribute is not significant without the presence of another one, as well as what the term
significance should be meant here.

To consider what internal semantic dependencies of a class are, their kinds, and how they affect the
decomposition of the homogeneous classes of objects, let us consider the definitions of a homogeneous class of objects
and its subclass within such knowledge representation model as object-oriented dynamic networks (OODNs), which
was proposed in [26, 27].

Definition 6. The homogeneous class of objects Tis a tuple T = (P(T),F(T)), where P(T) = (P1 (T),,,,,pn (T)) isa
collection of properties which define the structure of the class T, while F( T) = ( f ( T),..., 1, (T)) is a collection of its methods,
that define its behavior.

Definition 7. A homogeneous class of objects T, is a subclass of homogeneous class of objects T, i.e. T, T, if
and only if P(T)c P(T) and F(T;)c F(T), where P(T), P(T) and F(T,), F(T) are specifications and signatures
of the class T, and T, respectively.

Let us consider an example of a homogeneous class of objects and analyze its specification and signature to
understand how the properties and methods can depend on each other, creating internal semantic dependencies. For
this purpose, let us define a homogeneous class of objects P¢, which describes a concept of a point on a plane, and has
the following structure:

Pt(pl :(x,(vx,ﬂ%)), D, :(y,(vy,R)), 5 :get_x(pt,R), 1 :get_y(pt,R),
5 =set_x(pt,(x,R)), fa =set_y(pt,(y,R))),

where Pt.p, and Pt.p, are quantitative properties, which mean coordinates (x, y) of a point pt ; Pt.f, and Pt.f, are
methods, which return x and y coordinates of a point pt, respectively; Pt.f, and Pt.f, are methods, which provide an
opportunity to set a value of x and y coordinates of a point pt, respectively.

Now let us define another homogeneous class of objects 77, which describes a concept of a triangle on a plane,
and has the following structure:

Tr(pl = (vertex, ,(vl,Pt)), P, = (vertexz,(vz,Pt)), P, = (vertex3,(v3,Pt)), p,=is_a Jriangle(vﬂ (rr),ve {0,1}),
fi= getivertex(tr,(n,Z+),Pt), f,= setfvertex(tr,(n,Z+),(ax,]R),(ay,]R)),
|, = get _side _length (tr,(vertexa,Pt),(vertexb,Pt),R+), f. = get _ perimeter (tr,R+ )),

where Tr.p,, Tr.p,, and Tr.p, are quantitative properties, which mean vertices of a triangle, defined as objects of
the class Pt ; Tr.p, is a qualitative property, which means satisfiability of the triangle inequality and is defined by the
following verification function:
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Vi, (tr) : (tr.vertexl,tr.vertexz,tr.vertex3) - {0,1} , V= ((s1 +5, >, ) A (s1 +5, >, ) A (s2 +5, > )),
where s, , s,,and s, are defined as follows:
s, = get _side _length (tr.get _ vertex (1) ,tr.get _vertex (2)) ,
s, = get _side _length (tr.get _ vertex(l) ,tr.get vertex(3)) ,
s, = get _side _length (tr.get _ vertex (2) ,tr.get vertex(3)) ,

Tr.f, is a method, which returns the coordinates (x, y) for a vertex n of a triangle #r in a form of objects of the class
Pt and is defined as follows f, (tr,n) = (tr.vertex,); Tr.f, is a method, that set coordinates (a,,a, ) for a vertex n of a
triangle 7 and is defined as follows f, (#,n,a ,a, ) =|tr.vertex, .setix(ax),tr.vertexn set_y ay) ;'is a method, which
returns a distance between vertex, and vertex, of a triangle #r, and defined as follows:

iA (tr, vertex, ,vertex, ) = \/( vertex,.get _ x() — vertex,.get _ x() )2 + (vertexa .get _ y() —vertex,.get _ y())2 ;
Tr.f, is a method, which returns the perimeter of a triangle 7 and is defined as follows f, (tr) =s, +5, +s5;, where s,
where s , 5,, and s, are defined in the same way as in for the vf, (tr).

Let us consider the class 7r as a collection of properties and methods, i.e.

Tr :P(Tr)uF(Tr):{Tr.pl, Tr.p,, Tr.p,, Tr.p,, Tr.f,, Tr.f,, Tr.f, Tr.f4}.

We denote an i-th property of the class 7r by Tr.p,, and a j-th method —by 7r.f, for a more compact
representation of all statements noted below.

As it was noted in [32], for the class Tr we can construct 2" = 2° =256 subclasses, which create the power
set lattice L = PS(T r),g, U, M), which is a complete lattice and where PS(Tr) is a set of all possible unique subsets
of the set P(Tr) U F(Tr). From the decomposition perspective, we need to consider only 2" —1 subclass, which are
nonempty ones and create the join-semilattice JSL =gPS (Tr)\{Q},g,u), which describes the search space for the
knowledge retrieval. This semilattice is not a concept lattice, however as it was demonstrated in [28], it can crucially
reduce the space search for the solving decomposition constraint satisfaction problem.

To compare the opportunities provided by the join-semilattice of nonempty subclasses of the homogeneous
class of objects 7r and the concept lattice of all its subclasses, let us define the formal context of all possible subclasses
of the class 7r and then construct the corresponding concept lattice. For this purpose, let us consider the formal context
W, = (G =PS Tr), M = P(Tr)uF(Tr), I :Gx M) and define the corresponding cross table for it. We do not provide
a full cross table here because of its size, however, Table 1 illustrates the basic intuition for the definition of formal
context . We use the symbol plus + to specify the pair of the relation (g,m)e . An object g is defined as follows
geSC(Tr)cTr, i=0,M]|, j=1,C,, , where SC;(Tr)is aj-th subclass of the class 7r, which has a cardinality of

iand qi is a binomial coefficient, wh{ch is equal to a number of all possible unique subsets of the set M, which have

a cardinrél‘lity i; and where an attribute (property or method) m is defined as me M .

