
Методи та засоби програмної інженерії

UDC 004.415.2

TETE-A-TETE PROJECT:

SOFTWARE ENGINEERING TOOLS SUPPORTING UNDERSTANDING
1 V.P. Hrytsay, 2 L.M. Zakhariya

1National University, Sacramento, California, USA,vhrytsay@gmail.com,

 2National University “Lvivska Polytechnika”,Lviv, Ukraine,zlm.lviv@gmail.com

Software Understanding is necessary and the most important condition of essential reducing of software development cost. In this paper Tete-A-
Tete Project is described which offers a radical rethinking of Software Development process and focuses on creating Understanding-Oriented
Automated Software Engineering Tools. The project is based algebraic approach to the presentation of programs, which opens up the possibility of
transformation and optimization programs. Implementation of the Tete-A-Tete Project will make it possible to build high quality software more
quickly and with lower cost, than previously possible; will have essential impact on Software Reengineering and will lead to rethinking and rein-
vention of the Chief Programmer Team in the form of the Software Director Team.

Познаваемость методов и средств разработки программного обеспечения является необходимым и наиболее важным условием сущест-
венного снижения стоимости программных систем. В этой работе описывается проект Tete-A-Tete, который предлагает радикальное
переосмысление процесса разработки программного обеспечения и направлен на создание ориентированных на познаваемость авто-
матизированных средств разработки программных систем. В основе проекта лежит алгебраический подход к представлению программ,
который открывает возможности трансформации и оптимизации программ. Реализация проекта Tete-A-Tete позволит создавать про-
граммное обеспечение более высокого качества , быстрее и с меньшими затратами, чем это было возможно ранее; окажет влияние на
Реинжининг Программного Обеспечения и приведет к переосмыслению и возврату к использованию Бригады Главного Программиста в
виде Бригады Программного Режисера.

Introduction
"Programming is understanding"

Kristen Nygaard

The problem of essential reducing software cost (Software Cost Problem) is very difficult unsolved problem. The most
software lifecycle costs occur after initial development and deployment. Software systems permanently evolve and their
transformations are required to make them adaptable to changing requirements and environments.

Software Engineering is and will always be an inherently human activity. This is why human understanding of software
systems and processes of their creation and transformation - Software Understanding – is an extremely important aspect of
Software Engineering assisting to overcome the difficult and complexity of large scale software systems.

We assert that Software Understanding is necessary and the most important condition of solving Software Cost Problem.
In this paper we describe some results obtained during work of many years on Tete-A-Tete Project (Tete-A-Tete).
Tete-A-Tete focuses on creating Understanding-Oriented Automated Software Engineering Tools implementing the

idea of Michael Jackson that “…enabling and supporting human understanding must be the goal of the software engineer-
ing tools” [1].
 Tete-A-Tete offers a radical rethinking of Software Development:
- Software Design should be completely separated from Software Implementation (Software Construction).
- Software Director (Software Régisseur), a new stakeholder of Software Engineering, is introduced, unifying Software

Development under the vision of a single person.
- Software Director, equipped with a universal Software Design Description Language (Tete-A-Tete_Language), should

be solely responsible for Software Design and the Conceptual Integrity of the Software System [2].
- Software Director should also be equipped with Software Development Tools (Tete-A-Tete_Designer) supporting

Tete-A-Tete_Language and enabling Automated Generation of up to 60-75% lines of Software Code as well as Auto-
mated Generation of Database Schemas and User Acceptance Tests for various Implementation Environments.

Implementation of Tete-A-Tete Project should:

 ©V.P. Hrytsay, L.M. Zakhariya, 2012
ISSN 1727-4907. Проблеми програмування. 2012. № 2-3. Спеціальний випуск 150

Методи та засоби програмної інженерії

 151

- Make it possible to build software more quickly, with lower cost and higher assurance of quality, than previously
possible.

