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ARCHITECTURE

The ever-evolving landscape of digital simulations demands innovative frameworks to achieve both realism and 
efficiency. The research highlights the issues of modern software architecture for physics simulation. The new 
architecture was developed to mitigate scalability and flexibility issues. The essence of the proposed architecture 
resides in the convergence of three pivotal concepts: the modular physics engine, the physics pipeline, and the 
Entity Component System (ECS) pattern. The modular physics engine represents a paradigm shift in simulation 
design. Compartmentalizing functionalities into modules, this approach fosters flexibility and reusability, 
enabling efficient construction of specialized simulations. The physics pipeline orchestrates simulations through 
structured stages, analogous to graphics pipelines. It guides dynamic forces, collisions, and interactions, 
optimizing resource use and integrating custom systems for accuracy. Complementing these, the ECS pattern 
decouples data and behavior, facilitating the construction of user defined physical pipeline comprised of loosely 
coupled modules. Combined with the modular physics engine and physics pipeline, ECS forms a comprehensive 
approach for complex physics simulations.
Keywords: Computer Simulation, Software Architecture, Physics Engine, Physics Pipeline.

Introduction
Physics simulation plays a pivotal 

role in advancing scientific understanding 
and exploration across various disciplines. 
Its significance extends beyond mere com-
putational modeling, as it enables research-
ers to delve into complex physical phenom-
ena, unveiling insights that would otherwise 
remain hidden. Many natural systems are 
characterized by complex interdependen-
cies and behaviors that are challenging to 
comprehend through traditional analytical 
methods alone. Physics simulations allow 
scientists to model these systems, provid-
ing a platform to observe emergent prop-
erties, intricate dynamics, and phenomena 
that may be challenging to observe directly 
in the real world. 

Simulations offer a controlled envi-
ronment where scientists can rigorously test 
hypotheses and validate theories. By accu-
rately reproducing experimental conditions, 
simulations enable researchers to explore 
the outcomes of diverse scenarios, aiding in 
the confirmation or refinement of theoretical 
frameworks. Furthermore, certain physical 
phenomena that manifest in extreme envi-
ronments, such as outer space or subatomic 
scales, are inaccessible for direct observation. 
Physics simulations offer a virtual laboratory 

to study these conditions, enabling the inves-
tigation of phenomena beyond the limitations 
of current technology.

The main problem of modern phys-
ics engines is the solidity of the system they 
provide. In most cases, the user cannot ma-
nipulate parts of the engine. There are cases 
when the user would benefit from turning on 
and off some parts of the simulation pipe-
line, available in several engines. Still, none 
of the popular engines allow to change sim-
ulation stages or implement a substitute for 
them [1]. 

In some cases, only rigid body simula-
tion is needed, which allows the user to remove 
every other part of the engine, effectively re-
ducing any additional computational or mem-
ory cost generated by unnecessary stages [2]. 
A more complex simulation is needed in other 
cases, but only for one specific simulation part. 
For example, the fluid simulation may be im-
plemented ‘outside’ the engine, still reusing all 
other stages.

1. Physics model architecture 
overview

Physics simulation works by employing 
mathematical models and computational tech-
niques to replicate the behavior of real-world 

©A.A.Bernatovych, I.V.Stetsenko, 2023
ISSN 1727-4907. Проблеми програмування. 2023. №3



Інструментальні засоби та середовища програмування

31

physical systems in a virtual environment. The 
process involves several key steps that col-
lectively simulate the dynamics, interactions, 
and behaviors of objects based on fundamental 
physical principles.

The first step involves creating a math-
ematical representation of the physical system 
to be simulated. This includes defining the ob-
jects, their properties (such as mass, size, and 
material properties), and the forces or interac-
tions that affect them. Central to the simulation 
are the equations of motion, encapsulating the 
manner in which objects behave. These equa-
tions, often built on well-established principles 
like Newton’s second law of motion (), delin-
eate how forces induce changes in an object’s 
acceleration, velocity, and position over time. 
Numerical integration comes into play next. 
Equations of motion are numerically integrat-
ed over small time intervals, enabling projec-
tions of an object’s future position and veloc-
ity. Diverse numerical integration techniques, 
including Euler integration, Runge-Kutta 
methods, and Verlet integration, facilitate these 
predictions.

Crucial in the simulation is collision 
detection. Algorithms are deployed to discern 
instances where objects intersect or closely 
approach one another. This insight underpins 
the subsequent calculation of collision effects 
and assures the accuracy of the simulation. 
Upon collision, algorithms ascertain alter-
ations in velocity, direction, and deformation 
for objects involved. This computation con-
siders factors such as elasticity, mass, and im-
pact velocity. The presence of various forces, 
like gravity, friction, and springs, necessi-
tates force calculation. These forces are de-
termined based on object attributes and their 
interactions with both other objects and the 
environment.