Now, let us construct the concept lattice for the formal context W, using the Table 1. Analyzing the
results, depicted in Figure 1, we can see, that the constructed concept lattice has a big size and contains all
formally possible subclasses of the class 7r and all possible formal concepts of the context . Considering the
constructed concept lattice, we can ask a question about the semantic consistency of all constructed subclasses of
the class Tr, as it was done in [28]. To clarify the problem and then answer this question, let us consider in more

detail the internal structure of the class 7 and how it is related to the semantic consistency of its subclasses.

Table 1. Formal context, which defines all possible subclasses of the class 7r.

Properties and methods
w
Trp, Trp, Tr.p, Trp, Trf, Trf, Trf, Trf,

SC° (Tr)
g SC,' (Tr) +
wn
5 SC,' (1r) +
=
=]
7]

SC* (Tr) + + + + + + + +

According to the definition of the homogeneous class of objects, the class 7r consists of a collection of
properties P(Tr) = {Tr.pl, Ir.p,, Tr.p;, Tr.p4}, and a collection of methods F(Tr) = {Tr.fl, Ir.f,, Ir.f;, Tr.f4}
called a specification and a signature respectively. Analyzing definitions of properties and methods of the class 77,
we can find some internal dependencies among them. It is a common practice for many object-oriented programming
languages as well as knowledge representation models to define some properties and methods of a class using for
this purpose other properties and (or) methods of the class. Such practice allows us to avoid code duplication and
provides instead of it code reusability. However, it creates internal dependencies, which help to describe the modeled
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instance more precisely to the corresponding entity from a particular domain. In addition, such dependencies are
important for the decomposition of classes because they define appropriate constraints for the properties and methods
of a class. Furthermore, since not all formally possible subclasses of a class are semantically consistent, i.e., only
some of them do not conflict with constraints imposed by the dependencies, the decomposition of a class as the
construction of all its subclasses is based on such dependencies.

A
noa

&

A
/,)l

N

S ——
\x<z"
,-‘\‘:'/

Figure 1. Concept lattice of the formal context ..

Let us consider examples of semantically consistent and inconsistent subclasses of the class 7r, to
understand the problem more specifically. One of the semantically consistent subclasses of the class 7r is the
subclass SC136 = {T r.p, Ir.f,, Tr. fz}, because the property Tr.p, is defined independently from other properties
and methods, and it is required for the execution of methods 7r.f, and T7r.f,, which are determined based on this
property. In other words, subclass SC;, defines a point on a plane with the ability to get and set its coordinates.
One of the semantically inconsistent subclass of the class Tr is a subclass the SC;, ={Tr.p,, Tr.f;, Tr.f,} because
as in the previous case, the property 7r.p, is defined independently from other properties and methods, and it is
required for the invocation of the method 7r.f;, however, the correct invocation of the method 77. f; demands one
more property similar to 7r.p,. In other words, subclass SC?, defines a point on a plane with the ability to get its
coordinates, but the invocation of the method 7r.f;, which computes the distance between two points on a plane,
will cause an error because the class SC;, determines only one point on a plane. Therefore, the subclass SC;, is
inconsistent one. Using this fact, we can conclude that the constructed concept lattice of the formal context W,
contains semantically consistent concepts, as well as inconsistent ones. This fact is important for knowledge
retrieval since it is avoiding the consideration of semantically inconsistent subclasses and reduce the search space.

To formalize the internal dependencies of a class, concepts of structural and functional atoms, as well
as structural and functional molecules of the homogeneous class of objects, were introduced in [28]. Since
properties and methods of a class can be defined independently of other properties and (or) methods of the class,
as well as using them, they are similar to chemical atoms and molecules. Indeed, independent properties and
methods are similar to atoms, which are the smallest indivisible particles, while dependent ones are similar to
molecules, which are groups of atoms or smaller molecules somehow connected with each other. As the properties
of a class define its structure, while the methods define its behavior, the corresponding atoms and molecules of
the class can be classified as structural and functional ones. Let us consider the definitions of both kinds of atoms
and molecules of a class, as well as some of their examples, using the class 7r.

Definition 8. Structural atom of a homogeneous class of objects T is a singleton collection SA,(T)={T.p,},
where T.p, e P(T) is a property defined without using any other properties and (or) methods of the class T, where P(T)
is its specification.
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To analyze the specification of the class 7r, we can find, that quantitative properties Tr.p,, Tr.p,, and Tr.p,
which mean the vertices of a triangle, are defined without usage of any other property or method of the class 7r.
Therefore, these properties define structural atoms S4, (7r), S4,(7r), and S4;(7r) of the class Tr, respectively, i.e.

SA (Tr) ={Tr.p,}, S4, (Tr) = {Tr.p,}, SA,(Tr) ={Tr.p;}.

Definition 9. Functional atom of a homogeneous class of objects T is singleton collection FAI. (T) = {Tfl ,
where T.f, e F(T) is a method defined without using any other properties and (or) methods of the class T, where F(
is its signature.

The signature of class 7r does not contain any methods defined independently from other properties and methods.

Definition 10. A finctional molecule of a homogeneous class of objects T is a collection FM, (T ) =\Tf.Tx;,.Tx; )
where T.f, € F( ) 1<i< |F(T)| is a method defined based on the other methods and (or) properties
T'x,,..Tx, € P(T)uF(T) which form structural and (or) functional atoms, and are parts of smaller molecules of
the class T where 1< Ji <<, |P JUF(T )| and P(T) is a specification of the class of objects T, while T(F) is
its signature.

To analyze the structure and behavior of the class 77, we can observe that methods 7r.f; and Tr.f,, which get
and set the coordinates of vertices of a triangle, operate by a particular vertex of the figure. Thus, they define functional
molecules FM, (Tr), and FM, (Tr) of the class Tr, i.e.