- Have broader impact on Software Reengineering making it much easier for software systems developed in Tete-A-
Tete_Designer;

- Lead to reinvention of the Chief Programmer Team Management approach [3, 4].

Prehistory of the Tete-A-Tete Project
Tete-A-Tete focuses on creating Understanding-Oriented Automated Software Development Tools. It is a logical evolution
of the ideas and accomplishments, developed in the successful MULTIPROCESSIST Project (Glushkov Institute of Cyber-
netics NAS Ukraine, 1978-1988) [5-8].
Dr. Tseitlin G.E. was the initiator and leader of R & D team, working on this Project, which:
• studied Problem of weak Program Understanding;
• created Requirements for Program Design Languages;
• created SAA/1 Algorithms Design Language, based on Glushkov-Tseitlin Algebra of Algorithms;
• developed PL/I-program synthesizer with SAA/1 as a source language;
• (Later synthesizers for PASCAL, FORTRAN, COBOL, and ASSEMBLER (for IBM and PDP-11 platforms) have been

developed);
• installed PL/I-program synthesizer in many companies and organizations.
 MULTIPROCESSIST system proved its efficiency when developing programs with complicated logic and relatively sim-
ple data structures. Program Understanding was essentially improved (thanks to SAA/1) and thereby Program Maintenance
became more qualitative and rapid [5].

On average, for every synthesized program 66% lines of code were synthesized automatically.
In brief, synthesis of a PROGRAM in some programming language L in the MULTIPROCESSIST system looks as fol-

lows.
Consider the following algorithmic description in SAA/1 Language (called SAA-schema):
schema MMM = “Algorithm of solution of the Ах2+Вх+С=0 equation”;

“Analysis of the equation Ах2+Вх+С=0 “ is-defined-as
if ‘Coefficient А <> 0’
then “Solution of the quadratic equation Ах2+Вх+С=0”
else “Solution of the linear equation Вх+С=0”;

“Solution of the quadratic equation Ах2+Вх+С=0” is-defined-as
“Calculate: Z=-B/2A”
*
“Calculate Discriminant: D= Z2 – C/A”
*
if ‘Discriminant D > 0’
then “Calculate 2 different real roots”
*
if ‘Discriminant D = 0’
then “Calculate 2 equal real roots”
*
if ‘Discriminant D < 0’
then “Calculate 2 different complex roots”;

“Solution of the linear equation Вх+С=0” is-defined-as
if ‘Coefficient В <> 0’
then “Single Root: Х = - С/В”
else

if ‘Coefficient С <> 0’
then “Equation has no roots”
else “ Equation has infinitely many roots”

end schema MMM
(Asterisk ‘*’ denotes sequence operation).

At first glance this text looks like pseudocode, but in reality this is the description in SAA/1 Language. This Language is

based on Glushkov-Tseitlin Algebra of Algorithms - Systems of Algorithmic Algebras (SAA) - which is a universal algo-

Методи та засоби програмної інженерії

rithmic formal system, equivalent to Turing Machines, Recursive Functions, Markov Algorithms etc., and conceptually
adequate to Structured Programming.

SAA/1 Language has strict syntax and semantics and supports Step-Wise Refinement Method. Two types of abstractions
(called ‘semantic identifiers’) are used: operators and conditions, which can be elementary (atomic) and compound (com-
posed from elementary by means of operations of Glushkov-Tseitlin Algebra of Algorithms like sequence, if-then-else,
while-do and others).

Thus, in our example, only the following semantic identifiers:
“Analysis of the equation Ах2+Вх+С=0 “,
“Solution of the quadratic equation Ах2+Вх+С=0”
“Solution of the linear equation Вх+С=0”
are compound operators, whereas all the rest abstractions are elementary operators and conditions.
It is easy to see, that SAA-schema has multilevel, tree-like structure: each level is described by a “symbolic equality”

and elementary operators and condition are the leaves of this tree.
Input of MULTIPROCESSIST System consisted of two files:
• SAA-schema file.
• L-implementations file.
(List of L-implementations of elementary semantic identifiers of SAA-schema, developed manually by a programmer. It

has the following structure:
@ <Name of the elementary semantic identifier1 >
 <L-implementation of the semantic identifier1>
@ <Name of the elementary semantic identifier2 >
 <L-implementation of the semantic identifier2>
and so on).

