Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

UDC 004.42 https://doi.org/10.15407/pp2022.03-04.196

A DIALOGUE SYSTEM BASED ON ONTOLOGY
AUTOMATICALLY BUILT THROUGH A NATURAL
LANGUAGE TEXT ANALYSIS

Anna Litvin, Vitalii Velychko, Vladislav Kaverynskyi

CTBOpEHO KOMILICKCHUH MiAXiA O PO3pOOKH NIPUPOJHOMOBHHUX JiaIOTOBHX CHCTEM, B OCHOBI SIKHX JICXKUTH rpadoBa 06aza JaHUX OH-
TOJOTiYHOTO THITy. OHTOJIOTISl Ma€ BU3HAYCHY PErYISIPHY CTPYKTYPY, 1[0 MICTUTH THIi30BaHi CEMaHTHYHI BITHOCHHY MiX HOHSTTSIMH,
a TaKOX IMOB’s3aHI 3 HUIMU KOHTEKCTH, 1[0 TAKOXX MOXXYTh MaTH 0araToOpiBHEBY CTPYKTYpY i ZOmaTkoBy Tumizauiro. OHTOIOTISN CTBO-
PIOETHCS] aBTOMAaTHYHO 3@ PAXyHOK CEMaHTHYHOIO aHAJi3y IPHPOJHO-MOBHOTO TEKCTY 33 JOIIOMOTO0 CIEL[{adbHO PO3pOOICHOI OpH-
riHaJbpHOI MpPOrpaMy, sika HaJaIlITOBaHa HacaMIepe] Ha poOOTy 3 MOBaMHU (IICKTHBHOTO THILY, 30KpeMa ykpaiHcbkoi. Onuc oHTONOrT
36epiraerscs y popmari OWL. st poboTH y cKiTazi qiasoroBoi CHCTEMH OHTOJIOTISI HEPEHOCHTHCS 10 rpadOBOI CHCTEMH YIIPABITiHHSI
6a3amu naHHUX Neo4j. [ns hopManbHHUX 3alIUTiB BUKOPUCTOBY€eThes MoBa Cypher. BuxinHi perniku KOpHCTyBada CHCTEMH IMiJIsATa-
I0Th CIICIiaJIbHOMY METOJY CEMAaHTHYHOTO aHaJIi3y, 3a JOIIOMOTOIO SKOT0 BU3HAYA€THCS BUMIA] (POPMAJILHOTO 3aIHUTa 10 0a3n NaHUX.
CyTHICTH aHaJi3y MONArae B TOMY, [IO TEKCT Gpa3u KOPUCTyBa4Ya IPOXOIUTH Yepe3 Psi MepeBipok. 3a iX pe3ynbraTaMi BH3HAYAETHCS
HabOip 0a30BuX IA0IOHIB OpMaNBHUX 3alMTIB, a TAKOX JOJATKOBI KOHCTPYKIIiI, [0 MPHEIHYIOTHCS 10 0a3oBoro mabiony. [leBHi
MePEeBiPKH MOXKYTh TaKOXK NMOBEPTATH MOHATTS JUIS MiJACTAHOBKY Y IIEBHI 3a3Ha4eHi no3ulii ¢popmanbHoro 3anuty. dopmanbHi 3auTH
MOXYTb IMOBEPTATH SIK KOHTEKCTH, TaK i CIIMCKU MOHATH 3 OHTOJNOTI. OKpiM MOHSTH, 3aMUTH TAKOXK MOXYTh MOBEPTATH iH(OpPMALiO
IIPO KOHKPETHI CEeMaHTHYHI IPEeJUKaTH, IO iX OB’ A3yI0Th, [0 CIPONIYE CHHTE3 IPHUPOTHO-MOBHUX BifmoBineil. CuHTe3 Bigmosineit
BiOYBa€ThHCs 3a CHELiaTbHIMU a0IOHaMH, BHOIp SKUX HAaIlpsSIMy HOB’sI3aHUH 3 BiANOBITHAM MIaGJIOHOM (OPMATBHOTO 3aIUTY.

KirouoBi cioBa: onrosnoris, Neo4j, Cypher, anaii3 TekcTy, aBToMaTHyHa TeHepallis OHTOJIOTi], CEMAaHTHYHUIN aHaJIi3, CHHTE3 MPUPOIHO
MOBHOT'0 TEKCTY, MAIlIMHHA 00pOOKa MPUPOAHO MOBHOTO TEKCTY, MAIIUHHE PO3YMiHHS IPHPOTHO MOBHOTO TEKCTY.

An integrated approach is created to the development of natural-language dialogue systems driven by an ontological graph database.
Ontology here has a defined regular structure that contains typed semantic relationships between concepts, as well as related contexts,
which may also have a multilevel structure and additional typing. The ontology is created automatically due to the semantic analysis
of a natural language using a specially developed original software, which is set up to work with inflected languages, in particular
Ukrainian. The ontology description is serialized in OWL format. To work as part of the dialog system, the ontology is transferred to
the graph database Neo4j. The Cypher language is used for formal queries. The original phrases of the user are subject to a special
method of semantic analysis, which determines the type of formal query to the database. The essence of the analysis is that the text of
the user phrase goes through a series of checks. Based on their results, a set of basic templates for formal requests is determined, as
well as additional constructions that are attached to the basic template. Some of the checks may also return the notion of substitution
to certain specified positions of the formal query. Formal queries can return both contexts and lists of ontology concepts. In addition
to concepts, queries can also return information about specific semantic predicates that connect them, which simplifies the synthesis
of natural language responses. The synthesis of answers is based on special templates, the choice of which is directly related to the
corresponding template of the formal query.

Keywords: ontology, Neo4j, Cypher, text analysis, automatic ontology generation, semantic analysis, natural language text synthesis,
natural language processing, natural language understanding.