FM, (Tr) = (Tr.f;,{Tr.p, } ATr.p, } {Tr.ps } ), FM, (Tr) = (Tr.fo.{Tr.p, } {Tr.p, }{Tr.ps} ).

In addition, method Tr.f;, which computes the length of a particular side of a triangle, uses a corresponding
pair of its vertices. Therefore, it determines a functional molecule FM, (7r) of the class Tr, i.e.

FM, (Tr) =(Tr.f3,{Tr.p,,Tr.pz},{Tr.p],Tr.p3},{Tr.p2,Tr.p3}).

And finally, method T7.f,, which calculates the perimeter of a triangle, uses methods Tr.f, and Tr.f, to
compute the length of each figure’s side. As the result, it defines a complex structural molecule FM, (Tr) of the class
Tr, which includes the elements of smaller molecules FM, ( Tr) and FM, (Tr), ie

FM, (Tr) =(Tr.f4,{Tr.f3, Ir.f,, Tr.p,, Tr.p,, Tr.p3}).
Definition 11. A structural molecule of a homogeneous class of objects T is a collection
SM, (T)Z(Tp Tx,,...Tx, ) where T.p, eP(T), 1§i§|P(T)| is a property defined based on the other
properties and (or) methods Tx,,..Tx, € P(T) uF(T) which form structural and (or) functional atoms, and are

parts of smaller molecules ofthe class T, where 1<, 2.5, < |P uF(T)|, and P(T) is a specification of the
class of objects T, while F(T) is its signature.

The class Tr has qualitative property Tr.p,, which means the satisfiability of the triangle inequality, and
uses methods 77.f, and 7r.f, to compute the length of each figure’s side. Hence, it determines a complex structural
molecule SM, of the class 7r, which includes the elements of smaller molecules FM| (Tr) and FM, (Tr), i.e

SM,(Tr) z(Tr.p4,{Tr.f3, Ir.f,, Tr.p,, Tr.p,, Tr.p3}).

Since all molecules contain a property or method which is dependent on all other properties and (or) methods
of the molecule, we can define a concept of dependency root, which describes such elements.

Definition 12. The dependency root of the molecule M, (T) T.a, ,Tx »Tx, of a homogeneous class
of objects T is a property or method T .a, which is defined based on other propemes and (ar) methods of the class T,
which are atoms or parts of smaller molecules.

All detected internal dependencies within the class 77 describe some semantic connections among the different
properties and methods of the class, which express the internal nature of the modeled entity from a particular domain
if such a model is correct.

Definition 13. Internal semantic dependencies of a homogeneous class of objects T, which defines type of
objects t, is a set of structural and functional atoms and molecules of the class T, i.e.

ISD(T)={SA4,(T).....54,(T).FA(T),...FA,(T),SM,(T)....SM, (T ),FM,(T),...FM, (T)},

where SAj] (T) I = I,_n and FAj1 (T) 5= I,_m are structural and functional atoms of the class T, while SMI.2 (T)

i, = L_\; and Fsz (T) , Jy = G are its structural and functional molecules respectively.

All considered atoms and molecules of the class 7r define its internal semantic dependencies, which can be
represented in the following way:

ISD(Tr)={SA4, (Tr), S4,(Tr), S4,(Tr), SM,(Tr), FM,(Tr), FM, (Tr), FM,(Tr), FM,(Tr)}.

Let us construct the concept lattice of all internal semantic dependencies of the class 7r. For this purpose,
let us define the formal context W, =(G = ]SD(Tr), M= P(TF)UF(TF), 1 :GxM) using the corresponding
cross table. Since, each of the functional molecules FM, (Tr), M, (Tr), and FM, (Tr) has three different
contexts within the class 7r, we let us split them onto separate conditions. We colored cells of Table 2, which
means dependency roots of molecules of the class 7r, using the gray color. Now let us construct the concept lattice
for the formal context W, using Table 2.
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Table 2. Formal context, which defines internal semantic dependencies of the class 7.

Properties and methods
", Trp, Trp, Trp, Trp, Trf, Trf, Trf, Trf,
SA, (Tr) +
SA4, (Tr) +
SA, (Tr) +
SM, (Tr) + + + + + + +
& | FM, (Tr) + +
g | v, () T N
E | Fum, (1) N N
E FM,, (Tr) + +
E | Fm, (1) n
< FM,, (Tr) + +
FM,, (Tr) + + +
FM,, (Tr)
FM,, (Tr) + + +
FM, (Tr) + + + + + +

Analyzing the results, depicted in Figure 2, we can see that constructed concept lattice contains 22 nodes,
which means formal concepts, however not all of them are semantically consistent ones. We used the green border to
highlight the consistent concepts, which do not contradict any internal semantic dependency of the class 7r. Indeed, if
we consider, for example, the concept 14, which defined as follows

(1={Trf,, Tr.p,}, E={FM,(Tr), FM,, (Tr), FM,, (Tr), FM, (Tr)}),

we can see that the intent [ = {T r.fy, T r.pl} of the concept is semantically inconsistent because it contradicts the
internal semantic dependencies defined by functional molecules FM,, (Tr), FM,, (Tr), and FM, (Tr).

In other words, the concept 14 defines a point on a plane, however, it has a method 77. £, which computes the
distance between two points on a plane, but the concept defines only one point, that means if we invoke this method,
it will raise an error.