Synthesis of a PROGRAM consists of two steps:
STEP 1: MULTIPROCESSIST automatically translates SAA-schema into Formula (formal representation of SAA-

schema) and Table of Correspondence of SAA-schema and Formula identifiers:
Formula MMM;
B0 = if V0 then (B1) else (B2);
B1 = A0*A1*(if V1 then A2)*(if V2 then A3)*(if V3 then

 A4);
B2 = if V4 then A5 else (if V5 then A6 else A7);
end Formula MMM;

Table of Correspondence

Formula SAA-schema
B0 “Analysis of the equation Ах2+Вх+С=0 ”
V0 ‘ Coefficient А <> 0’
B1 “Solution of the quadratic equation Ах2+Вх+С=0”
B2 “Solution of the linear equation Вх+С=0”
A0 “Calculate: Z=-B/2A”
and so on.
STEP 2: MULTIPROCESSIST synthesizes source code of L–program using Formula and L-implementations file.
COMMENTS
• Some details and intermediate steps, related to Formula Verification and PROGRAM Optimization, are omitted.
• Glushkov-Tsetlin Algebra of Algorithms is a universal algorithmic system and thereby SAA/1 is Universal Algo-

rithmic Language.
• Formula is also a description in SAA/1 language.
• One of the main features of SAA/1, distinguishing it from any Programming or Domain-Specific Language, is its

“Open at the Bottom” feature. It means that there are no restrictions on the choice and quantity of the primitives of
SAA-schema - elementary operators and conditions. These primitives can be of any level of abstraction and can
have any semantic interpretations. (By the way, the language of flow-charts also has this feature).
Hence SAA/1 is an Algorithms Description Language of any Level of Abstraction.

• There is also a possibility for Automatic Program Synthesis, when L-implementations file is preset in advance and
consists of functions, covering some strictly defined Application Domain (e.g. BANKING, ACCOUNTING etc.)

 152

Методи та засоби програмної інженерії

 153

and for any SAA-schema the set of its primitives consists only of the semantic identifiers of these functions. In this
case we get some kind of Domain Specific Language.

Software Understanding and Programming Languages
Programming Languages are still widely used for both Design and Construction (Coding). Unfortunately, all significant
programming paradigms like Structured Programming, Functional Programming, Object-Oriented Programming and others,
destined for Software Design, were embedded in Programming Languages, making them overcomplicated, hard for learn-
ing and efficient utilization, and worsening program code.

“Software in Science, Engineering and Business requires domain expertise. But software development is worsened by
the fact that the description mechanisms - programming languages - are inadequate for conveying relevant information to
people. As a result, software systems become fragile monuments of code that only software "artisans" dare to modify” [9].

“Programmers are always surrounded by complexity; we cannot avoid it. Our applications are complex because we are
ambitious to use our computers in ever more sophisticated ways. Programming is complex because of the large number of
conflicting objectives for each of our programming projects. If our basic tool, the language in which we design and code
our programs, is also complicated, the language itself becomes part of the problem rather than part of its solution.” [10].

We can easily make sure, that the more a Program is efficient as to execution parameters, the less it is understandable,
and vice versa. In other words, Machine-Oriented Efficiency (Speed, Memory…) and Human-Oriented Efficiency (Under-
standing, Readability…) are conflicting objectives of Programming Languages:

Analysis of these and other factors of weak Program Understanding has led to the following fundamental conclusion
[7, 8]:

The main reason of weak Program Understanding is Programming Language Destination.
The Destination of any Programming Language is EFFICIENT EXECUTION of Program Code.
Therefore weak Program Understanding is fundamental and ineradicable attribute of any Programming Language.