Introduction

Creating a dialog system that can be “trained” using natural language texts without regular structure or
prior markup is an important problem. Automation of the process will greatly help to work with a significant
amount of information stored as text or collected over the World Wide Web. Such a system could help users
to find answers to their questions in the form of the appropriate contexts extracted from the texts or even as
conclusions drawn from semantic data obtained from the analyzed text. The current study is devoted to the
development of such kind of a dialogue system. The main feature of the proposed method is the automatic
building of the ontological graph through the semantic analysis of a natural language text. Another part of the
system is the natural language user’s interface for the graph database, which provides the conversion of user
phrases into formal queries to the ontology. The system also includes a module for the synthesis of natural lan-
guage responses based on the results of a formal request. It should be noted that the current study is primarily
aimed at inflectional languages, which include East Slavic languages, in particular, Ukrainian (for which the
examples of implementation of the developed method are given here).

The automatic creation of a database using natural language text in this case can be considered as a par-
ticular kind of machine learning. The core of the system is an ontology which is represented as a graph database
dedicated to a specific topic. This ontology must have a predefined structure to make easier and more predict-
able its integration with programs. Nevertheless, the specific content of the ontology is not predetermined and
depends on the information from the text submitted as the input data. Thus, the certain results (answers) given
by the system and their subject area depend only on the texts used as material for its “learning”.

The important notice is that the system proposed in this paper is designed to work primarily with the
grammatically and orthographically correct text of scientific and technical style.

© A.A. Jlitein, B.B. Bemnuxo, B.B. KaBepuncrkwuit, 2022
196 ISSN 1727-4907. Ipo6emu nporpamysannsi. 2022. Ne 3-4. CneujiajibHuii BUIYCK

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

Analysis of modern achievements in the field of natural language processing methods for
working with ontological knowledge bases

As it was mentioned in the introduction, the design and development of natural language dialogue
systems is a complex task, which includes building a database and modules for interaction with it, a semantic
analyzer of natural language text, procedures for the answers forming, and providing content in the context of
dialogue. The ontology creation is not the main subject considered in the present work. The main topic here is
the creation of formal queries and the formation of natural language responses, which mainly form a natural
language interface of a graph database. More information on the ontology structure and methods of its auto-
matic creation could be found in the work [1], the problem of staying inside the dialogue context is considered
in [2]. Natural language dialogue systems, so-called chat-bots, have a long history and a number of approaches.
Below we are to consider some interesting examples of dialog systems developed in recent years, in particular
those that in one way or another use an ontology in their structure.

A good example of a natural-language dialogue system is described in works [3, 4]. Like most of the
others, it deals with the English language and its structural features. In the means of the analysis of the user’s
source phrase, it assumes that sentences in English have quite a regular structure that can be expressed through
a rather restricted set of templates. The constant part of such a template corresponds to its semantic type (“in-
tention”), the variable parts show the places in the phrase, which concepts to be extracted from. These place-
holders are specified according to the certain expected “intentions” of the extracted concepts. For example,
there is a template: “Show me {@M} by {@D} for {@V}.”. The curly brackets here mark the places where
the concepts are expected. The markers in the placeholders here show the following: @M corresponds to the
main requested concept, @D is the selected category for concepts such as @M, @V is the filter parameter. For
example, there is a phrase “Show me admits by major diagnostic category for 2017, which fully satisfies the
above template. The main concept that the user asks to show it is admitted (in this case it is “number of hospi-
talizations”), the category of selection and sorting is a major diagnostic category (basic diagnostic categories),
and the filtering parameter is “2017” in the pattern of which year concept could be guessed. The structure and
the constant part of the query determine its “intention”. Fore each “intention” there exist a certain package of
queries to databases and instructions on how to visualize and present their results in the user interface. Da-
tabases containing basic information in this case are mostly relational. However, the system also contains an
ontology, which serves to structure the categorization of types and measurements of data stored in the main
database. The “intentions” and concepts derived from the source phrase of the user are compared with the
ontology to determine the closest to the requested dimensions and categories from those available in the data-
bases. That is, ontology in this case plays quite a secondary role. The ontology is created automatically based
on a relational data model. The authors note the ability of the system to stay in the context of dialogue. Their
approach is mostly focused on pronouns substitution. If the variables of the analysis template appear pronouns
or merely empty, then the program uses the relevant data from the last of the previous queries. In the case when
there is no information in previous queries, the default values are substituted. These default values are formed
based on the most common requests gathered during the system usage. Currently, the system does not contain
automated learning, although the authors have declared the possibility of its development in the future.

The main features of the system from works [3, 4] can be briefly described as follows: works only with
English and adapted to its features; analysis of output phrases is based on patterns; not capable of automatic
learning; the main data is stored in a relational database, the ontology exists, but plays a supporting role, and
is created automatically on the basis of a relational database; has a set of specified “intentions” and related
schemes of information presentation (in the form of tables, diagrams and graphs); does not generate natural
language responses; implements methods for staying in the context of dialogue.

Dialogue systems which use ontology as the main knowledge base are usually merely natural-language
interfaces of a graph database. As a language for formal queries SPARQL is often used. The main task appear-
ing during their development is the conversion of a user’s natural language request into a formal one. Below
are presented some examples of such converters that have been developed in recent years.

One of the examples of automated conversion of natural language queries into SPARQL frameworks is
the PAROT [5]. It uses an approach that generates the most probable RDF triple based on the user’s request.
The triplet is then checked by a special module containing a dependency analyzer to process user requests to
RDF triplets. Then the RDF triplets obtained in this way are to be transformed into ontological triplets using a
special thesaurus. The generated ontological triplets are used to build a SPARQL query, which is used for an-
swers obtained from the ontology. Testing of the PAROT framework by the authors [5] showed that for simple
questions it shows an accuracy of about 81 — 82 %, for complex ones — about 43 - 56%, and for a specific the-
matic data set (geography) accuracy raised up to 88%.

Another example of natural language conversion into SPARQL techniques implementation is FREyA
[6]. It is available on the GIT-hub [7]. FREyA offers an interactive native language interface for ontology
queries. It uses parsing combined with ontology-based search to interpret questions and, if necessary, engages
the user. User selection is used to train the system, which improves the accuracy of its operation. This system
is currently implemented for English only. In [7] some examples are given which illustrate how questions in
natural language could be converted to SPARQL using FREyA. It should be noticed that the FREyA configura-
tion can be tuned for a certain ontology structure.

