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SOFTWARE FRAMEWORK FOR SATELLITE SPATIAL
RESOLUTION ENHANCEMENT

Remote sensing provides many crucial data today. Thankfully to the ease of access, global coverage and short
revisit time intervals it became possible to retrieve global Earth’s land coverage data effortlessly. This data can
provide useful information of the Earth’s land cover current state to make necessary assessments, forecasts, and
other tasks that can be in handy for humanity, governments or even farmers. One of the main characteristics of
image data quality is its spatial resolution. Thus, spatial resolution enhancement is a relevant topic nowadays.
In this article a generalized software framework for satellite spatial resolution enhancement is presented. Due to
sensitivity to the satellite data distortion, the applied method considers fusion of several low-resolution images
into a single super-resolved one. The proposed framework takes into account satellite data specificity, that is giv-
en in a corresponding section. The framework was described to be capable to operate with radar and optical data.
For the radar data a corresponding module, that ensures applicability of the super-resolution approach, is given.
The framework was implemented using, mainly, C/C++ programming language and tested on a series of real
satellite images. The result was evaluated using the modulation transfer function (MTF) approach and has shown
an increasement in 135.91% for threefold scale optical images spatial resolution enhancement and 30.93% for
the twofold scale radar spatial resolution enhancement. Despite the given representability of the test image set,
the presented approach can be beneficial for the tasks that may have a need of the satellite data with higher spa-
tial resolution. The paper concludes with overview of the authors implementation of the given framework and
highlighting its drawbacks with suggestions for improvement.
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MMPOT'PAMHA OCHOBA MIABUIIEHHS TPOCTOPOBOI
PO3PIBHEHOCTI CYITYTHUKOBUX 30bPAKEHD

Hapasi aucranmifiHe 30HAyBaHHSA Hajmae 0araTo BaXKJIMBHX JAHWUX. 3aBASKHA BITBHOMY JOCTYITY, TJIOOAIEHOMY
MOKPUTTIO Ta KOPOTKHUM IHTEPBAJIaM IIOBTOPHOTO 3HIMAHHS, CTA€ MOKIIMBHUM JIETKE OTPUMAHHSI INT00ATbHIX JTaHUX
moxo 3emuoi moBepxHi. Lli maHi € HOCiAMU KOpHCHOI iH(opMarii po cTaH 3eMHO{ OBEPXHi A HEOOXITHUX
OIIiHOK, ITPOTHO3IB Ta iHIINX 3ajad4, [0 MOXKYTh CTATH y HAarOAi JIFOICTBY, YpsiaM Ta HaBiTh (epmepam. OHa 3
SIKICHUX XapaKTePHUCTHK 300pakeHb € iX MPOCTOPOBA PO3Pi3HEHICTh. [1iIBUIIEHHS TPOCTOPOBOT PO3PI3ZHEHOCTI €
aKTyaJbHOIO 3a/auerto. Y il CTaTTi MPeICTaBICHO 3arajbHy IPOrpaMHy OCHOBY ((pEeHMBOPK) IS TTiIBUIICHHS
MIPOCTOPOBOI PO3PI3HEHOCTI CYIMyTHUKOBHUX 300pakeHb. BpaxoByl0UM UyTIHMBICTH CYITyTHHUKOBHX JaHUX [0
OyIb-KUX CHOTBOPEHB, POOOYMM METOJOM OOpaHO TMOEAHAHHS KUTBKOX 300pa)KeHb HHU3BKOI IMPOCTOPOBOL
PO3pI3HEHOCTI B €IMHE 300paKEHHS 3 IMiIBUIIECHOIO MPOCTOPOBOIO PO3PI3HEHICTIO. 3ampOIOHOBaHAa OCHOBA
BpaxoBye crenn(iky CymyTHHKOBHUX JaHUX, III0 TIPEICTaBICHA Y BiANOBIAHOMY po3aiii. HaBeneHna ocHoBa 31aTHA
00poOIATH SIK OTITHYHI, TaK 1 pagapHi JaHi 3aBISKU BiAIOBIIHOMY MOIYJIIO, III0 3a0e31edye MPHIaTHICTh METOLY
HA/IPO3PI3HEHOCTI /10 pamapHux gaHux. OCHOBY peasi3oBaHO, TIEPEBAXKHO, 33 JOMOMOTOI0 MOBH IPOTPaMyBaHHS
C/C++. TecTyBaHHS IPOBOAMIOCH HA BHOIPII pearbHUX CYITyTHUKOBUX JTAaHWUX, a OIIHKA Pe3yJIbTaTy MPOBOAU-
JIach 3aBJISIKH ITAXOMY 3 BUKOpHCTaHHAM (QyHKIII mepenadi moayamii (PIIM). s onTHaHIX 300pa’keHb MOKpa-
meHHs nokaszano 135.91%, ne Oyio 3aaisiHO TpUKpaTHE 301IbIIEHHS pO3MipiB 300paskeHHsl, a 1yt pajgapy 30.93%,
ne Oymmo 3amisiHe JBOKpaTHE 30UTBIICHHS pO3MipiB 300pakeHHs. He3Bakaioun Ha HHU3BKY pENpe3eHTATHBHICTh
pe3yIBTATIB TECTOBOTO HAOOPY, OTMMCAHMH IIAX1T MOXKe OyTH KOPUCHUM JUTS 0araTbox 3a/ad, ki MaloTh HECTady
B JaHHUX 3 BHCOKOIO IPOCTOPOBOIO PO3pi3HEHICTIO. CTaTTs 3aBEpIIyETHCS OTJLIIOM aBTOPCHKOI peaizarmii
OTHCAHOT MPOTPaAMHOI OCHOBH 3 3a3HAUCHHAM 1X HEJOMIKIB Ta MPOMO3HIIISIMH IIIO/I0 iX BUIIPABICHHS.