Hence methodological conclusion:
Design must be separated from Implementationand supported by languages of a new type, absolutely different from classi-
cal Programming Languages.
These languages - Software Design Description Languages – must be specially focused on Software Design and, at the
same time, enable Automated Synthesis of Program Code.

Tools supporting Software Understanding
One of the reasons of weak Software Understanding is that there is a large gap between the initially posed problem, which
requires creation of a new software-intensive system, and its eventual solution. The Web of Design Ideas i.e. the web of
thoughts, conceptions, intentions, design alternatives etc.., supporting smooth transition from the Software System’s Goal
to Software System’s Creation, is hidden in the minds of stakeholders of software projects, disseminated in the Program
Code or simply lost, and this is a very serious reason of weak Software Understanding.

“The gap between problem and solution must therefore be chiefly bridged by the human activities of describing, reason-
ing, designing, communicating, analyzing, and inventing, and software tools are needed to support those human activities
and, by doing so, to amplify our human powers. The sine qua non of those activities is human understanding. In large meas-
ure, then, enabling and supporting human understanding must be the goal of the software engineering tools” [1].

Design Thinking, Creative Thinking and Learning

Design Thinking, Creative Thinking and Learning are aspects of Human Intellectual Activity, which are very close to each
other.

What is the result of Creative Thinking of a person? It can be defined as a solution of some problem. While solving a
problem a person produces in his mind some set of abstract ideas.

Creative Thinking is Processing of Abstract Ideas and Generation of Productive Ideas by a Human Brain
Abstract Idea can be represented as a network (web) consisting of various notions (nodes) and relations (links) between

notions.
The most important feature of Abstract Idea is that in the process of Creative Thinking it is being changed permanently.
Processing of Abstract Ideas means that they are being changed permanently in terms of such intellectual operations like

concretization of notions, generalization, substitution, deletion and others i.e. some “more abstract” notions are being
changed by their “meanings” (i.e. by subnets, containing “more concrete” notions), other subnets are being generalized in
“more abstract” notions, some notions are deleted, others are created and so on.

Методи та засоби програмної інженерії

“Design thinking is what people do when they pursue their goals… It is a process of creative and critical thinking that al-
lows information and ideas to be organized, decisions to be made, situations to be improved, and knowledge to be
gainedetc. Design Thinking is creative because its outcomes are not predetermined” (Charles Burnette, IDeSiGN curriculum
[11]). Design Thinking is a creative process based around the "building up" of ideas” [12].

Design Thinking is Creative Search of the deep-laid simplicity in a complicated tangled problem.
Learning is a process which is very close to Design Thinking. The only distinction lies in the fact that Outcomes of

Learning are already predetermined in contrast to Outcomes of Design.
All content to be learned must be intellectually constructed.
This very old idea goes back to the outstanding ancient Greek philosopher Plato and was independently reinvented by

D.Norman [13].
Well-known Hypertext Learning Model is based on the following hypothesis:
Creative Thinking is being accomplished associatively.
A network of Writer's ideas, represented in hypertext form, gives to the Reader direct access to this network. Productiv-

ity of work of the Writer and adequacy of perception of the material by the Reader essentially grows, because intermediate
transformations of the material are excluded. Moreover, using Authoring and Browsing this network of ideas of the Writer
can be effectively analyzed and transformed by the Reader into his own network with the account of not only the essence of
information, but also of his individual mental and psycho-physiological features.

It is noticed, that Browsing stimulates Creative Thinking and in the process of Browsing an Effect of Serendipity can ap-
pear. Moreover, there is the following hypothesis of D. Engelbart [14]:

An opportunity to manipulate external symbols generates an effect of Augmentation of the Human Intelligence.