197

Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

Also it seems to be worthy to remind the LODQA (Linked Open Data Question Answering) system present-
ed in [8]. It accepts a query in natural language as the input and returns SPARQL queries along with the correspond-
ing responses as a result. The system consists of several modules. The first module processes the request in natural
language. It is responsible for parsing and creating a graphical representation of the query, called a pseudographic
template. The pseudographic template contains nodes and links. The nodes usually correspond to the basic noun
groups and the links to the dependencies between them. In addition, the pseudographic template indicates which
node of the ontological graph is the focus of the query, i.e. what the user is going to get as a response to the query.
A pseudographic template is a search graph template of a target graph of RDF subgraphs that match it. However, it
is called a pseudographic template because it is not yet based on the target data set. No sooner than the first module
has generated a pseudographic template from the given natural language query, the next module is activated, which
is responsible for finding URIs and nodes values in the pseudographic template. URIs and values must be present in
the target data set. To normalize, each node of the pseudographic template is associated with the URI of the dataset.
The concept in natural language could be normalized (reduced to the initial grammatical form) in more than one
way because of possible ambiguity. Therefore, more than one template could be obtained from one pseudographic
template. The third module for the created pseudographic template performs a search in the target data set for the
relevant parts, taking into account possible changes that may occur in the data set. To account for the structural
differences between the bound pseudographic template and the actual structure of the target data set, this module at-
tempts to generate SPARQL queries for all possible structural variations. SPARQL queries are then sent to the target
endpoint, where responses are to be obtained and then sent to the user. These query arguments can be a primitive
type, such as S, N or NP, or complex, such as S\ NP, or NP/ N. A slash means that the argument should be displayed
on the right, and a backslash means that the argument should be displayed on the left. The system uses the following
notation of parts of speech, for example: NN — noun, DT — definition (adjective), VB — verb. To facilitate the iden-
tification of RDF-triplets, the words in the sentence are lemmatized and assigned with the appropriate grammatical
characteristics. The considered LODQA system is focused on working only with English. Detailed features of its
functioning in [8] are not given, limited to a general description and analysis of examples of work.

Although the development of dialog systems, as well machine processing and “understanding” of natu-
ral language text are mostly carried out for the English language, they are not limited to it. For example, in
[9] is presented a dialog system for the German language. This work seems to be interesting because it also
involves ontology. In this case, the ontology acts as a dialog manager (OntoDM), which maintains the state
of the conversation. Ontology is also used here as a knowledge base. These roles are combined. Subject area
knowledge is used to track objects of interest, i.e. ontology nodes (classes) that are products and services rep-
resented in the ontological knowledge base. In this way, there was introduced the ability of the conversation’s
history memory. Also, much of the work [9] is devoted to the peculiarities of linguistic problems of German
language processing. By the time of publishing [9], the research work was still proceeding and the quality
assessing criteria for the system was not yet obtained. The work [10] is an example of developing a dialogue
system for the Korean language, which is fundamentally different from the European type.

One of the most promising graph DBMS is Neo4j [11], which provides fairly high performance and scal-
ability, and is suitable for working with large amounts of data. It is also currently one of the most popular graph
DBMS. The language of formal queries adopted in Neo4j is Cypher. It has a wide range of capabilities, is quite
flexible and open for extra functionality through plug-ins, for instance, for the implementation of typical algorithms
on graphs. However, at present, unlike SPARQL, there are not many developments to convert natural language que-
ries into formal queries on Cypher. Among the few examples could be considered the works [12, 13]. The system
proposed in [13] is quite primitive. Requests must have a predefined structure. In fact, this approach is close to that
presented in the above-mentioned work [3]: a set of sentence templates in natural language, where some fragments
are replaced by special notation, as places from which the concepts are to be extracted for substitution into a query
template. Each such template sentence corresponds to a specific query pattern on Cypher. The described approach
has its advantages and disadvantages. The main advantage is its simplicity. And the main disadvantage is that a real
dialog system requires a large number of such sentences-templates, which include all possible options for asking.
Moreover, this approach is justified for languages with a regular sentence structure, such as English, where fewer
phrase patterns are needed. Inflective languages, such as Ukrainian, have a complex sentence structure with quite a
free word order. This fact significantly increases the required number of templates.

Thus, the main purpose of this work was to develop a natural language dialogue system based on on-
tology, which is created automatically through semantic analysis of natural language text, taking into account
the peculiarities of inflective languages, in particular, Ukrainian, and uses Neo4j and Cypher query language
to work with its knowledge base.

Below we will consider each of the three main parts of the system: automatic creation of the ontology
using natural language text, natural language interface of the graph database and synthesis of answers in natu-
ral language using the results of the formal query.

A brief description of the assumed in the system ontology structure

A detailed description of the ontology automatic creation technique based on a natural language text is
given in our work [1]. Let us consider the ontology structure itself in the terms of OWL.
The ontology has the following root classes:

198

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

- Action — actions expressed by verbs;

- Adjective — adjectives and participles;

- Adverb — adverbs and gerunds;

- Name — proper names;

- Number — numbers (uncertain also) and digit symbols;

- Preposition — prepositions;

- Term — nouns and nouns groups. Has a hierarchical structure from more common (from one word) to
more certain terms;

- Negation — negative particles;

- UndefinedEntities — all the entities from the text that class doesn’t suitable for any of the ones listed above;

- PhraseType — types of the linked word groups. It has two child classes: MainNarration (the main part
of the sentence) and SubordinatePhrase. These classes do not have descendants but are used as “Domain” value
for the ontology properties responsible for the groups’ characterization.

- SubordinatePhraseType — is used for subordinate phrases classification. For the moment it has the
following subclasses: movement in, actor, Participial, AdverbialPhrase, movement out, goal, place, conse-
quence, object, subject, cause, condition, instrument. The listed subclasses do not have descendants but are
used as «Range» for the properties that have SubordinatePhrase as their «Domain» value.

- SentTypes — sentences typing. It has the following subclasses: Narration, Interrogative ta Imperative.
These classes do not have descendants but are used as «Range» for the properties responsible for the sentences’
characterization.

The properties of the ontology are devised in the following three root groups:

- WordsLink — used for single entities linking;

- Groups — linked word groups;

- SentenceGroups — sentences.