Progressing in discrete time steps is in-
trinsic to the simulation process. Each step en-
tails solving equations of motion to predict the 
new state of objects at the forthcoming time 
increment. The choice of time step magnitude 
strikes a balance between simulation accuracy 
and computational demands. In intricate sim-
ulations, multiple iterations often occur with-
in each time step. Rigid body simulations, for 
instance, might require iterations to resolve 

contact forces and constraints. The simulation 
operates as a perpetual feedback loop, continu-
ously updating object states through calculated 
forces, collisions, and interactions. With each 
iteration, the simulation advances incremen-
tally, painting an evolving picture of dynamic 
behavior.

In the end, the outcomes of the simu-
lation can be observed either in real-time vi-
sualization or through subsequent post-pro-
cessing, generating visual depictions of object 
movement, interactions, and intricate dynamic 
phenomena.

The proposed architecture of the Phys-
ics Engine allows users to create their simula-
tion stages and construct an engine that suits 
the needs of developer or scientist the best. 
Figure 1 represents the structure of the pro-
posed Physics Engine.

The main structural elements of 
Physics Engine are Physics Models, which 
represent the world with all entities in it, 
and rules of physics simulation created by 
the combination of simulation stages. The 
modular architectural design has been fur-
ther developed to address the shortcomings 
found in widely adopted layered and Ser-
vice-Oriented Architecture (SOA) frame-
works. By incorporating a more refined level 
of granularity and emphasizing the division 
of services, these architectural approaches 
have effectively facilitated the creation and 
enhancement of intricate software systems 
that might have otherwise posed significant 
challenges during design and development. 
The use of it might provide such benefits as 
scalability, extensibility by third-party, and 
reusability and lead to the overall reduction 
of core application size [3].

The Entity Component System (ECS) 
pattern aligns seamlessly with the idea of 
encapsulating specific functionalities within 
individual modules. Instead of conventional 
tightly-coupled module interdependencies, 
ECS promotes the separation of concerns. 
This separation is achieved through the enti-
ty-based structure, where components encap-
sulate specific attributes and behaviors while 
systems orchestrate the behavior of entities 
possessing certain combinations of compo-
nents [4].
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Fig. 1. Structure diagram of the proposed Physics Engine

In the ECS-based simulation environ-
ment, entities take center stage as the funda-
mental building blocks that compose the sim-
ulated environment. Each entity represents an 
object or element within the world. By adopt-
ing this entity-centric perspective, the world 
is broken down into discrete entities, allow-
ing for a more modular and intuitive repre-
sentation.

Components, another essential aspect 
of ECS, define the attributes and behaviors of 
these entities. In the context of world defini-

tion, components encapsulate various aspects 
of an entity’s identity and behavior. Proper-
ties such as position, orientation, mass, and 
collision characteristics are captured within 
components. This separation of data from be-
havior enhances clarity, maintainability, and 
the ability to adapt the simulation to different 
scenarios.

The systems in ECS orchestrate the 
interaction and behavior of entities based on 
their components. These systems are responsi-
ble for processing specific aspects of the simu-
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lation, such as physics calculations or collision 
detection. They ensure that entities with cer-
tain combinations of components interact in a 
meaningful and realistic manner, shaping the 
dynamics of the simulated world.

1.1 Physics module
The Physics Module represents a dy-

namic and extensible class library, capable of 
being loaded at runtime to enrich the func-
tionality and configurability of the Physics 
Model. This innovative approach offers a 
powerful way to introduce new components 
and stages seamlessly without modifying the 
core simulation code. The module acts as a re-
pository of reflection data [5], storing crucial 
information about the various components 
and simulation stages essential for configur-
ing the Physics Model. 

With the ability to load the Physics 
Module dynamically, researchers and devel-
opers can introduce custom components and 
stages tailored to specific physics simulation 
requirements. These components may include 
specialized collision detection algorithms, ad-
vanced material properties, or sophisticated 
force fields that address unique scenarios not 
covered by the default simulation setup. Simi-
larly, the stages within the module can extend 
the simulation pipeline, introducing additional 
data processing steps that are required for di-
verse use cases.

Moreover, the reflection data stored 
within the Physics Module provides a compre-
hensive overview of the available components 
and stages, making it easier for developers to 
query and configure the simulation program-
matically. The module acts as a knowledge 
repository, allowing developers to discover 
available options, examine their properties, 
and dynamically assemble the Physics Model 
to suit specific simulation scenarios.