[T}
W E={FMLLTE), FML2(T), FML3(T), FMLTr), FM22(T), FMZ3(Tr), FM3L(T, FM32(T), 3T, FIMTY), SAL(T), SA2(T), SAS(Tr), SWACT) |

Wity T 7 veisa = wiemg) i ity ‘
WES{FM23(TT), FM3L{TY), SAL(TY), SA2(T), SA3(Tr} W E={FML3(Tr), FM2L(Tr), FM23(Tr), FM3L{Tr), SAL(Tr), SW4{Tr}} RE={FMLL(TY), FWL3(Tr), FW22(Tr), FM23(Tr), FMBI(Tr), SA2(T1)} RE={FMLL(TY), FL2(Tr), SWA(Tr)} WES{FML2(TY), FM21{T), FU22(Tt), PUZ3(Tr), FM3L{Tr), SA3(Tr} WE={FML3(T), FM2L(T), FM22(T1), PUZ3(Tr) AM3L(Tr}

0 3 7 0 4
Wi=[TiL, Trpl} Wi={TiL, Trp2} WI={TL, Trpl} Wi, Trp2} WI={TutL, Tepd)

W ES{FM23(Tr), FMBL(Tr), SAL{TT} W E={FME3(TE), FMBL(T), SA2(Tr} WE=(SMA(T} VEAFMUT} e, ML), SA3(T)

WI=[TLE, Tral}
WESEINS, LT, AU, LT}

WIL{Tit Tigt)
WES{FMLI(TT), FM22(T), FM23(TT). PU3L(T}

V VIEfTLL, Trpg) NILfTLB Tipd)
VES[FMLI(TT} MES{FMEL(TY). FM22(Tr), FM23(Tr). FM31(T0}

18
¥I=[TeB, Tep2, Trpd)
VEFIR2T), U, AU

W18, Trpl, Trp2)
ESFUIST, FVRS(T) AN

WI=[Ts, Trpl, Teps)
WESFARAT) PR3, UL}

wisfToht, Tef3, Topt, Top2, Tepd}
WES{FM23(T), FMSL(Tr}

2
Wi={Tcfy, Tefs, Told, Trpl, Trg2, Tros)
ME=[FM2I(TO}

7
IS{TLt, TS, Tepd, Top, Tepd, Tt}
WES[FMEL(TT]

WI={TfL, Tefz, TU Tofa, TepL, Tep2, Tegd, o)
NE)

Figure 2. Fully annotated concept lattice of the formal context W,

Summarizing all noted above, we can conclude that classical methods of formal concept analysis have
some gaps related to the semantic consistency of formal concepts, which are constructed within a formal context
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of decomposition of homogeneous classes of objects. Since, the definition of a formal context does not consider the
internal semantic dependencies of a class, defined by its atoms and molecules, the knowledge retrieval or reasoning
within a corresponding concept lattice, constructed using such formal context, becomes inconsistent too because its
result can contain inconsistent concepts.

Decomposition of Classes

Since a homogeneous class of objects consist of structural and functional molecules, which define the
restrictions over the class specification and signature, the decomposition of the class can be considered as the
constraint satisfaction problem (CSP) [28]. According to [3, 12, 19], the CSP can be defined as a tuple (X, D, C), where
X= xl,.__,xn}, n >0 is a finite sequence of variables, D:{dl,...,dn} is a set of domains, and C = {cl,,,_,cm} , m>0
is a finite set of constraints. Variables from the set X are defined on domains from the set D, i.e. x, > d,,...,x, >d,

, and each domain defines a range of values for the respective variable, i.e. d, = {vl, vk}, i=lLn, k>0. Every
constramt from the set C is defined as a pair ¢, = S R , j=1,m, where S X, _>d X, _>dJ 2 is a scope of
the constraintand R, e d, x...xd, is arelation defined over the S 0< Ji <. < j <n, and 0 <y < n 18 the arity of the
constraint ¢,. The tuple gyl X, —)d WY, 1X, —>d, )satlsﬁes the constraint c;=(S,,R;) on the variables x,,...,x,, if
and only if (y, ,...,y; ) Ifthe tuple Yy —)dl, WY X, —d, ) satisfies ch eC tflen it is a solution ofthe CSP.

However, a partlcular subclass T cT ofa homogeneous class of objects T can satisfy or not satisfy
a constraint defined by a molecule M, T) Therefore, in contrast to the classical definition of the CSP, the
constraint defined by the molecule M, T) 1s applicable only to some subclasses of the class 7. For example, the
constraint defined by functional molecule FM, (Tr) is not applicable to any subclass of the class 7r, which have
a cardinality lower than the molecule itself. In such cases, we can conclude that the subclass does not contradict
the constraint defined by the molecule, since the constraint is not applicable to it. To summarize these facts, let
us introduce the following definition.

Definition 14. 4 subclass T, of a homogeneous class of objects T does not contradict molecular internal
semantic dependency M . (T) = (T a. Txk ,Tx, ) if and only if one of the following condmons is true:

1. it contains al/elements Ofthe rlnolecule ie. Vxe M/ (T) xe P(T)UF 1)),

2. it does not contain any element of the molecule, i.e. Vxe M (T), x ¢ P T uF(T)

3. it does not contain the dependency root of the molecule, éut it contains some of its other elements, i.e.
T.a; ¢ P(T,)VF(T}), and Ixe{Tx WTx, ?,xeP(Y})uF(Y})
where T.a; P(T)UF( ), 1<) < P(T)UF(T)| is a property or method defined based on the other properties and
(or) methods T ... TX, € P(T)UF(T) of the class T, where 1<k, <..<k, |P uF(T)|, and P(T), P(T,) and
F(T), F(T) are Speczﬁcatlons and signatures of the class T and T, respectzvely

Using this notion, we can define the decomposition of the homogeneous classes of objects.

Definition 15. Decomposition of a homogeneous class of objects T, which defines a type of objects t, is a
set of semantically consistent subclasses D(T) = {T1 cT,...T, c T}, where subclasses T,...,T, do not contradict any
molecular internal semantic dependency of the class T.

Now, let us compute the full decomposition of the homogeneous class of objects 77, using the corresponding
algorithm, which was proposed in [28], and the set of internal semantic dependencies ISD(Tr), which defines a
collection of decomposition constraints. As the result of decomposition we obtained the collection of 49 semantically
consistent subclasses of the class 7r, where three subclasses of the cardinality of 1, i.e.