The “WordsLink” property has descendants that match semantic types. In a more primitive version of
the ontology, the descendants are merely the semantic types themselves but only those that have been found in

LR N3 LRI LRI LEINT3

parsed text. For example, “action addressing”, “object entry”, “quality change”, “tool”, “quantity”, “adjacent
localization”, “destination”, “separation”, “object-action”, “transfer”,”compatibility”, etc. In a more compli-
cated version of ontology, the descendants of “WordsLink” have an additional structure with a hierarchy. The

scheme of “WordsLink” descendants structure is given as a tree in figure 1.

Homogeneous Negation
Nouns Link

A4

Homogeneous Aunxiliary Preposition _
Adjectives Relationships Link Implicit

[y Words Link

A

F{ Words Link }

T State
Relationships
Dynamic » Static
Relationships —)LRﬂoﬂshiEa;:
Y Y
Serﬁ
- Relationships
Pi:“ﬁ‘;?es { Attribute } { Logical] [Object
Relati ips Relationships Relationships Relai:tfvﬂshi 3
A
Comparizon Sets
Relationships Relationships
Structure
Action Action Relationshins
Time Casual Location Direction
Relationships Relationships Relationships Relationships

Figure 1. — Scheme of “WordsLink” properties higher-level hierarchy in the ontology

Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

The given here structure covers only the higher level of the semantic relationships hierarchy typing that re-
mains the same for all built ontologies. The presence of lower-level entities depends on their presence in the considered
text. They also could be hierarchy structured. For the moment the developed system operates with about 80 possible
final semantic categories and this is obviously not the limit.

The final descendants of “WordsLink” property correspond to the specific types of connections between cer-
tain concepts. Each of them occurs only once in the ontology, even if it could be found several times in the considered
text. “Domain” of such property refers to the main concept of the linked pair, and “Range” to the dependent one. In
addition, these properties are also heirs of the groups where the pair linked in this way is observed.

The “Groups” property characterizes groups of linked words. The descendant properties of Groups corre-
spond to certain groups. Sub-properties of the groups are the above-mentioned properties, which show the connections
between the concepts. The sub-properties of “SentenceGroups” correspond to sentences. As a label parameter, they
contain the full text of the sentence (context). Their descendants are properties of the “Groups” type that correspond
to the groups in the given sentence.

Neo4J] DBMS could be used to work with the ontology of the described type. For this purpose, an OWL file
is to be loaded to it using “Neosemantics” plug-in. In this case, classes and properties become the graph nodes of the
corresponding type which are “Class” and “Relationship”. Relationships between the nodes can have the following
types: SCO — subclass of; SPO — sub-property of; DOMAIN; RANGE. The Cypher language is used for the queries.

Building an ontological graph based on natural language text is perhaps the most important part of a system
that is responsible for collecting and structuring information. The construction of a semantically structured database
requires semantic analysis of the considered text. Thus, an important part of the study was the development of its
methodology, adapted for the East Slavic languages, which are of inflectional type. The important peculiarity of these
languages is that words connection appear mainly mostly through a combination of certain flections (variable word
endings). Behind these variations of word forms, which belong to the relevant parts of speech and the combination of
concepts with prepositions, there lies a huge amount of semantic information. Moreover, there are other factors, such
as word order. The order of words in inflectional languages is not very strict and might be considered as quite a second-
ary factor. Nevertheless, the words even in such types of languages do not go completely randomly. Moreover, in some
cases, it may even become even a defining feature.

Analysis of the user’s input phrase for the formal queries to the ontology creation

As proposed in our previous work [14] tree-based method of the query template determining through the
analysis of words sequence is quite demanding for the effort and time needed for such a tree development. At the
same time in inflective languages the word order is a less significant factor. A more valuable one is just presence
of the certain words in specific forms. Thus, it seems that often enough would be merely testify the considered
phrase through a number of criteria. Grounding on the test results it might be possible not only to determine the
most appropriate formal query template or the group of such templates but also to select the input entities for
them. In the simplest test version of the system, which exists now, there are the 4 following main checks:

1 — question word — 6 lists + absence of such word. The result is the number of the sufficient list from 1 to 6 or
0, if there is no question word in the sentence.

2 —the presence of a word from given lists (most of them are specific verbs) — 6 lists + absence of words from
all of the lists. The result is the number of the sufficient list from 1 to 6, of 0 — if there are no such words in the sentence.

3 — the presence of a noun in the nominative case except words from the check (2) if any. The result may be
1 — such a word exist (+ the word itself) or 0 — there is no such word. Several entities could be selected.

4 — the presence of a verb, except ones from lists in the check (2) if any. The result may be 1 — such a word
exist (+ the word itself) or 0 — there is no such word. Several entities could be selected.

Even this brief test has quite enough options for its results that make it possible to have a number of templates
or various types of templates.

Then an additional test is to be performed. Its procedure is as follows: adjectives linked to the word from the
clause (3) that must be close to it and fit it with number and gender; nouns in indirect cases (they form the base of
the additional circumstances) and adjectives linked to them; and the last but not the lease is the check of presence or
absence of negation predicates. An additional test is needed for the modifier templates adding.

The template are stored as XML-files of a special structure. Here is an example of one of such (the simplest
ones) templates:

<template>

<verbose name>Common information</verbose name>

<id>1</id>

<type>base</type>

<variables>

<variable>
<name>INPUT VALUE 1</name>
<destination>input</destination>
</variable>
<variable>
<name>CONTEXT</name>

200

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

<destination>output</destination>

</variable>
</variables>
<match>
(inp:Class)-[]-(n:Relationship),
(n:Relationship)-[]1-(x:Class),
(n)-[:8PO]->(rel group),
(rel group)-[:SPO]->(rel sent),
(rel sent)-[:SPO]-(sent_ super)
</match>
<where>
inp.label = “INPUT VALUE” and
sent super.name = “SentenceGroups”
</where>
<return>
DISTINCT rel sent.label as CONTEXT;
</return>
</template>

