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ABOUT COMPLEX INTELLIGENT  
TECHNOLOGIES FOR TECHNO-ECOLOGICAL 

EVENTS CONTROL IN THE WATER AREA
Valery Pisarenko, Nikolai Nogin, Alexandr Kryachok,  

Julia Pisarenko, Ivan Varava, Alexandr Koval 

Розглядаються аспекти, що стосуються вирішення важливого завдання створення комплексних інтелектуальних техно-
логій підтримки прийняття рішень для ідентифікації виникаючої техно-екологічної події (ТЕП) та оптимального вибо-
ру послідовності доступних заходів зі скорочення життєвого циклу даного ТЕП в акваторії з метою мінімізації матері-
альних збитків (створення системи «УПРАВЛІННЯ_ТЕП»). В Інституті кібернетики імені В.М. Глушкова НАНУ суміс-
но з Концерном «BaltRobotics» (Україна – Польща), НТУУ «КПІ ім. Ігоря Сікорського» проводяться вивчення питання 
можливості теоретичної розробки, дослідження та практичної реалізації методів і засобів, що складають інформаційну 
технологію дослідницького проектування (інформаційне, математичне, алгоритмічне, програмне, технічне, організа-
ційне забезпечення) інтелектуалізованих роботів, призначених для розвідки і нейтралізації небезпечних ТЕП у ряді 
середовищ. Для завдання класифікації хвиль отримано і вирішено математичні моделі поширення, як хвиль, що біжать, 
так і стоять, в акваторії моря. Розроблено структуру сховища інформації ситуаційного центру. Для створення бази да-
них інформаційного сховища ситуаційного центру було проведено класифікацію хвиль та відповідне математичне та 
комп’ютерне моделювання. Розглянуто детермінований процес поширення звуку в плоскому хвилеводі в однорідному 
режимі. Вирішено спеціальні крайові завдання та завдання Коші для двовимірного хвильового рівняння, і, відповідно, 
для рівняння Гельмгольця. В аналітичному замкнутому вигляді отримані розрахункові формули для звукового тиску і 
відповідно до його швидкостей. У загальному випадку за методикою робіт Білоносова, Овсієнка, Лі, Зінченка, Ногіна 
обчислено у вигляді рядів Фур’є дотичну і нормальну компоненти вектору швидкості і гідродинамічний потенціал.

Ключові слова: акваторія, техно-екологічна подія, класифікація хвиль, інформаційне сховище, математичне моделю-
вання.

Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identi-
fication of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life 
cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_TEE” system). In the 
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland), NTU of Ukraine “Igor 
Sikorsky KPI” study of the possibility of theoretical development, research and practical implementation of methods and tools 
that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, 
organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the 
classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained 
and solved. The structure of the information storage of the situation center has been developed. In order to create a database 
wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propaga-
tion in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are 
solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound 
pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and 
normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the 
methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.

Keywords: water area, techno-ecologicalevent, wave classification, information storage, mathematical modeling.

Introduction
The paper examines aspects relevant to solving the important task of creating complex intelligent decision-

making support technologies for identifying an emerging techno-ecological event (TEE) and optimally choosing a 
sequence of available measures to reduce the life cycle of a given TEE in the water area in order to minimize material 
damage (creation of an intelligent system “CONTROL_TEE”) [1-6].

For the problem of wave classification, mathematical models of propagation of both traveling and standing 
waves in the sea are obtained and solved.

The structure of the information storage of the situational center has been developed [1].
A deterministic process of sound propagation in a plane wave guide in a uniform regime is considered.

Formulation of the problem
In the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland), 

NTU of Ukraine “Igor Sikorsky KPI” study of the possibility of theoretical development, research and practical 
implementation of methods and tools that make up the information technology of research design for reconnaissance 
and neutralization of TEE in a number of environment.
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Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies 

for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures 
to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_
TEE” system) of intellectualized robots intended.

Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. 

The structure of the information storage of the situation center has been developed. In order to create a database 
wave classification and mathematical and computer modeling were carried out. The deterministic process of sound 
propagation in a flat waveguide in the homogeneous mode is considered. 