Tete-A-Tete_Hypertext
One of the technological outcomes of Tete-A-Tete is Interactive Hypertext Technology (Tete-A-Tete_Hypertext) -creativity
enhancing tools based on innovative hypertext technology supporting all the intellectual operations mentioned above
[15,16].
Tete-A-Tete_Hypertext is oriented above all on computer-aided support of Creative Thinking in contrast to conventional
text processors like MS WORD or HTML-editors, oriented on preparation of printed documents.
Tete-A-Tete_Hypertext is based on Interactive Hypertext Model (versus Static Hypertext Model used in the majority of
hypertext technologies like help-systems of Windows-programs or HTML-files):

• Static Hypertext Model: Hypertext structure is fixed at the design stage and user can only accomplish Browsing.
• Interactive Hypertext Model: Hypertext structure transformations are being accomplished ONLINE.

The Tete-A-Tete_Hypertext motto (and, at the same time, the goal of its development) is: What-You-THINK-Is-What-You-
Get.

Mathematics for Software Design
Analyzing applications of classical Mathematics to Software Design (Set Theory, Category Theory, First-Order Predicate
Calculus and others), We came to the following fundamental conclusion:

 Mathematics, based on Set-Theoretical Paradigm, is not an adequate tool for Software Design.

Set-Theoretical Paradigm
• The Set exists because its Elements exist.
• The Set is uniquely defined by its Elements.
• Elements are primary, the Set is secondary.

In contrast to Set-Theoretical Paradigm there exists System-Theoretical Paradigm:

System-Theoretical Paradigm
• The System is the Whole, the Integrity of something.
• The System can be represented in many different ways as a structure consisting of interrelated and interdependent

Elements (Syn: Components, Entities, Factors, Members, and Parts etc.).
• The System is primary and Elements are secondary.

Author is deeply convinced that

 154

Методи та засоби програмної інженерії

 155

Mathematics for Software Design must be based on System-Theoretical Paradigm.

Algebra of Abstract Systems [17] is the first steps in the process of creating System-Theoretical Mathematics.
Algebra of Abstract Systems is based on “Z-multiset” notion: a set together with integer multiplicities of its elements.

This notion is a generalization of such notions as “set” and “multiset” (a set with nonnegative multiplicities of its elements,
used in Petri Nets and Combinatorial Analysis).

Algebra of Abstract Systems consists of elements (e.g. concepts, events, states and others) and basic operations on ele-
ments, such as addition/subtraction, concatenation (sequence), multiplication (vectorization), non-deterministic choice (one-
of), interrelation, specialization, substitution, conditional existence (if-then), and some other operations.

There are elementary (atomic) elements and compound elements (composed from elementary by means of operations of
Algebra of Abstract Systems, and there are derived (composed from basic) operations.

Very important feature of this Algebra is that these operations have natural algebraic properties like associativity, dis-
tributivity and others, thereby enabling to describe and transform various systems as algebraic formulas in a very succinct
and clear manner.

Universal Software Design Description Language

The main novelty of Tete-A-Tete is a universal Software Design Description Language (Tete-A-Tete_Language).

Tete-A-Tete_Language should:
• be absolutely independent from any Implementation Environment (Operating Systems, Programming Languages,

Scripting Languages, Databases etc.).
• be a controlled natural language, which is easier to understand. A controlled natural language is a computer proc-

essable subset of standard English designed to serve as knowledge representation language. It will be based on some
ideas of the Attempto Controlled English (computer processable subset of standard English [18-19]) and Semantics
of Business Vocabulary and Business Rules (SBVR) [20].

• be a kind of expressive and powerful formal language, based on some new Mathematics specially oriented on Soft-
ware Design.

• have “open at the bottom” feature, distinguishing it from any computer language. “Open at the bottom” means that
language primitives are not settled i.e. there are no restrictions on the choice, quantity and interpretation of language
primitives. This feature implies that Tete-A-Tete_Language should be a universal formal language of any level of ab-
straction.