SC (Tr)=(Tr.p,), SC,(Tr) =(Tr.p;), SC; (Tr) =(Tr.p;),
nine subclasses of the cardinality of 2, i.e.
sc? (Tr) :(Tr.pl,Tr.pz), SC; (Tr) :(Tr.p],Tr.p3), SC; (Tr) :(Tr.pz,Tr.p3), SC; (Tr) :(Tr.pl,Tr.f,),
SC52 (Tr):(Tr.pz,Tr.f]), SC62 (Tr):(Tr.ppTr.fl), SC72 (Tr):(Tr.p],Tr.fz), SCg2 (Tr):(Tr.pz,Tr.fz),
SC; (Tr):(Tr.p3,Tr.f2),

thirteen subclasses of the cardinality of 3, i.e.
SC; (Tr) (Tr.pl,Tr.pz,Tr.p3), SC; (Tr) =(Tr.p1,Tr.p2,Tr.fl), SC; (Tr) =(Tr.p1,Tr.p3,Tr.fl),
SCS( ) (Tr.pZ,Tr.p3,Tr.fl), sc? (Tr):(Tr.pl,Tr.pz,Tr.fz), SC; (Tr):(Tr.pl,Tr.p3,Tr.f2),
SC3(Tr) (Trpz,Trp3,Trf2), SC; (Tr) (Trpl,Trfl,Trfz) SC, (Tr):(Tr.pz,Tr.fl,Tr.fz),
SC:O(TF):(TrppTrfI,Ter) SCfl(Tr):(Trpl,Trpz,Tr]g) SCf2 (Tr):(Tr.pl,Tr.p3,Tr.f3),

SC;, (Tr) (Trpz,Trp3,Trf3)

e.

twelve subclasses of the cardinality of 4, i.

SC14 (Tr) = (Tr.pl,Tr.pz,Tr.ppTr.fl), SC4( r)
sc; (Tr)=(Tr.p,,Tr.py,Tr.f,,Tr.f, ), SC4 (Tr)
SC;‘(Tr)=(Tr.pl,Tr.pz,Tr.fl,Tr.f;) (Tr)
SCf:) (Tr)=(Tr.p1,Tr.p2,Tr.f2,Tr.f3) SCf1 (Tr)

(Tr.pl,Tr.pz,Tr.p3,Tr.f2), SC;(Tr):(Tr p],Trpz,Trfl,Trfz),
(Tr.pz,Tr.pS,Tr.f],Tr.fz), SC: (Tr)=(Trpl,Trp2,Trp3,Trf3),
(Tr.pl,Tr.p3,Tr.fi,Tr.f3), SC94 (Tr) (Trpz,Tr pS,Trfl,Trﬂ),
(Tr.pl,Tr.p3,Tr.f2,Tr.f3), SC{‘2 (Tr) (Trpz,TrppTer,Tr ),

six subclasses of the cardinality of 5, i.e.
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SC? (Tr)=(Tr.pl,Tr.pz,Tr.ppTr.fl,Tr.fz), SC; (Tr)=(Tr.pl,Tr.pz,Tr.p3,Tr.fl,Tr.f3),
SC35 (Tr =(Tr.pl,Tr.pz,Tr.p3,Tr.f2,Tr.f3), SC: (Tr)=(Tr.pl,Tr.pz,Tr.fl,Tr.fz,Tr.ﬂ),
SCS5 (Tr)z Tr.pl,Tr.p3,Tr.fl,Tr.fz,Tr.f3), SC; (Tr)=(Tr.pz,Tr.p3,Tr.fl,Tr.fz,Tr.f3),

three subclasses of the cardinality of 6, i.e.

Yo (Tr) =(Tr.pl,Tr.pz,Tr.p3,Tr.p4,Tr.fl,Tr.f3), SCy (Tr) =(Tr.pl,Tr.pz,Tr.p3,Tr.ﬁ,Tr.f2,Tr.f3),
SC36 (Tr) :(Tr.pl,Tr.p2,Tr.p3,Tr.f1,Tr.f3,Tr.ﬁ‘),

and three subclasses of the cardinality of 7, i.e.

SC/(Tr)=(Tr.p,, Tr.p,, Tr.p,, Tr.p,, Tr. [, Tr.f,,Tr. [y ), SC, (Tr) = (Tr.p,, Tr.p,, Tr.py, Tr.p, Tr.f,, Tr. £, Tr. 1),

SC37 (Tr) = (Tr.pl,Tr.pz,Tr.p3,Tr.ﬂ,Tr.f2,Tr.f3,Tr.f4).

Now let us construct the concept lattice for all semantically consistent subclasses of the class 7r. For this
purpose, let us consider the formal context W, =(G = D(Tr), M = P(Tr)uF(Tr), I: GxM) using the structure of
semantically consistent subclasses of the class 77 noted above. As we can see, the concept lattice for the formal
context W, depicted in Figure 3, contains 70 formal concepts, while the amount of all semantically consistent
subclasses constructed by the decompositionalgorithmis equal to 49. It means that some formal concepts in the lattice
are semantically consistent, while other ones are inconsistent. For example, the formal concept 44 is semantically
inconsistent because its intent contradicts internal semantic dependencies FM; (Tr), FMy,(Tr), and FM,(Tr),
similarly to the case of concept 14 in formal context ,. It happens because the algorithms for constructing of
concept lattices compute the part of extents as the intersection of those extents which can be extracted from the
formal context cross table [21]. They do not consider internal semantic dependencies within the classes and
objects, consequently, they escape a question about the existence of such concepts within a modeled domain,
rather compute only intersection among objects or classes to obtain sets of common attributes as new concepts.
We think that it is an important restriction for the usage of formal concept analysis, in particular, for knowledge
retrieval and reasoning, since there is an ability to retrieve or infer concepts, which are inconsistent, and therefore
unreal within a modeled domain.

Let us compare the amount of semantically consistent subclasses of the class 7r with the amount of all possible
subclasses, splitting them according to antichains of join-semilattice created by all subclasses.