Proposed components of mathematical and software for intelligent monitoring and control 
systems for TEE

For the classifying waves, mathematical models of the propagation of both running and standing waves in the 
sea area were obtained and solved.

Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, 
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) 

and, accordingly, its velocities 
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 are obtained in an analytical closed form. 

A qualitative analysis and numerical computer solutions are carried out. 
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the 

frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and 
higher than 15 kHz are called ultrasonic. 

In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane 
waveguide (Fig. 1), the sound pressure has the form 
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Fig. 1. Planar waveguide. 
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here 

the vertical component of the velocity 0=zV  by 0=z  and hz = ). As a result, we obtain the Neumann boundary 
conditions: 
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In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value 
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was 
obtained in the form of a special series of the form: 
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structure of the information storage of the situation center has been developed. In order to create a database wave 
classification and mathematical and computer modeling were carried out. The deterministic process of sound 
propagation in a flat waveguide in the homogeneous mode is considered.  

Proposed components of mathematical and software for intelligent monitoring and control 
systems for TEE 

For the classifying waves, mathematical models of the propagation of both running and standing waves in the 
sea area were obtained and solved. 

Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, 
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, 

accordingly, its velocities 
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 are obtained in an analytical closed form. 

A qualitative analysis and numerical computer solutions are carried out. 
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the 

frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and 
higher than 15 kHz are called ultrasonic. 

In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane 
waveguide (Fig. 1), the sound pressure has the form 
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where the complex amplitude P(x,z) satisfies the Helmholtz equation 
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where k  – wave number, 
c

k 
= , c – constant sound speed. 

 
 

 
 
 
 

 
 
 
 

Fig. 1. Planar waveguide. 
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here 

the vertical component of the velocity 0=zV  by 0=z  and hz = ). As a result, we obtain the Neumann boundary 
conditions: 
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In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value 
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was 
obtained in the form of a special series of the form: 
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Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because 

now
c

kkx


= 2 . 

In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values 
[9, 10]: 
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Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite 
rapidly as the distance to the point source increases. 

Finally, when the condition 
h

k
h
c 




==122

22

 is satisfied, then xk  is a real value and the first normal 

wave appears. 

Thus, waves with numbers satisfying the condition are propagating 
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, where parentheses    – the 

whole part of number. 

 
Fig. 2. Wave numbers of normal waves. 

Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic 
pressure in the form: 
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where 
m

xk – wave number of m -th mode. 
The initial condition of the boundary value problem (wave profile) has the following form fig. 3. 

 
Fig. 3. Wave Profile. 
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Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure 
in the form:
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In the case of low frequencies, which is very important for practice, below the frequency of the transverse 
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an 
increase in "x", passes so quickly that we can take [9]: 



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

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where 0A , 0  determined by the properties of the radiation source. Then 0zV , 
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Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly 
from that considered above. In this case, the number and location of the field maxima will depend in another way on the 
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with 
initial conditions under which the pressure profile is represented as a parabola. 

Boundary conditions on the walls of the waveguide .0
0

=
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=
= hz

P
z

P  
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Fig. 6. Modulus and real part of parabolic wave profile. 

The analytical expression for calculating the acoustic pressure field is obtained in the form 
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where   – water density. 

A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas 
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). 
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Прикладне програмне забезпечення 
 

 
Fig. 6. Modulus and real part of parabolic wave profile. 

The analytical expression for calculating the acoustic pressure field is obtained in the form 

 
( )

( ) 

( ) 
( )

x
kc

hkcN

k
e

k

h
kc

z
h
k

titctzxP 12
)(12

0
3

2

23

22

)12(
1

)(
121

12sin
)sin()cos(8),,( +

−+
−

=


+


+

−







 +

−= 











,          (9) 

 
where   – water density. 

A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas 
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). 
 

 

 
Fig. 7. Modulus and real part of the parabolic wave pressure field. Fig. 7. Modulus and real part of the parabolic wave pressure field.

Прикладне програмне забезпечення 

[Введите текст] 
 

 
Fig. 8. Wave profiles at different times. 

 
Fig. 9. Feature of parabolic wave propagation. 

 

Conclusions 
The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not 

only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation 
source. To develop a database of the situational center information storage waves were classified and the corresponding 
mathematical and computer modeling was carried out. 
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