1.2 Physics model simulation update
As there is no simple way of continu-

ous simulation of a physics system, the simu-
lation process is divided into small time steps 
with fixed . The update flow of the model is 
defined by a physics pipeline that configures 
the order of execution for each computation 
stage (Fig.2). 

Fig. 2. Diagram of Physics Processing 
Pipeline

Termed the ‘Physics Pipeline’, this al-
ternative approach integrates physics simula-
tion seamlessly into the computational frame-
work, aligning it with the stages traditionally 
found in the graphics pipeline [6]. While the 
graphics pipeline focuses on rendering visu-
al elements, the Physics Pipeline extends this 
concept to encompass the simulation of dy-
namic forces, collisions, and other physical 
phenomena that unfold over time. The pipe-
line has a fixed entry point that determines the 
start of the simulation step. Other stages are 
chained to the entry point. Each stage com-
putes and updates the physical properties of 
an entity. Stages are processing the entire set 
of all entities based on the components that 
they contain. For example, the “update of rigid 
body position” stage will only update entities 
with attached rigid body components.

Extending the concept further, the uti-
lization of physical pipelines introduces a pro-
found level of efficiency and resourcefulness 
by enabling their preservation and subsequent 
application across various Physics Models. 
By encapsulating a specific set of simulation 
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stages, configurations, and behaviors within a 
pipeline, developers can effortlessly transport 
this blueprint from one simulation context to 
another. This affords a consistent and system-
atic means of orchestrating simulations, irre-
spective of the specific model being employed. 
This flexibility proves especially impactful 
when dealing with comparable or intercon-
nected physics phenomena across diverse 
contexts. Consider scenarios in which the fun-
damental principles dictating motion, interac-
tions, and dynamics remain consistent, while 
the simulation setting or parameters undergo 
adjustments. In such instances, the ability to 
employ a well-established and refined physi-
cal pipeline for various purposes significantly 
speeds up the development process, reduces 
unnecessary repetition, and maintains a coher-
ent framework for simulations.

Accelerating the physics pipeline is 
a crucial endeavor to enhance the efficiency 
and performance of simulations. This can be 
achieved through a series of strategic optimi-
zations and advancements that target different 
stages of the pipeline. 

Utilizing a uniform and contiguous 
collection of components holds the potential 
to yield significant advantages, greatly en-
hancing cache locality and reducing memory 
access times. By organizing components with-
in a contiguous layout, the memory footprint 
aligns more closely with the access patterns of 
the processing units. This coherence allows for 
more efficient data retrieval, reducing the need 
for costly memory fetch operations. As a result, 
cache hits become more frequent, optimizing 
the utilization of high-speed cache memory 
and diminishing the latency associated with 
memory access. The resulting reduction in 
memory access times and enhanced cache lo-
cality synergistically contribute to an overall 
enhancement in computational efficiency.

Furthermore, the utilization of parallel 
computing architectures, particularly multi-
core CPUs, emerges as a formidable tech-
nique to accelerate the execution of physics 
computations. By proficiently distributing 
computational responsibilities across numer-
ous processing units, simulations are poised 
to achieve substantial enhancements in speed 
and responsiveness. Introducing asynchro-

nous processing allows independent stages 
of the physics pipeline to run concurrently. 
For example, collision detection can be per-
formed in parallel with constraint solving, 
minimizing idle time and optimizing resource 
utilization. 

Notably, the synergistic integration of 
spatial partition algorithms with paralleliza-
tion yields an even greater leap in acceleration. 
Through the implementation of spatial parti-
tioning techniques, such as octrees or grids, 
the computational load associated with colli-
sion detection and interaction calculations can 
be significantly alleviated. By excluding enti-
ties situated far apart in space from collision 
evaluations, unnecessary computations are cir-
cumvented, yielding a marked enhancement in 
overall performance.

2. Results
Proposed architecture of the physics 

engine allows users to configure their simula-
tion more flexibly due to the following prin-
ciples:

−	 Incorporation of Additional 
Processing Stages. Even in cases where certain 
features may not be inherently present in the 
default implementation, the modular nature of 
the approach permits the incorporation of such 
features as separate libraries that can be linked 
and utilized at runtime.

−	 Selective Removal of Unnecessary 
Stages. In the context of prototype models 
aiming to substantiate hypotheses, streamlined 
calculations might suffice. The modular setup 
ensures that users are only charged for the 
components they employ.

−	 Dynamic Replacement of Existing 
Stages. In scenarios demanding more intricate 
computational methodologies, the capability to 
replace pre-existing processing stages proves 
to be remarkably advantageous.