In the given example it is possible to explain the common structure of the query template. The XML-template chap-
ters <match>, <where>, and <return> correspond to the certain sections of a Cypher query [11]. Some parts of the chapter’s
content are the template variables. The variables themselves are described in the chapter <variables>. For each of the vari-
ables are defined its name and destination in the appropriate XML-containers <name> and <destination>. The destination
can have values “input” or “output”. The input variables are to be substituted with the input parameters values and the output
ones define the parameters that should be obtained as a result of the query execution. The container <id> is needed for the
finding and identity of the template. Moreover, here is a tag <verbose name> that helps to identify a template not only by
machine but also by a human during the system development. Further, most of the query template examples here shall be
given in a simplified mater — without XML-tags. Tag <type> shows the type of a template — base or additional. Above is
given an example of a base one. Let us consider the structure of the additional templates. Here is an example of one of them:

<template>

<verbose name>Adjective linked to subject</verbose name>

<id>1</id>

<type>additional</type>

<variables>

<variable>
<name>INPUT VALUE ADJ</name>
<destination>input</destination>
</variable>
<variable>
<name>ADJ PLUS</name>
<destination>intermediate</destination>
</variable>
<variable>
<name>INP ADJ</name>
<destination>intermediate</destination>
</variable>

</variables>

<block union>and</block union>

<next item union>or</next item union>

<match>
(inp:Class)-[]-(ADJ_PLUS:Relationship),
(ADJ PLUS:Relationship)-[]- (INP ADJ:Class),
(ADJ_PLUS)-[:SPO]->(rel group)

</match>

<where>
INPiADJ.label = “INPUT7VALUE7ADJ”

</where>

<return></return>

</template>

The template also has blocks <match>, <where> and <return>. However, the content of them is not indepen-
dent but is to be added to the appropriate parts of a query formed through a base template. Some of the chapters in this
case could be merely empty. The main feature of an additional template are presence of the chapters <block union> and
<next_item union>. Tag <block union>shows the manner of how the block <where> must be united to the query formed
by a base template. Tag <next_item_union> determines the union type for the repeated elements of the block <where> in

201

Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

a case when the appropriate variable is presented as a list (array). For instance, for the given above template, the variable
INPUT VALUE ADIJ could correspond to a number of adjectives linked with the object. The values of <block union>
and <next_item_union> could be “and” or “or”. Also the variables of the additional templates can have the third type of
<destination> - “intermediate”. Such variables neither take part in transferring values into the forming query nor in the
results returning. They are just needed to mark the template parts that are not to be duplicated during the part repeating.
Instead, they are implemented with an order number, for example: ADJ PLUS 1, ADJ PLUS 2, ADJ PLUS 3, ..., etc

Let us consider in more detail the structure of the formal queries and the manner of their formation. The pre-
sented structure of the ontology makes it possible to search for contexts or individual terms. Not only has it allowed
just the presence of some entities in the context considering, but also their relationships according to a certain semantic
category. In the presented scheme there are a base query template, aimed to obtain information of a certain type in
a given form, and additional modifiers templates that optionally adds the description of extra circumstances. Let us
consider some types of queries. The already given above template is aimed to a context obtaining which includes a
specific term (word). However, the term must not only be presented in the context but form a link with others. This
could guarantee that the term is “organically” implemented into the context.

Cypher queries are devised into three main parts: MATCH, WHERE, and RETURN. The MATCH block gives a
linking pattern of the nodes in the oriented graph. In the WHERE part the conditions are given that characterize the entities
(nodes and relationships) from the MATCH case. The RETURN block shows what is to be returned as a result and with what
name (alias). In the presented example there is a class marked by the variable “inp”. It the WHERE block a condition for it is
added, which says that the “label” field of the node “inp” must be equal to a specific value (here and below INPUT _VALUE
is the text of the input value). From the MATCH block, it is clear that “inp” is a node because of parentheses and it must
have the type “Class”. It must be linked with another node “n” of type “Relationship”, which corresponds to an ontology
property from OWL. The link type is undefined in this case (square brackets are empty), and the direction of the link is also
not specified. So, the node could be linked either as a “DOMAIN” or “RANGE”. There is no need to specify the link direc-
tion in this case because it is known that such links always come from a property to a class. Also it is given that this property
must be linked with some class “x”. Further is given that the property linking this classes must have a relation to a sentence

“rel_sent”. The condition “sent super.name = «SentenceGroups»” guarantees that the “rel sent” shall be a sentence. As a
result of the query is to be returned “rel_sent.label”, which contents the sentence context with the alias “CONTEXT”.
Let us come to a more complicate example. Here we are to request the characteristics (properties) of an INPUT _
VALUE entity included in the ontology. . Mu Xo4uemMo 3anpocHTH BiJJOMi B OHTOJIOTIi XapaKTepUCTUKN (BU3HAUCHHS)
06’exkra INPUT VALUE. In other words, what the INPUT VALUE is or could be. The query is as follows:
MATCH (inp:Class)-[]-(n:Relationship),
(n:Relationship)-[]-(x:Class),
(n)-[:8P0O]->(prop_type 1),
(n)-[:SPO]->(rel group),
(rel group)-[:8P0O]->(rel sent),
(rel sent)-[:SPO]-(sent_ super)

WHERE
inp.name = “INPUT VALUE” and
(prop_type 1l.label = “object propery” or
prop type 1l.label = “action property” or
prop type 1.label “action separately” or
prop type 1l.label = “action level”)
and
sent super.name = “SentenceGroups”

RETURN DISTINCT x.label as result, rel sent.label as context;

Compared to the previous example an extra statement is added to the MATCH block: (n)-[:SPO]->(prop_
type_1). This gives information that the property “n” must be a child of “prop_type 1”. Here the link direction is
specified. In the WHERE block is given sufficient Values of “label” field of “prop_type 1”. To make the query template
more universal, as it is not known whether INPUT VALUE is noun or verb, a number of options are given for the
possible “prop type 1.label” value united with logical “OR”. If the ontology has a semantic categories hierarchy, the
construction could be simplified as follows:

MATCH (inp:Class)-[]-(n:Relationship),

(n:Relationship)-[]-(x:Class),

(n)-[:SPO]->(prop_type 1),
(n)-[:SPO]->(rel group),
(
(

rel group)-[:SPO]->(rel sent),
rel sent)-[:SPO]-(sent super),
(propitypeil) -[:SPO]->(prop_type category)

WHERE
inp.name = “INPUT VALUE” and
prop type category.label = “entities properties”
and
sent super.name = “SentenceGroups”

RETURN DISTINCT x.label as result, rel sent.label as context;

202

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

As a result of the query “label” field of “x” node is to be returned. That will be the characteristics of an “inp”
object. Also the contexts are requested to recognize the circumstances where the entity’s property is mentioned.