] @ ® ® (5] ®
wislp1}
¥ E={SC10_4, SC11 2, SC13 4, SC16 3, SC17 5,SC1_1, SC1_2,SC1 3, SC1_7, SC20_4, SC21 4, SC25_3, 5C27 5, SC2_2, SC2 4, 5C2 6, SC31 3, SC3_3, 5C3 4, SC3 7, 5C40 4, SC41_4, SC4_3, SC4_4, SCS_2, 5C5_5, SC5_7, S06_5, SC7_6, SCB_3, SC8_5, 5C9_3, 5C9_6}

(s8) &

(84) (651
Wiz 13,4, p1. g2, p3} wisifL 2,15, pa, p2, p3}
WES[SC3_7, SC5_7, SC9_6} WES[SC1_7, SC5_7, SCT_6}

) (s0)

(&7)
WIs{fL, 12, 3, 14, p1, p2, p3}
¥E[SCS 7}

o
W= £2,3,44, p1 p2, p3. pay
wesf

Table 3. Quantitate analysis of subclasses of the class 7,.

Cardinality 1 2 3 4 5 6 7 Total
Possible subclasses 8 28 56 70 56 28 8 254
Consistent subclasses 3 9 13 12 6 3 3 49

Analyzing Table 1, we can see that among all 254 formally possible nonempty proper subclasses of the
homogeneous class of objects 7r, only 49, i.e. 19.3%, are semantically consistent ones, i.e. they do not contradict any
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of the internal semantic dependencies of the class. This coefficient allows us to estimate how the search space can
be reduced by avoiding the consideration of all semantically inconsistent subclasses of the class 7r. Therefore, let us
introduce the corresponding definition for it.

Definition 16. Decomposition consistency of a homogeneous class of objects T is a coefficient DC(T) computed

in the following way
|p(7)

be(r) |PS(T)-2
where DC(T) is a set of all semantically consistent subclasses of the class T, while PS(T) is a power set of its all
possible subclasses.

Since the DC(Tr)=19.3%, it means that we can reduce the knowledge search space for the class 7r
approximately by 5.2 times, i.e. 100%:19.3% =5.2.

All data given in Table 1 can be represented graphically, that provides an opportunity to estimate the search
space for the knowledge extraction from another perspective. Figure 4 illustrates elements of the power set lattice,
where each element is a subclass of the homogeneous class of objects 7r.

Circles depicted by green color mean semantically consistent subclasses, while yellow circles with
numbers mean a particular antichain of the lattice, or in other words, a set of subclasses of the corresponding
cardinality. We also can see, that each element of this lattice, which has a cardinality bigger than 2, and lower
than the class itself, can be also decomposed into subclasses, where some of them are semantically consistent,
while others are not so. We also depicted in Figure 4 towers of subclass lattice for particular semantically
consistent subclasses of cardinality from 2 to 7, which illustrates that the subclass lattice tower of the class
Tr contains towers of subclass lattices. The graphical representation of the complete lattice, illustrated in
Figure 4, is not a typical or common way to the depiction of lattices, such as the Hasse diagram, for example.
However, as you can see the power set lattice of the class 7r contains 256 elements and, as was noted in
[32], n2"" connections, which makes the corresponding Hasse diagram complicated. Instead of this, for the
quantitative analysis of semantically consistent subclasses of a particular homogeneous class of objects, we
can depict only elements of the lattice’s antichains. Since the geometrical form of such representation reminds
a tower, we called it a tower of the power set lattice or a tower of subclass lattice.

-100%,

— G

— o
=D Lo W= T

Figure 4. Tower of the power set lattice of all subclasses of the class 7r.

Knowledge Extraction and Retrieval

One of the approaches to knowledge retrieval was proposed in [24], according to which a formal context can
be matched by its formal sub-context constructed using three main kinds of incidence relations {gJm_|3m e m_,glm},
{ gJm, |Vme ms,glm} , and { gJm ||mem,, glm|/ |m5| >a, ¢, that allows the cauterization of the formal context.

s,

However, such an approach requires constructing additional concept lattices, to perform their matching with the main
concept lattice creating clusters, that can affect the performance of knowledge extraction. Therefore, let us consider
another approach.

As we can see, the algorithm for decomposition of homogeneous classes of objects, proposed in [28], can be
used for knowledge extraction of semantically consistent subclasses of a class. However, it also can be adapted for
knowledge retrieval, by adding additional filtration parameters, which will provide new functional opportunities for
conceptual knowledge retrieval and speed up the retrieval process itself. For this purpose, let us add the parameter

N=[n,..n,), k=|P(T)UF(T)-1,

which means the list of subclass cardinalities and allows the algorithm to construct only those semantically
consistent subclasses of a class 7, whose cardinality is matched with one of the list N. It allows us to further reduce

148



Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

the search space for the algorithm if we know the exact cardinality of the semantically consistent subclasses of
the class 7, that we want to retrieve. In addition, we can add parameter

0, = [include = [T.a,.l o J, exclude = [T.ajI ,...,T.ajq ﬂ ,

which means the attribute query and allows the algorithm to construct only those semantically consistent
subclasses of the class 7, whose contain and do not contain properties and (or) methods from the include and
exclude list respectively. It also helps the algorithm to reduce the number of constructed subclasses, if we know
useful information about them, i.e. which properties and (or) methods they should and should not contain. Finally,
we can add parameter

0, = [include = [d,.l (T),...,dl.‘ (T)J, exclude = [d,.‘ (T),...,djm (T)ﬂ )

which means the dependency query and allows the algorithm to construct only those semantically consistent subclasses
of the class 7, whose contain and do not contain properties and (or) methods that are parts of internal semantic
dependencies, from include and exclude lists respectively. Similar to the attributes, it also helps the algorithm to
reduce the number of constructed subclasses, if we know other useful information about them, i.e. elements of which
structural and (or) functional molecules they should and should not contain. Parameters O, and @, are filters, which
allow us to retrieve semantically consistent subclasses of the class T according to particular structural and behavior
features. Using all these filtration parameters, we can improve the algorithm for the decomposition of homogeneous
classes of objects in the following way.
Algorithm 1. Decomposition of homogeneous class of objects.