KimtouoBi cmoBa: ocHoBa ((ppedMBOpK), MAWCTaHIIHHE 30HAYBaHHS, IIPOCTOPOBA PO3PI3HEHICTH,
HAJPO3PI3HEHICTh, QYHKIIIS Tepeaadi MOAYIAIii, CyOriKceTbHe 3MIMIeHHS.
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Introduction

Nowadays, information is a necessity
for scientific breakthroughs, development of
new methods and technologies and many other
problem solving. Information age brought us
a plethora of means and methods for informa-
tion collection, processing and application. At
present, people are equipped and live among
so many modern, interconnected via internet,
gadgets and tools that improve our quality of
life, relieve our routine burden or help to solve
monotonous tasks, that the digital information
flow became overwhelming.

Storing and processing such informa-
tion brought many new possibilities. As a re-
sult, new technologies have arisen and some
stagnated ones were significantly improved.
For example, a tremendous information ca-
pacity led to the emergence of the well-known
Big Data (Curry et al., 2021) and brought
enormous processing capabilities to the Neu-
ral Networks, comparing to their advent in
somewhat 1950’s (Goodfellow, Bengio and
Courville, 2016), resulting in a rapid develop-
ment leap.

Growing demands in digital processing
powers require an appropriate nature resource
management. Thus, a vast amount of sus-
tainable development tasks became relevant,
which goal is to maintain enough diverse re-
sources for humanity future, for example, wa-
ter resources monitoring (Lock et al., 2023),
crop state monitoring (Nguyen et al., 2020),
yield forecasting (Szabd et al., 2021), forest
fire prevention (Hu, Ban and Nascetti, 2021),
desertification assessment (Lubskyi et al.,
2023) and so on.

Resolving these tasks require avail-
ability of Earth’s land cover data in the terms
of global coverage, i.e., satellite’s visible,
short infrared and near infrared wave bands.
Different satellite sensors provide data with
different quality, namely, spatial resolution:
one sensor can provide data with spatial res-
olution of 30 meters, while other provide data
with spatial resolution of 5 meters (Brown et
al., 2005). The variance in spatial resolution
is mainly caused by dissimilarity in different
orbit heights, on which those sensors operate,
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as well as different manufacturing technology.
One may assume that if we have sensors that
provide high spatial resolution data, than there
is no need in low spatial resolution ones. Alas,
high spatial resolution sensor has significantly
lower land coverage during its sensing period,
as well as sensing periods are much longer be-
cause of their low orbit disposition. It may be
thought that it might be appropriate to combine
low-resolution data with global coverage with
high spatial resolution data. Indeed, many tasks
are solved this way. But it may be difficult to
find low-resolution and high-resolution data
within a relatively short time shift interval.

Thus, it 1s appropriate to develop su-
per-resolution methods for low-resolution data
spatial resolution enhancement. These meth-
ods require an adequate software framework
which will combine main principal ideas for
satellite image super-resolution.