In a close manner actions of an object could be requested. For this purpose, it is just needed to set another value
for “prop_type_1.label” in WHERE block, namely: prop type 1.label = «object-actionx».

If there are several possible options of relationship in the query (prop_type 1.label) the result may include its
certain value, which then helps in the answer synthesis. The next example illustrates a query of an object localization
without its type concretization (“Where is INPUT _VALUE?”).

MATCH (inp:Class)-[]-(n:Relationship),
(n:Relationship)-[]-(x:Class),
(n) - [:SPO]—>(prop,typefl),
(n)-[:SPO]->(rel group),
(rel group)-[:8P0O]->(rel sent),
(rel sent)-[:SPO]-(sent super)
(prop type 1)-[:SPO]->(prop type category)
WHERE

inp.label = “ INPUT VALUE “ and
prop type category.label = “localization” and
sent super.name = “SentenceGroups”

RETURN DISTINCT x.label as result, rel sent.label as context,

prop type 1.label as predicate;

The main peculiarity here is the statement “prop type 1.label as predicate” in the RETURN block. That makes
it to return the certain semantic type of the obtained result.

In some cases instead of predicates lists of some entities (verbs, nouns, adjectives) could be included in a
query. The peculiarity here is that conditions are given for the node of ontogrhaph linked with “x”. Thus, the requested
object not only must be linked with some term “x” through the specific relationship, but this term must be from a cer-
tain list. If the terms (or actions) are additionally classified in the ontology, the condition for the term will be merely
being a descendant of a specific category.

A special mention should be made of modifier templates — fragments that could be added to the main query
templates. Let us consider an example where the input parameter is not a single word, but a noun group. So, there are
linked nouns and adjectives. To link to the input adjective concept there must be added the appropriate statements to
the MATCH block:

(inp:Class)-[]-(adj_plus:Relationship),
(adj plus:Relationship)-[]-(inp adj 1l:Class),
(adj plus)-[:SPO]->(rel group)
and in WHERE block:
and
inp adj 1l.label = “INPUT VALUE ADJ”
For the extra adjectives the same blocks are to be added but with variables inp_adj 2, inp_adj 3 etc.
It is also possible to add a condition of a noun in indirect case presence through the followmg statements:

in MATCH block:
(inp noun 1:Class)-[]-(noun plus:Relationship),
(noun plus)-[:SPO]->(rel group)

and inWHERE block:
and

inp noun 1l.label = “INPUT VALUE NOUN”
Here in the example there is a condition of presence of one noun in the same group where the main concept is
included. Nevertheless, conditions of adjectives presence linked with this noun also could be added:

in MATCH block:
(inp noun 1:Class)-[]-(adj plus add:Relationship),
(adj plus add:Relationship)-[]-(inp adj add:Class),
(adj _plus_add)-[:SPO]->(rel group)

and in WHERE block:
and

inp adj add.label = “INPUT VALUE ADJ ADD”
Also in some cases a negation predlcate should be added to a query. For this purpose the following construc-
tion must be added to it:

in MATCH block:
(neg:Class)-[]-(neg rel:Relationship),
(neg rel)-[:SPO]->(rel group)
and in WHERE block:
and
(neg.label = “no” or
neg.label = “not” or
neg.label = «forbidden» or

203

Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

neg.label = «impossible» or
neg.label «cant» or
neg.label = “unable”)

Synthesis of natural language answers based on the results of formal queries execution

The user interface of a dialog system, which displays merely the results of a formal query, even being pretty
designed, may not look so friendly, and sometimes could be even not quite understandable for a person. Therefore,
the next important problem is the synthesis of natural language answers. Some principles of the approach of answers
formation, based on information taken from the results of formal queries, and the analysis of the source phrase using
templates-instructions are described in our previous work [14]. In general, during the system development, making
the decision of how the answer ought to appear in the user’s interface is to be balanced between providing ready-made
contexts and text synthesis. For example, to provide some tables, or graphical objects, or other media illustrating the
answer, the best option is to use ready-made contexts containing links to the relevant files. In the current study, we
omit representation and creation methods of graphical and tabular materials (charts, graphs, diagrams) based on the
results of queries in the user interface, although this approach is quite desirable in certain types of systems and, as
demonstrated by [4], may well be implemented. Contextual responses may be the best option if you need to provide
detailed information. The synthesized answers provide greater ease of perception for more specific questions, which
formal response is just a list of entities from the ontology. Here are provided some examples of answers synthesizing
instruction templates for some typical cases. These templates also give user contexts (sentences) that illustrate and
confirm the statement. The templates below are presented in human-readable form (a kind of meta-language). In a soft-
ware implementation, they are software entities (classes with methods) in the Python language that are attached to the
system in a specific module file. An attempt was also made to add response templates in the form of XML descriptions,
which, however, led to greater complexity and lower performance of the software.

Let us consider an example of a question about entity characteristics (properties). Here is the answer template:

Repeat for each result:

if INPUT VALUE noun:
INPUT VALUE + Moxe OyTu + result (fit the genger)
+ context
is INPUT VALUE verb:
INPUT VALUE + MmoxHa + result
+ context

For the word’s morphological characteristics determination (part of speech, gender, case, etc.) and for word form
fitting PyMorphy?2 library methods are used [16]. In the simple example above part of speech of INPUT VALUE must
be checked. It could be a noun or verb. If it is a noun, the “result” value must be fitted in gender with INPUT VALUE.

Let us consider a more complicated example. Here the subject of the query is an object localization. The cer-
tain localization predicate is not specified in the input query parameters, but appears in its results. As it was mentioned
above, a certain semantic predicate could be used in an answer synthesis.