The adoption of the ECS pattern in-
troduces novel prospects for extending entity 
attributes, a prospect that was previously con-
strained by the rigid definitions of simulated 
objects.

The following sections describe the new 
approaches of using physical engine, which 
become possible due to new architectural 
design.
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 2.1 Fully customized physics model
With the architecture detailed in this 

article, the concept of constructing custom 
simulation pipelines becomes an achievable 
and empowering prospect. This dynamic ar-
chitecture embraces the utilization of separate 
simulation systems, allowing for the precise 
tailoring of pipelines to match the specific re-
quirements of the Physics Model (Fig.3).

One of the important advantages of this 
approach lies in its flexibility. By incorporating 
separate simulation systems, developers gain 
the ability to create simulation pipelines that 
are finely tuned to their intended purposes. This 
means that components of the simulation that 
are not directly relevant to the current Phys-
ics Model can be selectively excluded from 
the pipeline. This granularity enhances perfor-
mance by reducing unnecessary computations 
and optimizing the simulation for efficiency.

Moreover, the modularity inherent in 
this architecture empowers developers to ef-
fortlessly experiment with different combina-
tions of simulation systems. This experimenta-

tion can lead to the discovery of optimal pipe-
line configurations that produce accurate and 
efficient results. It also simplifies the process 
of incorporating new simulation systems or 
improving existing ones, as modifications can 
be made to individual systems without disrupt-
ing the entire pipeline.

Custom simulation pipelines craft-
ed using this architecture can be thought of 
as carefully assembled toolsets. Each system 
within the pipeline represents a specialized 
tool designed to address a particular aspect of 
the simulation. This modularity and adaptabili-
ty ensure that the simulation remains versatile, 
accommodating a wide range of scenarios and 
use cases. Furthermore, this approach aligns 
seamlessly with the notion of data-driven de-
sign. Each simulation system processes data 
in a data-oriented manner, promoting efficient 
memory access patterns and enhancing over-
all performance. The data-driven nature of the 
architecture also enables better parallelization, 
harnessing the full potential of modern multi-
core processors.

Fig. 3. Diagram of fully customized Physics Model
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2.2 Partial physics model override
The framework described in this article 

provides a means to enhance existing physics 
engines by employing separate custom simula-
tion systems [7]. As an example, it allows us to 
modify or extend certain aspects of the physics 
simulation within well-established engines to 
better suit our needs.

To illustrate, consider physics engines 
like PhysX, which come with their own built-
in capabilities for simulating rigid bodies and 
fluids. By implementing the ideas from this 
framework, we can potentially replace or en-
hance these default simulations using dedi-
cated custom simulation systems. This means 
that instead of solely relying on the pre-ex-
isting rigid body and fluid simulations within 
PhysX, we have the option to integrate our 
custom systems that might offer improved 
performance or more precise results, depend-
ing on the context.

To put this into action, we would cre-
ate wrapper classes that encompass the exist-
ing physics engines. These wrappers manage 

the core operations of the engine while allow-
ing for the seamless integration of our custom 
simulation systems. Additionally, each engine 
could incorporate a component that handles 
different types of simulations, excluding those 
that we plan to customize (Fig.4).

In practice, when a simulation event oc-
curs, the customized engine takes precedence. If 
there is a need to adjust a specific simulation, the 
related entity is directed to the custom engine’s 
simulation process. After that, the entity is then 
passed to the custom simulation system that we 
have designed for the targeted enhancements.

This approach ensures a cohesive and 
integrated simulation process. By blending 
the strengths of the native engine with the 
adaptability of our custom systems, we can 
fine-tune or expand specific simulation 
behaviors to better align with specific 
requirements. This framework effectively 
offers a way to bridge the capabilities of 
established engines and the flexibility of 
custom systems to create physics simulations 
that are more tailored and versatile.

Fig. 4. Example of overriding Rigid Body and Fluid Simulation for PhysX
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2.3 Selective physics model
The concept of allowing diverse sys-

tems to perform identical simulations for 
distinct Entities while employing varying 
computational methods introduces a realm of 
intriguing trade-offs between precision and 
performance. This innovative approach ac-
knowledges that achieving the highest level of 
precision might involve computationally in-
tensive methods, whereas opting for more ef-
ficient techniques could involve a certain level 
of approximation.