• It will provide smooth transition from informal Problem Domain descriptions in the human language (using Tete-A-
Tete_Hypertext) to more and more formal descriptions (in terms of abstract Concepts, Relations, Scenarios, GUI
Controls, etc.), which will be insofar compiled for appropriate target Implementation Environment.

Software Director - a new stakeholder of Software Development

Software Director should be:

• the Chief Architect of the Software System and the Main User of Tete-A-Tete_Language.
• solely responsible for the Conceptual Integrity of the Software System [2] and unifying Software Development under

the vision of a single person.
• someone in a Software Development Process analogous to the Theatre Director or Stage Director (Régisseur) in the

theatre field, who oversees and orchestrates the mounting of a theatre production.
• the only mediator between non-programming stakeholders (Customers, Subject Matter Experts, and End-Users …)

from one hand, and professionals in Software Construction (Programmers, GUI Designers, QA Engineers, Testers
and others) from another hand.

Tete-A-Tete_Designer automated software development tools

Tete-A-Tete_Designer should:
• be based on Tete-A-Tete_Hypertext;
• support Tete-A-Tete_Language;
• enable Automated Generation of up to 60-75% lines of Program Code as well as Automated Generation of Database

Schemas and User Acceptance Tests for various Implementation Environments.

Методи та засоби програмної інженерії

We consider a software system as a partially ordered set of tasks that are implemented by scenarios. Each scenario is a
sequence of cadres (frames). Each cadre is a primary logically complete element of the software system under design
consisting of a screen form (Windows Form or Web Page), the user's actions on the form and the system's reactions on
events which may happen on this form.

Examples of Descriptions in
Tete-A-Tete_Language

Problem Domain Concepts

concept USER_PROFILE is-defined-as sum-of

 FIRST_NAME
 LAST_NAME
concept DATE_OF_BIRTH
concept GENDER
concept ETHNICITY
concept RACE
concept ADDRESS
 HOME_PHONE_NUMBER

MOBILE_ PHONE_NUMBER
concept EMAIL

end-of-concept USER_PROFILE

concept DATE is-defined-as product-of
 MONTH
 DAY
 YEAR
where
concept YEAR is-defined-as

 digital-word year such-that
length-of year is-equal-to 4

end-of-concept YEAR

concept MONTH is-defined-as word month

such-that month is one-of
“January” “February” “March” “April” “May” “June” “July” “August” “September” “October” “November” “De-
cember”

end-of-concept MONTH

concept DAY is-defined-as digital-word day

such-that
either
day is-equal-to one-of 1 2…30

 in-case month is-equal-to one-of
“April” “June” “September” “November”
or
day is-equal-to one-of 1 2…31
in-case month is-equal-to one-of
“January” “March” “May” “July” “August” “October” “December”
or
day is-equal-to 29
in-case month is-equal-to “February”

and
year is-a LEAP_YEAR
or
day is-equal-to 28

 156

Методи та засоби програмної інженерії

 157

in-case month is-equal-to “February”
and
year is-not LEAP_YEAR

end-of-concept DAY
end-of-concept DATE

User-System Dialog Interfaces
form USER_PROFILE is-defined-as sum-of

input FIRST_NAME
input LAST_NAME
form DATE_OF_BIRTH
selection GENDER
selection ETHNICITY
form RACE
form ADDRESS
input HOME_PHONE_NUMBER
input MOBILE_ PHONE_NUMBER optional
input EMAIL
button “Submit”

end-of-form USER_PROFILE

form DATE OF BIRTH is-defined-as product-of

selection MONTH
 selection DAY
 selection YEAR
end-of-form DATE OF BIRTH

form RACE is-defined-as sum-of

option “African American”
option “Asian”
option “Caucasian”
option “Hispanic”

end-of-form RACE

User-System Dialog Scenarios

scenario-for-task “User Registration” is-defined-as

USER should start-application

SYSTEM should check-task-feasibility

DIALOG-INTERFACE should-be

form “Home” containing
button “Create Account”