Require: 7, C, N, Q,, O,

Ensure: D
1: D ={};
2: for ne N do
3: t={};
4: for i=1,...,2" -1 do
5: if binary(i).count(1)=i then
6: for a, eT,j=1..|T| do
7: if (1&(1<<j))>0 then
8: t.add(aj);
9: satisfy = true;
10: for all ceC do
11: if not is_satisfy(¢,c) then
12: satisfy := false;
13: break;
14: if satisfy then
15: if satisfy_query(¢,0,) and satisfy_query(z,Q,) then
16: Dadd(¢);
17: t={};

18: return D .

Aswe can see, Algorithm 1 performs the decomposition of the homogeneous class of objects 7, resolving
the corresponding constraint satisfaction problem (CSP), using the set of its internal semantic dependencies
C:ISD(T), as well as the list of subclass cardinalities N, attribute query O,, and dependency query Q,.
Using the list of subclass cardinalities N, the algorithm resolves the CSP only for those subclasses, whose
cardinality is matched with one of the list N. The set of constraints C is used by the procedure is_satisfy(t,c)
to verify the satisfiability of the constraint c e C for the subclass ¢ T, if the constraint is applicable to the
subclass. In other words, the procedure is_satisfy(t,c) resolves the CSP for particular subclass of the class T
and if the CSP is satisfiable, then the subclass is semantically consistent. It allows the algorithm constructs
only semantically consistent subclasses of the class 7. For each such subclass of the class 7, the algorithm
performs the additional filtration according to attribute query Q, and dependency query Q , using for this
purpose the procedure satisfy_query(t,Q). As the result, the algorithm constructs all semantically consistent
subclasses of the homogeneous class of objects 7, which have a certain cardinality and satisfy the attribute
and dependency restrictions, if such subclasses exist. In general, Algorithm 1 performs two tasks, firstly,
it extracts the conceptual knowledge via decomposition of homogeneous classes of objects onto the set of
semantically consistent subclasses, and secondly, it retrieves the particular subclasses, which satisfy the
corresponding restrictions.
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Procedure 1. is_satisfy(z,c) Procedure 2. satisfy_query(z,0)
Input: ¢, c Input: ¢, O
Output: satisfy € {true, false, none} Output: satisfy € {true, false}
1: satisfy := none; 1: if |O[0]| =0 and |Q[1]| =0 then
2 if ¢[0] ¢ then 2: return true;
3 for c,ec,i=1,..,|c| do 3: for ¢ € Q[0] do
4 for c[il[j]1edi], j=1,...,|di]| do 4: if g ¢t then
5: if c[i][j]t then 3: return false;
6: satisfy := true; 6: for g Q[l] do
7 else 7: if g et then
8: satisfy = false; 8: return false;
9: break; 9: return true.
10: if satisfy then
11: return satisfy;
12: return satisfy.

Consequently, there are two different scenarios for the organization of conceptual knowledge retrieval. In
the first case, we can construct all possible semantically consistent subclasses of the class T and then store them
in a database, using for this object-relational mapping. Indeed, according to [1-2], each class will be mapped into
the database as a corresponding table, where a particular subclass property will be mapped in the corresponding
column of the table. Following that, we can use SQL to perform the information retrieval. However, such mapping
is applicable only to properties of the class that restricts the usability of the approach because methods can be parts
of structural and functional molecules of the class. In the second case, we can perform the information retrieval on
the fly, via dynamic filtering of constructed semantically consistent subclasses. To perform the filtering, we can use
any query language, which is applicable for the querying over homogeneous classes of objects. However, in this
case, we need either develop our own processor or adapt one of the appropriate ones to convert the selected query
language to object-oriented structures.

To filter semantically consistent subclasses during the retrieval stage, we propose to use attribute
query Q. and dependency query (), , which describe the inclusion of desired attributes and dependencies, as
well as the exclusion of undesired ones. Let us consider a few examples of dynamic knowledge retrieval using
the homogeneous class of objects 7r defined above. Suppose we want to retrieve all semantically consistent
subclasses of the class Tr, which have a cardinality from 4 to 6, and contain attributes 77r.p, and 7r.f,, for this
purpose we need to set for Algorithm 1 the following configuration:

D, = (Tr, ISD(Tr), N =[4,5,6], O, =[include =[Tr.p,, Tr.f,], exclude =[ ]],
0, = [include =[ |, exclude = ]])
Astheresult, we willreceivethe followinglistofsubclasses: SC! (7r), SC; (Tr), SC;(Tr),SC; (Tr), SC; (Tr)
, SC’ (Tr) , SC; (Tr) , SC; (Tr) , SC; (Tr) , SC? (Tr) , SCS (Tr) , and SC? (Tr). Suppose we want to retrieve all
semantically consistent subclasses of the class 77, which have the same cardinality as previously, and do not contain
attributes 7r.f, and Tr.f,, for this purpose we need to set for Algorithm 1 the following configuration:
D, =(Tr, ISD(Tr), N =[4,5,6], O, =[include=[ |, exclude =[Tr.f,, Tr.f, ]J,
0, :[include =[ |. exclude = ]])
Astheresult,wewillreceivethefollowinglistofsubclasses: SC; (7r), SC; (Tr), SC; (Tr), SC; (Tr), SC; (Tr),
SC; (Tr), and SC; (Tr). If we join configurations D, and D,, i.e.
D, = (Tr, ISD(Tr), N =[4,5,6], O, :[z’nclude =[Tr.p,, Tr.1,], exclude =Tr.f,, Tr.ﬂ]],
0, = [include = [ ], exclude = [ H),
we will receive the following result: SC;' (Tr), SC; (Tr), SC;(Tr), SC; (Tr), and SC; (Tr). Let us assume that we
need to retrieve all semantically consistent subclasses of the class 7r, which have a cardinality from 4 to 6, and contain
functional molecules FM, (Tr), FM;(Tr), for this purpose we need to set for Algorithm 1 the following configuration:
D, =(Tr, ISD(Tr), N =[4,5,6], Q, = include =[ ], exclude =] ]],
0, = [include = [FMl (Tr), FM, (Tr)], exclude = [ ]])