Repeat for each result:

INPUT VALUE + 3HaxoIUTbLCHA +

if predicate = “localization in set”:
+ cepen + result (plural, genitive case)
+ context

if predicate = «localization near»:
+ 6inma + result (genitive case)
+ context

if predicate = “objective localization”:
+ Ha + result (locative case)
+ context

if predicate = “ objective entering”:
+ v + result (locative case)
+ context

if predicate = “localization between objects”:
+ Mix + result (plural, instrumental case)
+ context

if predicate = “localization behind object”:
+ 3a + result (instrumental case)
+ context

if predicate = “localization in front of object”:
+ nepen + result (instrumental case)
+ context

if predicate = “localization under object”:
+ nim + result (instrumental case)
+ context

204

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

if predicate = “localization above object”:
+ Hagng + result (instrumental case)
+ context

if predicate = “localization in object”:
+ BcepemmHl + result (genitive case)
+ context

From the given example we can see that the certain type of semantic predicate (localization in this case) deter-
mines the appropriate preposition and case for the value of “result” variable for the Ukrainian language.

Conclusions and further prospective

An approach and the corresponding software toolkit are developed for the construction of natural-language
dialogue systems on the basis of automatically through a natural-language text semantic analysis built ontology.
Within the framework of this approach an analysis technique is developed. It deals with an initial user’s phrase
adapted for inflective languages, in particular Ukrainian, aimed at formation on its basis of formal queries in the
Cypher language. The essence of the method is a series of checks for the presence in the initial phrase of certain
words and/or word forms. Depending on the set of the test results, the main query template (or group of such tem-
plates) is selected. Components from modifier templates are added to the main template (to its corresponding sec-
tions) as a result of additional checks, which make the appropriate clarifications and extensions to the query. Query
variables are supplemented with concepts obtained when performing the appropriate checks. A number of queries
(package) can be created on the basis of one initial phrase. Also proposed here is an approach to the synthesis of
natural language responses using query results and the values of source variables. The peculiarity of the approach
is the usage of including specific values of semantic predicates obtained as a result of the query to the ontology,
which allows the program more accurately and correctly formulate the answer by using the appropriate preposi-
tions and word forms. Also, these answer templates provide instructions for fitting word forms of concepts-results
with the original concepts.

Based on the proposed approach, an experimental dialogue system was developed, which proved to be
workable. It can become a prototype for the development of new more powerful dialogue styles able to be “learned”
using natural language texts provided in the form of documents, or as search results obtained from the Internet.
Further improvement of the system is to use the opportunity to create more detailed classified ontologies, expand
the number of checks and variants of their results. Accordingly, a large number of basic and additional formal query
templates and corresponding response synthesis templates can be created.

Bibliography

1. Litvin A. A new approach to automatic ontology creation from untagged text on natural language of inflective type / A. Litvin, V. Velychko, V.
Kaverinsky // International conference on software engineering “Soft Engine 2022”. — Kyiv, NAU. — 2022.

2. Litvin A. Development of natural language dialogue software systems / A. Litvin, V. Velychko, V. Kaverinsky // Information Theories and Ap-
plications. — Vol. 28. — No. 3. —2021. — P/ 233 — 270.

3. Quamar A. Conversational BI: An Ontology-Driven Conversation System for Business Intelligence Applications / Abdul Quamar , Fatma Ozcan,
Dorian Miller , Robert J. Moore , Rebecca Niehus, Jeffrey Kreulen // Proceedings of the VLDB Endowment, Vol. 13, No. 12. — P. 3369 — 3381.

4. Quamar A. An Ontology-Based Conversation System for Knowledge Bases / Abdul Quamar, Chuan Lei, Dorian Miller , Fatma Ozcan]1, Jeffrey
Kreulen, Robert J. Moorel, Vasilis Efthymiou // Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. —
2020. —P. 361 — 375. doi:10.1145/3318464.3386139.

5. Ochieng P. PAROT: Translating natural language to SPARQL / P. Ochieng // Expert Systems with Applications. — 2020. — Ne 5. — P. 1-16.

6. Damljanovic D. FREyA: an interactive way of querying linked data using natural language / D. Damljanovic, M. Agatonovic, H. Cunningham
// The Semantic Web: ESWC 2011 Workshops. —2011. — P. 125-138.

7. GIT-hub: FREyA documentation [Enexrponnuii pecypc]. Pexxum noctymy: https://github.com/nmvijay/freya

8. Shaik S. Transforming natural language query to SPARQL for semantic information retrieval / S. Shaik, P. Kanakam, S.M. Hussain, D. Sury-
anarayana // International Journal of Engineering Trends and Technology. —2016. — Ne 7. — P. 347-350.

9. Duygu Altinok An Ontology-Based Dialogue Management System for Banking and Finance Dialogue Systems / Duygu Altinok // 1st Financial
Narrative Processing Workshop. - Japan, Miyazaki. — 2018. https://doi.org/10.48550/arXiv.1804.04838

10. Jung H. Automated conversion from natural language query to SPARQL query / H. Jung, W. Kim // Journal of Intelligent Information Systems.
—2020. - Vol. 55. - P. 501-520.

11. Goel A. Neo4J Cookbook / A. Goel // Birmingham: Pact Publishing Ltd. — 2015. — 206 p.

12. Sun C. A Natural Language Interface for Querying Graph Databases: master’s thesis ... master in computer science and engineering / C. Sun.
— USA: Massachusetts Institute of Technology, 2018. — 69 p.

13. GIT-hub Convert English sentences to Cypher queries documentation [Enexrponnuii pecypc]. Pesxxum noctymy: https://github.com/gsssrao/
english2cypher

14. Litvin A. Synthesis of chat-bot responses in the inflecting natural language based on the results of queries to ontology and analysis of the chat
previous phrase // A. Litvin, V. Velychko, V. Kaverinsky // Information Theories and Application. — Vol. 27, No. 2. — P. 152 — 199.