USER should “start Registration” defined-as

click-button “Create Account”

SYSTEM should show-form “Registration”

DIALOG INTERFACE should-be

form “Registration” containing

Методи та засоби програмної інженерії

 form “Account”
 button “Register”

where
form “Account” is-defined-as sum-of

 input USERNAME
 hidden-input-with-confirmation PASSWORD
 input-with-confirmation EMAIL

USER should

* identify-form “Registration”
* “create new ACCOUNT” defined-as

fill-in-form “Account”
click-button “Register”

SYSTEM should

 “check and save ACCOUNT “ defined-as
if form “Registration” is-valid

 and LOGIN is-unique
then “accomplish User Registration”
else show-form “Registration” errors

where “accomplish User Registration” is-defined-as
save ACCOUNT
show-form “Successful Registration”

DIALOG-INTERFACE should-be

form “Successful Registration” containing
link “Confirm Registration”

USER should

* identify-form “Successful Registration”
* “finalize User Registration” defined-as

 click-link “Confirm Registration”

SYSTEM should

set-task-successful-termination
end-of-scenario-for-task “User Registration”

Related Work

There are a few approaches similar to Tete-A-Tete:

1. Literate programming [21]:

"A traditional computer program consists of a text file containing program code. Scattered in amongst the program code

are comments which describe the various parts of the code.
In literate programming the emphasis is reversed. Instead of writing code containing documentation, the literate pro-

grammer writes documentation containing code. No longer does the English commentary injected into a program have to be
hidden in comment delimiters at the top of the file, or under procedure headings, or at the end of lines. Instead, it is
wrenched into the daylight and made the main focus. The "program" then becomes primarily a document directed at hu-
mans, with the code being herded between "code delimiters" from where it can be extracted and shuffled out sideways to
the language system by literate programming tools.

The effect of this simple shift of emphasis can be so profound as to change one's whole approach to programming. Un-
der the literate programming paradigm, the central activity of programming becomes that of conveying meaning to other
intelligent beings rather than merely convincing the computer to behave in a particular way. It is the difference between
performing and exposing a magic trick." [22].

2. Intentional Programming [23]:

 158

Методи та засоби програмної інженерії

 159

"Businesses invest a great deal of time and expense developing software. But all too often the knowledge and insights
gained during the development disappear into the details of the code or at best only exist in documents with slender ties to
the actual source code. Another name for this latent value is the intent behind the software. That is why we call this ap-
proach Intentional Software™.

Intentional Software captures the tremendous latent value that is usually lost in the design and development process and
makes it part of the software. Using Intentional Software the domain knowledge is captured not lost. All stakeholders - pro-
grammers, domain experts and others - can have their design intent clearly represented in code. “[24].

Conclusion
Implementation of the Tete-A-Tete Project should:
• have broader impact on Software Reengineering making it much easier, because it will become Continued Development

in the Tete-A-Tete_Designer:
Software Project, specified in the Tete-A-Tete_Language and independent from any Implementation Environment, can

be recompiled (after all the required transformations) for any Implementation Environment, available in Tete-A-
Tete_Designer.
• lead to reinvention of the Chief Programmer Team Management approach [3, 4]:

Chief Programmer Team should be replaced with Software Director Team. Software Director should be equipped with
the Tete-A-Tete_Designer and thereby the duties of other Software Director Team members (Developers, Testers, GUI
Designers…) should be substantially subordinated to Software Director, enabling him to unify Software Development un-
der the vision of a single person in order to achieve Conceptual Integrity of the Software System.