Data characteristics

Before we delve into the framework
itself, it may be expedient to examine source
data characteristics, that are directly tied to the
nature of remote sensing process and to the
principal of super-resolution methods.

Mainly, super-resolution methods are
based on the idea that data enhancement re-
quires directly high-resolution data or high-res-
olution can be combined from several distinct
low-resolution data sources (Fathi, Hadhoud
and El-Khamy, 2012). Fusing several low-res-
olution images into enhanced one can bring
new information to the result. On the contrary,
although filtering (Assia Kourgli and Youcef
Oukil, 2013) and neuron-network-based meth-
ods (Lu ef al., 2019) can give remarkable re-
sults, they cannot present any new data in the
result without involvement of additional data
sources. As such, source data requirements
become obvious: input data must contain at
least two different images and the imaging
scene must remain mostly unchanged, i.e.,
there should be a little to none moving objects,
so data in each point could be treated as con-
stant. In satellite imaging such moving objects
that can affect the result’s quality are, usually,
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clouds. To preserve the constancy of the imag-
ing scene the time shift between each satellite
image pair should be short enough to not cause
representation of different objects within same
subscene. To be able to provide any new in-
formation to each other, any image pair should
have some unique subpixel (less than a pixel
size) shift along any or all axes. Otherwise,
fusing images with same data won’t enhance
spatial resolution of the result.

As for the imaging sensors, to be short,
there are mainly two general types: the optical
and the radar ones. The optical can give us a
good RGB representation of the image, but are
limited: they are affected by cloudiness (Zhou
et al., 2022) and require to find corresponding
images with short time delay between them.
The radar, on the contrary, is uninfluenced
by clouds due to its physical nature — much
larger wavelength. And, usually, radar sens-
ing includes consecutive land cover sensing
in two or more different polarizations with-
in a very small (1 second or less) time delay.
Thus, there is no need for image pair search.
However, because such image pairs are tak-
en in different polarization, they do not repre-
sent common physical property and cannot be
processed in the same manner. So, radar data
requires additional processing to convert data
from different polarizations into some unified
representation.

Framework

The spatial resolution framework in-
corporates main ideas for super-resolved im-
age restoration — fusing several low-resolution
images into single super-resolved one. The aim
is to increase target image spatial resolution;
thus, some considerations must be carried.
Firstly, image noisiness is intertwined with
its spatial resolution, so noise must be sup-
pressed. Secondly, because each image pair
must have some subpixel shift, the framework
should take them into account, for example,
by evaluating them. Not to lose generality, the
framework may provide means to process op-
tical or radar data. And last, but not least, the
framework must enhance the spatial resolution
of the result. The schematic presentation of the
framework is shown in figure 1.

As you can see, firstly the satellite data
is fetched from the corresponding data provid-
er. Before it can be processed by the super-res-
olution system it must be preprocessed for the
needs of the specific tasks that stand before the
scientist. After that, preprocessed data flows to
the super-resolution system, which has the fol-
lowing structure:

Input/output system — it may be
graphical user interface (GUI), console appli-
cation or any other form of interaction between
the user and the system;

Super-resolution system

Satellite data
rovider's database

<<component>>

property module

Convert to common

%]

\

<<component>>

Optimal image @

@ A

Y

Satellite data <<component>>

preprocessing

Satellite
images

'

Input/Output system

%]

subset selection module
A
<<component>> @
Image shift
evaluation module
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result

A
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%]

Noise suppression
module

vy l
<<component>> @

Fig. 1. Framework for satellite spatial resolution enhancement
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Convert to common property module
— a module that simply converts data, that rep-
resent different physical properties, into a com-
mon one. For example, as for the radar, conver-
sion of multi-polarized data can be converted
into common physical property — land surface
dielectric permittivity via one of the radar back-
scattering models, for example, Oh model (Oh,
Kamal Sarabandi and Ulaby, 1992).

Optimal image subset selection mod-
ule — a module that selects such a subset from
an input image set, that leads to the result with
the best quality according to the super-resolu-
tion model that super-resolution system imple-
ments. As for the described framework, this
module’s source is converted into common
physical property images. Remark: if opti-
cal images within same optical bands (wave-
length) are used — there are no need in con-
version; thus, converted into common property
images are simply the input ones.