References

1. A. Litvin, V. Velychko, & V. Kaverinsky (2022) A new approach to automatic ontology creation from untagged text on natural language of
inflective type. International conference on software engineering “Soft Engine 2022”. Kyiv, NAU. Available from: http://pp.isofts.kiev.ua/
ojs1/ article/view/145 [Accessed 6/06/2017].

2. A. Litvin, V. Velychko, & V. Kaverinsky (2021) Development of natural language dialogue software systems. Information Theories and Ap-
plications. 28. p. 233 —270.

3. Quamar Abdul, Fatma Ozcan, Dorian Miller , Robert J. Moore , Rebecca Niehus & Jeffrey Kreulen Conversational BI: An Ontology-Driven
Conversation System for Business Intelligence Applications. Proceedings of the VLDB Endowment. 13. p. 3369 — 3381.

205

Mooeni i 3acoou cucmem 06a3 0anux ma 3HAHD

Abdul Quamar, Chuan Lei, Dorian Miller , Fatma Ozcanl, Jeffrey Kreulen, Robert J. Moore, Vasilis Efthymiou (2020) An Ontology-Based
Conversation System for Knowledge Bases Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. p.
361 —375. DOI:10.1145/3318464.3386139.

P. Ochieng PAROT: Translating natural language to SPARQL. (2020) Expert Systems with Applications. 5. p. 1-16.

D. Damljanovic, M. Agatonovic & H. Cunningham (2011) FREyA: an interactive way of querying linked data using natural language. The
Semantic Web: ESWC 2011 Workshops. p. 125-138.

GIT-hub: FREyA documentation [Online] Available from: https://github.com/nmvijay/freya

S. Shaik, P. Kanakam, S.M. Hussain & D. Suryanarayana (2016) Transforming natural language query to SPARQL for semantic informa-
tion retrieval. International Journal of Engineering Trends and Technology. 7. p. 347-350.

Duygu Altinok (2018) An Ontology-Based Dialogue Management System for Banking and Finance Dialogue Systems. Ist Financial Narrative
Processing Workshop. Japan, Miyazaki. DOI: https://doi.org/10.48550/arXiv.1804.04838

H. Jung, W. Kim (2020) Automated conversion from natural language query to SPARQL query. Journal of Intelligent Information Systems. 55. p. 501-520.
A. Goel (2015) Neo4J Cookbook. Birmingham: Pact Publishing Ltd.

C. Sun A. (2018) Natural Language Interface for Querying Graph Databases: master’s thesis master in computer science and engineering.
USA: Massachusetts Institute of Technology.

GIT-hub Convert English sentences to Cypher queries documentation [Online] Available from: https://github.com/gsssrao/english2cypher
A. Litvin, V. Velychko, & V. Kaverinsky (2020) Synthesis of chat-bot responses in the inflecting natural language based on the results of queries
to ontology and analysis of the chat previous phrase. Information Theories and Application. 27. p. 152 — 199.

Received 16.07.2022

About the authors:

Litvin Anna Andreevna,

Post-graduate student in the V.M.

Glushkov Institute of Cybernetics NAS of Ukraine.

The number of scientific publications in Ukrainian journals is 7.
The number of scientific publications in foreign journals is 3.
http://orcid.org/0000-0002-5648-9074

Velychko Vitalii Yuriiovych,

Doctor of Sciences, assistant professor,

Senior researcher in the V.M. Glushkov Institute of Cybernetics NAS of Ukraine,
visitor leading researcher of the department of creation and use
of intellectual network tools of the National Center

“Junior Academy of Sciences of Ukraine”

The number of scientific publications in Ukrainian journals is 80.
The number of scientific publications in foreign journals is 31.
H-index: Google Scholar — 11,

Scopus — 2,

http://orcid.org/0000-0002-7155-9202.

Kaverynskyi Viadislav Viadimirovich,

Ph.D. in technical sciences,

Senior Researcher of Department of Wear-Resistant

and Corrosion-Resistant Powder Construction Materials

in the I. N. Frantsevich Institute for Problems

of Materials Science NAS of Ukraine.

The number of scientific publications in Ukrainian journals is 88.
The number of scientific publications in foreign journals is 22.
H-index: Google Scholar — 6

Scopus — 2,

http://orcid.org/0000-0002-6940-579X

Place of work:

Litvin Anna Andreevna:

V.M. Glushkov Institute of Cybernetics NAS of Ukraine.
03187, Kiev-187, Academician Glushkov Avenue, 40.
Phone: (097) 570-99-84, E-mail: litvin_any@ukr.net

206

Mooeni i 3acobu cucmem 0a3 0anux ma 3HaAnd

Velychko Vitaliy Yurievich:

V.M. Glushkov Institute of Cybernetics NAS of Ukraine.
03187, Kiev-187, Academician Glushkov Avenue, 40.
Phone: (096) 139-96-28, E-mail: aduisukr@gmail.com

Kaverynskyi Viadislav Viadimirovich:

I. N. Frantsevich Institute for Problems of Materials Science NAS of Ukraine.
03142, Kiev, Academician Krzhizhanovsky st., 3.

Phone: (050) 212-17-24, E-mail: insamhlaithe@gmail.com

IIpizBnma ta iHiniaam aBTopiB i Ha3Ba 10NMOBiAI YKPaiHCHKOI0 MOBOIO:
A.A. Jlitein, B.1O. Benuuko, B.B. KaBepuncokuii

[IpupoaHOMOBHA /iaJIOroBa CUCTEMa Ha OCHOBI OHTOJIOTI,

o noOyaoBaHa Ha 6a3i aBTOMaTH30BaHOTO CEMAHTUYHOTO aHAIi3y TEKCTY

Mpizeuia Ta ininiagau aBTOpiB i HA3Ba J0NMOBiAI AHIIIHCHKOK MOBOIO:
Litvin A.A., Velychko V.Yu., Kaverynskyi V.V.

A dialogue system based on ontology automatically built through

a natural language text analysis

KonrakTtu nis pegakropa: Kasepuncokuii Bnaaucnas Bonogumuposuu,
CTapUIMii HAyKOBUH CHiBPOOITHUK

IacTuTyTy npobiem marepiano3nactea HAH Ykpainu,

e-mail: insamhlaithe@gamil.com, Ten.: (38)(050) 212-17-24

207