1. Jackson M. Automated Software Engineering: Supporting Understanding. Automated Software Engineering. – 2008. – Vol. 15, N. 3. –

Р. 275–281.
2. Brooks F. The Mythical Man-Month, Addison-Wesley, first published 1975. Silver Anniversary edition published 1995.
3. Mills H. D. Chief Programmer Teams: Principles and Procedures, Report N. FSC 715–108, IBM Corporation, Gaithersburg, Maryland, June, 1972.
4. Baker F. T. "Chief Programmer Team Management of Production Programming" // IBM Systems J. – 1972. – Vol. 11, N. 1. – Р. 56–73.
5. Yuschenko E.L., Tseitlin G.E., Hrytsay V.P., Terzjan T.K. Multilevel Structured Program Design: Theoretical fundaments, tools. – M.: Finances and

Statistics, 1989. – 208 p. (in Russian).
6. Hrytsay V.P., Tseitlin G.E. Some questions of Structured Parallel Programming Automation // Cybernetics. – 1979. – N l. – P. 106 – 111 (in

Russian).
7. Hrytsay V.P. On Implementation of MULTIPROCESSIST Structured Programming Tool. Cybernetics. – 1983. – N 3. – P. 118–123 (in Russian).
8. Hrytsay V.P. Design Principles and Implementation of MULTIPROGESSIST Structured Programming Tool. Ph.D. Thesis. Kiev. –1986 (in Russian).
9. Lopes C. A Linguistic Approach to Software Development, NSF Award Abstract #0347902,

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0347902.
10. C.A.R. Hoare (1981). The emperor's old clothes". Communications of the ACM 24 (2): 5–83.
11. http://www.idesignthinking.com/01whyteach/01whyteach.html
12. http://en.wikipedia.org/wiki/Design_thinking.
13. Norman, Donald A. Defending Human Attributes in the Age of the Machine, First person CD-ROM, New York, Voyager, 1995.
14. Engelbart D. A conceptual framework for the augmentation of man's intellect. In P.W.Howerton and D.C. Weeks (Eds).// Vistas in information han-

dling: The augmentation of man's intellect by machine.-Washington, DS: Spartan Books. – 1963. – 1. – P. 1–29.
15. Hrytsay V.P. “Tete – A – Tete Dynamic Hypertext" information technology. Herald International Solomon University. – 2000. – N. 4. – P.

124–133 (in Russian).
16. Hrytsay V.P. Tete – A – Tete Hypertext Technology – a tool for development of Computer – Aided Learning Intellectualization Systems. USiM.

– 2002. – N. 3/4. – P .87–91 (in Russian).
17. Grits'ay V.P. Algebra "GAMMA" of abstract systems: a mathematical background of a parallel program development specification language. IMACS

14 World Congress, Proc. IMACS 14, Atlanta, USA. – 1994. – Vol. I. – P. 200–202.
18. . N. E. Fuchs, U. Schwertel, R. Schwitter. Attempto Controlled English (ACE) Language Manual, Version 3.0, Technical Report 99.03, Department

of Computer Science, University of Zurich, August 1999.
19. Stefan Hoefler. The Syntax of Attempto Controlled English: An Abstract Grammar for ACE 4.0, Technical Report ifi-2004.03, Department of Infor-

matics, University of Zurich, 2004.
20. http://www.omg.org/news/meetings/ThinkTank/past-events/2006/presentations/04-WS1-2_Hall.pdf
21. Donald E. Knuth. Literate programming // The Computer Journal, May 1984. – 27(2):97111.
22. http://www.literateprogramming.com
23. Charles Simonyi. The Death Of Computer Languages, The Birth of Intentional Programming, September 1995 Technical Report MSR–TR–95–52.
24. http://www.intentsoft.com/technology/overview.html

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0347902
http://www.idesignthinking.com/01whyteach/01whyteach.html
http://en.wikipedia.org/wiki/Design_thinking
http://www.omg.org/news/meetings/ThinkTank/past-events/2006/presentations/04-WS1-2_Hall.pdf
http://www.literateprogramming.com/
http://www.intentsoft.com/technology/overview.html