Image shift evaluation model — as
the name implies, evaluates the shift between
each source image pair. Later, these shifts are
used as arguments for the enhancement pro-
cess, noise suppression, as well as they may
be the arguments for the optimal image subset
selection (in terms of best geometrical align-
ment for the resulted image). Remark: if the
source images have shifts greater than a single
pixel size, this module should implement inte-
ger-pixel cropping of all input set of images to
the common region of interest.

Noise suppression module — evalu-
ates the noise between converted into common
physical property (if needed) images in respect
to their pairwise subpixel shifts.

Enhancement module — with regard
to pairwise subpixel shifts takes noise-sup-
pressed images in order to rebuild the super-re-
solved image with enhanced spatial resolution.
Remark: besides the noise-suppressed images
the enhancement procedure may take into ac-
count also the form of that suppression.

Implementation
The framework was implemented using
Python (for conversion into a common physi-
cal property) and C/C++ (for everything else)
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programming languages with the help of such
external free open-access libraries as: NumPy,
Pillow — for Python; OpenCV, Eigen, ImnGUI —
for C/C++. Numpy was used for general data
processing, while Pillow was used as an input/
output library. OpenCV handled input/output
as well as most part of the image processing.
Eigen was used to solve linear equations in the
super-resolution model and ImGUI was used
for the GUI.

The input/output system was devel-
oped in the form of a GUI. A demonstration
of the Super-resolution system GUI is shown
in figure 2.

#7 3ximageEnhancement = X

Fig. 2. Satellite image spatial resolution en-
hancement GUI

The convert to common property
module was implemented using Python lan-
guage. It is in a state of a working prototype
that converts multi-polarized radar data into
the common physical land surface property
— dielectric permittivity — via Oh radar back-
scattering model. It is very time-consuming,
because, as for now, it directly goes over all
possible discrete values of two parameters,
namely surface roughness and dielectric per-
mittivity, that can theoretically satisfy equality
in both (vertical and horizontal) backscattering
polarizations. Thus, as for now, it is a stand-
alone module.

The image shift evaluation module
uses the Young algorithm (Young, Driggers
and Jacobs, 2008) to evaluate pairwise image
shifts displacements. To increase its speed, we
choose the 1/8 discretization, for interval of
along abscissa and ordinate axes ensuring that
precision lost is insignificant.
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The optimal image subset selection
module, as for now, is presented in a form of
finding such a subset from an input image set,
that is most informative having least inter-
cover.

The noise suppression module
evaluates the mean noise matrix, from the
input ones, with respect to their subpixel shifts.
It is used to correct the result in the
enhancement process.

The enhancement module is
implemented according to the mathematic
model described in our previous work

(Stankevich et al., 2020). Keeping it short and
simple, it inverses the downscale procedure in
order to rebuild the enhanced image.
Simplistic model for a twofold scale spatial
resolution enhancement is shown below:

Y(y,x) = G(Ay,Ax) @ X(y, x).
The shifts are given by:
—0.5<Ay <0.5,-0.5<Ax <0.5.

The general convolution matrix of a
super-resolution transform G (Ay, Ax):

(0.5—-Ay)(0.5—-Ax) (0.5—Ay) (0.5—Ay)(0.5+ Ax)

G(Ay,Ax) = (0.5 — Ax)

1 (0.5 + Ax)

(0.5+ Ay)(0.5—-Ax) (0.5+Ay) (0.5+ Ay)(0.5+ Ax)

The frequency domain transfer
function is given by:
(0.5 — Ay)e2min/m 4
+1 + (0.5 — Ay)e?min/m

o (0.5 — Ax)e 2™/ 4
+1 + (0.5 — Ax)e2™ié/n )’

T(U' E) = <

And the super-resolution model itself
is:
4%, = T, )X (1, 8) + Te(n £ m, &) x
xXm+m &) + T, § £ X, £ n) +

+Te(n+mE+n) x X +m, & +n) +
+4E(®, ),

Results

The testing was conducted using
graphics workstation equipped with a 16-core
4.2 GHz central processing unit (CPU) on a
Sentinel-1 and Jilin-1 images. Sentinel-1

where (*) — is a Fourier transform
operator and E — is a mean noise matrix. Later,
described model was enhanced to the threefold
scale  spatial  resolution  enhancement
(Stankevich et al., 2023).