In this case, the algorithm will return the following subclasses: SC;(7r), SC/(Tr), SC;(Tr),
SC; (Tr), SC;(Tr), SC:(Tr), SC:(Tr), SC/(Tr), SC;(Tr), and SC; (Tr). If we need to retrieve all semantically
consistent subclasses of the class 7r, which have a cardinality from 4 to 6, and do not contain functional molecules
FM,(Tr), FM,(Tr), for this purpose we need to set for Algorithm 1 the following configuration:

D, :(Tr, ISD(Tr), N = [4,5,6], 0, = [include :[ ], exclude :[ ]],
0, = [include =[ ], exclude = [FM2 (Tr), FM, (Tr)ﬂ)
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In this case, the algorithm will return the following subclasses SC (Tr), SC!(Tr), SC;(Tr), SC; (Tr), SC; (Tr),
SC; ( ) and SC6 (Tr) If we join configurations D, and D;,

D, = (Tr, ISD(Tr), N =[4,5,6], O, = [include =[ |, exclude =] ]],
O, = include =[ FM, (Tr), FM, (Tr)], exclude =[ FM, (Tr), FM,(Tr)]]),

then we will receive the following result: SC; (7r), SC; (Tr), SC;(Tr), SC; (Tr), and SC’(Tr). Finally, if we join
configurations D, and D,, i.e

D, =(Tr, ISD(Tr), N=[4,5,6], 0, =[include:[Tr.pl, Tr.fl], excludez[Tr.fz, Tr.ﬂ]],
0, = [include = [FM1 (Tr), FM, (Tr)], exclude = [FM2 (Tr), FM, (Tr)]]),

then the algorithm will return the following subclasses: SC“ (Tr) SC4 Tr) SC5 (Tr) and SCG (Tr)

Let us consider the inter retatlon of the obtalned results for conﬁguratlon D, in more detail. As we
can see, each of the subclasses SPC Tl” and SC (Tl’ define two points on a plane with the ability to get
and set their coordinates, as well as compute the dlstance between them. The subclass SC; (Tr) defines three
points on a plane with the ability to get and set their coordinates, as well as compute the distance between
any two of them. The subclass SC; (Tr) defines a triangle on a plane with the ability to get and set coordinates
of its vertices, as well as compute the length of all its sides. Therefore, we can conclude that decomposition
of the homogeneous class of objects 7r using Algorithm 1 generates semantically consistent subclasses,
which represent the implicit or hidden knowledge within the domain of the class 7r. In addition, Algorithm 1
performs the filtration of all constructed semantically consistent subclasses according to attribute query Q
and dependency query Q,.

For some cases, Algorithm 1 can be improved by changing the filtration strategy, since a resolving of
decompositional SCP is also a kind of subclass filtration, depending on an attribute query, as well as a dependency
query, the order of verification of their satisfiability can be changed. The main criterion for such modification of
Algorithm 1 is the estimation of search space reducing chain performed by a particular sequence of subclass filtration.

Conclusions

In this paper, we considered in detail the internal semantic dependencies of homogeneous classes of
objects (structural and functional atoms and molecules) and how they affect the decomposition of the class. We
defined the decomposition of the class as splitting the class into such subclasses, which do not contradict any
internal semantic dependency. Since all possible subclasses of a homogeneous class of objects form a power set
lattice, which is a complete lattice, using methods of formal concept analysis we constructed the corresponding
concept lattices for all subclasses of the class, for all internal semantic dependencies of the class, and for all its
semantically consistent subclasses. As the result, we found that in all three cases, constructed concept lattices
contain a certain number of formal concepts with semantically inconsistent intents because the algorithms for the
construction of concept lattices compute the part of extents via the intersection of extents which can be extracted
from the formal context. At the same time, they do not consider the internal semantic dependencies of a class,
which define corresponding restrictions to the creation of its semantically consistent subclasses. That restricts
the usage of formal concept analysis for knowledge extraction and retrieval since it allows retrieval, inference, or
usage of inconsistent concepts, which are unreal within a modeled domain.

To propose an alternative approach to knowledge extraction and retrieval via decomposition of
homogeneous classes of objects, we improved the decomposition algorithm, which was proposed in [28], adding
the additional filtering parameters, which help to reduce the search space and improve the performance. As the
result, in the first stage, the algorithm extracts knowledge by constructing only semantically consistent subclasses
of a homogeneous class of objects, which have a certain cardinality, via solving the corresponding constraint
satisfaction problem defined based on the internal semantic dependencies of the class. In the second stage, the
algorithm retrieves knowledge by filtration of constructed semantically consistent subclasses according to the
attribute and dependency queries, which allow selecting only those subclasses, which include all desired attributes
and dependencies and do not include undesired ones. We introduced the decomposition consistency coefficient,
which allows us to estimate how much the algorithm can reduce the search space for knowledge extraction and
retrieval, avoiding the consideration of all semantically inconsistent subclasses of the class. To demonstrate
the possible application of the algorithm, we considered seven different scenarios of how the homogeneous
class of objects, which define a triangle on a plane, can be decomposed for knowledge extraction and retrieval.
In all cases, the algorithm extracted and retrieved subclasses of the class, which are semantically consistent
within a modeled domain and satisfy all restrictions and filters. However, despite all advantages of the developed
algorithm, it requires future analysis, improvement, and optimization.
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