For instance, consider a scenario 
where a range of Entities exists within a 
virtual environment, each with unique at-
tributes and behavior characteristics. This 
approach allows for a deliberate selection 
of simulation methods based on the specific 
requirements of each Entity. Some Entities 
might seamlessly integrate with Compo-
nents from Rigid Body Simulation System 
1, which is renowned for its computational 
precision but may entail higher computa-
tional costs. In contrast, other Entities could 

opt for Components from Rigid Body Simu-
lation System 2, leveraging its more efficient 
methods, albeit with a slight compromise on 
precision (Fig.5).

This adaptive strategy offers a nu-
anced balance that developers can leverage to 
optimize their simulations based on the intri-
cacies of the Entities involved. Entities with 
complex physical behaviors that necessitate 
accurate results might benefit from the more 
precise simulation approach. Meanwhile, En-
tities with less intricate interactions could 
benefit from the computational efficiency of 
an alternative method.

3. Related works
The landscape of physics simulation 

and computational modeling has seen a pleth-
ora of notable contributions that have enriched 
our understanding of complex physical phe-
nomena. This section provides an overview of 
pertinent works that have significantly impact-
ed the field, highlighting their methodologies 
and insights.

Fig. 5. Example of selective Rigid Body Simulation
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Prominent physics engines have 
demonstrated innovative approaches to sim-
ulation. The Bullet Physics Engine [8] stands 
out for its robust collision detection and rigid 
body dynamics capabilities, establishing it as 
a standard choice across various applications. 
The NVIDIA PhysX engine [9] has gained rec-
ognition for real-time physics simulations and 
GPU acceleration, empowering interactive 
simulations in gaming and virtual environ-
ments.

The Entity Component System archi-
tecture has revolutionized entity management 
in simulations. The Artemis Framework [10] 
showcased ECS benefits in game develop-
ment, facilitating efficient entity composition 
and behavior control. The EnTT library [11] 
furthered this trend by offering a high-perfor-
mance ECS solution with a focus on usability 
and extensibility.

Exploring physics laws-centric per-
spectives, the xPheve physics engine [12] pri-
oritizing a faithful replication of natural phys-
ics laws. This distinctive approach aims to 
achieve simulations with heightened authen-
ticity, aligning more closely with real-world 
phenomena. While the xPheve approach aims 
to achieve authenticity through physics laws 
replication, it might face performance trade-
offs due to the potentially computationally in-
tensive nature of directly simulating complex 
physics equations. Achieving a high level of 
precision might require significant compu-
tational resources, potentially impacting re-
al-time simulations. Computational-centric 
approaches often allow developers to optimize 
and fine-tune simulations for specific use cas-
es. The xPheve approach, focused on physics 
laws, might provide less control over optimiz-
ing performance for specific scenarios, poten-
tially leading to suboptimal outcomes in cer-
tain situations.

Conclusions
In conclusion, the Physical Module 

is a valuable addition to the physics simu-
lation toolkit, providing a flexible, scalable, 
and dynamic means of expanding the func-
tionality and configurability of the Physical 
Model. By loading the module at runtime 
and leveraging its reflection data, develop-

ers can introduce custom components and 
stages, ensuring that the simulation system 
remains adaptable, innovative, and on the 
cutting edge of scientific and technological 
advancements.

The Entity Component System pattern 
revolutionizes how the world is defined in a 
physics simulation. Through entities, compo-
nents, and systems, ECS offers a structured 
and efficient framework for capturing the 
essence of the simulated environment. This 
data-driven approach enhances the realism, 
adaptability, and complexity of the simulat-
ed world, making ECS an indispensable tool 
for constructing sophisticated and immersive 
physics simulations. Components play a vital 
role in the functioning of physics simulation 
modules by providing essential data represen-
tation, promoting modularity, enabling de-
coupling of logic, facilitating customization 
and extensibility, supporting efficient data 
processing, and fostering a component-based 
architecture. By leveraging components ef-
fectively, physics simulation modules can 
achieve high performance, flexibility, and 
maintainability, making them essential tools 
for exploring and understanding complex 
physical phenomena in diverse research and 
application domains.

Following the course set by the article, 
the future steps in the research is to investigate 
the practical application of this architecture in 
different contexts, which could unveil chal-
lenges and the innovative solutions devised to 
overcome them would offer valuable practical 
wisdom. Furthermore, examining potential 
limitations and trade-offs associated with this 
architecture is essential for a well-rounded dis-
cussion. This might encompass considerations 
related to computational overhead, memory 
management, and the intricacies of coordi-
nating modular components within a dynam-
ic system. As this architecture benefits from 
modularity, fostering an open-source commu-
nity for collaborative development could be 
instrumental. Future research might focus on 
creating platforms that facilitate sharing com-
ponents, best practices, and continuous im-
provement.
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