In order to increase image processing
speed all pairwise shifts are being evaluated on
a part of the region of interest with 500 x 500
pixel size (if source image is bigger than that),
as well as image processing was carried out in
frequency domain through image’s Fourier
transform. That was needed to significantly
improve speed of images convolution. The
enhancement process was organized in a
window-processing manner to preserve
memory and allow to enhance sets with large
images (5000 x 5000 pixel size and bigger).

represents the radar imagery while Jilin-1
represents the optics. The source data is shown
in figure 3.
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Fig. 3. Jilin-1 source images (3005%3007 pixels)

The radar source images are shown in figure 4.

a

Fig. 4. Sentinel-1 (vertical polarization — b, horizontal polarization — ¢) and Sentinel-2 (a)
(optical representation) images of a land parcel near Zhytomyr city, Ukraine (600x1000 pixels)

Optical images do not need any conversion need such processing; thus, they were con-
into a common physical property, because they verted into dielectric permittivity as shown in
already represent one. However, radar images figure 5.
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Fig. 5. Sentinel-1 radar data conversion into a common physical property — land surface dielectric
permittivity (a — vertical polarization, b — horizontal polarization)

Optimal image subset selection is not de-
scribed here, because source data consist only of
6 images for optics and just 2 images for radar.

The enhancement result is given by
figure 6 for optical and 7 for radar. Note: optical

images were threefold scale enhanced, while
radar images were twofold scale enhanced, due
to the lack of sufficient images quantity for the
threefold enhancement.

C

d

Fig. 6. Jilin-1 source (a) and enhanced (b) image with their corresponding zoomed fragments
(c — source, d — enhanced)
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During optical enhancement procedure
maximal memory consumption that was re-

corded is 6104.8 MB and processing time was
7 minutes and 4 seconds.

c

d

Fig. 7. Sentinel-1 source (vertical polarization — @) and enhanced (b) image
with their corresponding zoomed fragments (¢ — source, d — enhanced)

As for the radar, maximal memory con-
sumption was 596.1 MB and processing time
was 5 seconds.

In order to evaluate how much spatial
resolution was enhanced a specially developed
module was used. The main principal in this

7 3mageEnhancement

module is to use modulation transfer function
(MTF) and its threshold value to find a spatial
resolution value that corresponds to the point,
where two objects become indistinguishable.
The example of spatial resolution evaluation is
shown in figure 8.

Fig. 8. Spatial resolution evaluation
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Here you can see the gaussian approx-
imated edge spread function (ESF) of the Ji-
lin-1 (a) source image. Spatial resolution en-
hancement percentage is given in table 1.

So, for optical images with threefold
scale enhancement the spatial resolution en-
hancement was 135.91%, while the twofold
scale enlargement for the radar images was
30.93%. It is worth to note, that processing
time will grow linearly with source data size,
so adequate technique to process large datasets
can be handful.

Table 1
Source images spatial resolution

Figure | Spatial resolution, | Enhanced,
number lines per mm %

6 (b) 5.627 -

3 (a, 4.425 135.91%
mean)

7 (b) 4.596 -

> (a-b, 3.009 30.93%
mean)

Conclusion

In this paper a general software frame-
work for satellite spatial resolution enhance-
ment was presented. Its testing was carried
out using dedicated implemented software for
image spatial resolution enhancement. The
result has shown 30.93% enhancement of the
testing radar image using twofold scale image
enhancement, while optical gained 135.91%
spatial resolution enhancement.

The future works will be aimed to elim-
inate existing drawbacks. As it is, the optimal
image subset selection module is realized in
a form of optimizing the source image subset
geometrical informativity cover and might
have to be considered to be developed in a form
signal-to-noise (SNR) ratio maximization. The
image shift evaluation module evaluates the
shift between image pair and presents it as a
single value. But, due to the geometric distor-
tions between image pairs, it may be beneficial
to compute shift for every pixel or for some
pixel-window for additional precision. How-
ever, it may lead to significant computation

burden and processing time increasement. The
enhancement procedure has a very high memo-
ry usage, thus, it may be adequate to reorganize
mathematical model in a way that will allow
small pixel-window enhancement, instead of
keeping whole image in memory.

While the test dataset representability
is some of a concern, nonetheless the result can
be useful for many tasks that can benefit from
high resolution data having in disposal data
with a lack in spatial resolution.
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