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РОЗРОБКА СИСТЕМИ ІНТЕЛЕКТУАЛЬНОГО 
КЕРУВАННЯ БЕЗПІЛОТНИМ АВТОМОБІЛЕМ

Ця робота присвячена створенню інтелектуальної системи керування безпілотними транспортними за-
собами з використанням передових методів та підходів машинного навчання. Центральним елементом 
цього підходу є алгоритм NeuroEvolution of Augmenting Topologies (NEAT), реалізований мовою про-
грамування Python. NEAT відіграє ключову роль у вдосконаленні штучних нейронних мереж, що до-
зволяє автономним автомобілям самостійно орієнтуватися в різноманітних дорожніх умовах. Здійс-
нення ретельних експериментів довело здатність NEAT автоматизувати роботу самокерованого во-
діння, забезпечуючи адаптивність до різних сценаріїв. Результатом дослідження стала розробка скла-
дної системи, здатної автономно орієнтуватися на різних гоночних трасах. Динамічні структури ней-
ронних мереж NEAT допомагають автомобілю швидко вчитись. Мова Python достатньо зручна для 
реалізації таких задач завдяки великій кількості різноманітних бібліотек. А інтеграція із Pygame забез-
печує систему необхідними інструментами для рендерингу та взаємодії з графікою. Ітеративні цикли 
навчання та вдосконалення значно підвищують продуктивність та адаптивність системи. Нейронні ме-
режі успішно навчаються орієнтуватися на трасі, підтримувати оптимальну швидкість, уникати зітк-
нень та вирішувати різноманітні гоночні завдання. Цей проєкт підкреслює можливості NEAT, поряд з 
інтеграцією Python та Pygame, у створенні інтелектуальних систем керування для безпілотних автомо-
білів. Він є перспективним для подальшого розвитку технології автономного водіння, спрямованої на 
обробку більш складних сценаріїв і безперешкодну інтеграцію з реальним обладнанням. Успішне ро-
згортання інтелектуальної системи управління безпілотними автомобілями на основі NEAT демонст-
рує ефективність еволюційних алгоритмів у вирішенні складних проблем управління. Це створює пі-
дґрунтя для подальших досліджень і вдосконалення безпілотного водіння, сприяючи розвитку безпе-
чніших і ефективніших транспортних систем.
Ключові слова: нейронні мережі, еволюційне навчання, генетичні алгоритми, алгоритм NEAT, ефек-
тивність навчання NEAT, архітектура нейронної мережі.
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DEVELOPMENT OF THE INTELLIGENT CONTROL 
SYSTEM OF AN UNMANNED CAR

This study delves into creating an intelligent control system for self-driving vehicles, utilizing cutting-edge 
machine learning methods. Central to our approach is the NeuroEvolution of Augmenting Topologies (NEAT) 
algorithm, implemented in the Python programming language. NEAT plays a pivotal role in refining artificial 
neural networks, enabling autonomous cars to navigate diverse road conditions independently. Through rig-
orous experimentation, we demonstrate NEAT's capability to automate self-driving operations, ensuring 
adaptability to various driving scenarios. The result of the research is the development of a complex system 
proficient in autonomously navigating a variety of race tracks. NEAT's dynamic neural network structures 
help the vehicle learn quickly.The Python language is quite convenient for implementing such tasks thanks to 
a large number of libraries. Integration with Pygame equips the system with essential tools for graphics ren-
dering and interaction. Iterative cycles of training and refinement significantly enhance the system's perfor-
mance and adaptability. Neural networks adeptly learn to navigate tracks, maintain optimal speeds, avoid 
collisions, and tackle diverse racing challenges. This project demonstrates NEAT's capability, alongside Py-
thon and Pygame integration, in crafting intelligent control systems for self-driving cars. This holds promise 
for further development in autonomous driving technology, aiming to handle more intricate scenarios and 
seamlessly integrate with real-world hardware. In essence, the successful deployment of an intelligent control 
system for unmanned vehicles based on NEAT demonstrates the efficacy of evolutionary algorithms in tack-
ling complex control problems. This sets the stage for further research and refinement in unmanned driving, 
fostering the development of safer and more efficient transportation systems.
Keywords: neural networks, evolutionary learning, genetic algorithms, NEAT algorithm, NEAT learning ef-
ficiency, neural network architecture.
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Introduction
The rapid development of information 

technology is quickly changing our lives and 
affecting all areas of human activity [1]. Infor-
mation technologies allow automating various 
processes, increasing productivity, and reduc-
ing costs.

Such areas as networking, cloud technol-
ogies, Internet of Things technologies, and artifi-
cial intelligence are actively developing [2-3].

The rapid development of technology 
has led to significant advances in the field of 
unmanned vehicles, both ground and airborne 
[4].  One of the most promising areas in this 
field is the development of intelligent control 
systems for ground-based unmanned vehicles, 
also known as self-driving cars.

The development of an intelligent con-
trol system for self-driving cars is an endeavor 
that encompasses a variety of advanced soft-
ware development technologies. It involves the 
combination of artificial intelligence, machine 
learning, computer vision, and advanced algo-
rithms to create a system that allows the vehi-
cle to perceive information from the outside 
and make decisions in real time [5]. By using a 
multitude of sensors, these systems collect and 
process huge amounts of data.

In this paper, we propose to create a 
simple system for intelligent control of an un-
manned vehicle in the Python programming 
language using the NEAT (NeuroEvolution of
Augmenting Topologies) algorithm. In the 
context of self-driving vehicles, a simple 
model system developed using NEAT in Py-
thon has great prospects. Such a system makes 
it possible to understand the fundamental con-
cepts of intelligent driving.

Main part
Intelligent driverless vehicle control 

systems use advanced Machine Learning algo-
rithms [6]. Through a process known as Deep 
Learning, these algorithms analyze large data 
sets to discover patterns, allowing the vehicle to 
improve its decision-making capabilities over 
time. This iterative learning process enables the 
system to adapt to new scenarios, optimize its 
performance, and ultimately improve the safety 
and reliability of automated vehicles.

The NEAT (NeuroEvolution of Aug-
menting Topologies) technology was used in 
this work. NEAT is an evolutionary algorithm 
that creates artificial neural networks. It com-
bines neural networks and genetic algorithms 
to create intelligent control systems.

Algorithm description
It is necessary to describe the genetic 

coding algorithm used in NEAT. NEAT's ge-
netic coding strategy is designed to facilitate 
gene alignment during mating when two ge-
nomes overlap. Genomes serve as linear repre-
sentations of network connections, and each 
genome contains a list of connecting genes that 
refer to pairs of genes of connected nodes [7].

In NEAT, mutations can affect both the 
weights of connections and the structure of the 
network. The weights of connections change, 
as in other neuroevolutionary systems. At the 
same time, each connection is potentially bro-
ken or remains constant in each generation [8].

Each mutation leads to the expansion of 
the genome by introducing new genes. In the 
"linkage addition" mutation, a new linkage 
gene with a random weight is added. In the 
"node addition" mutation, the existing linkage 
is split and a new node is placed. The linkage 
leading to the new node is assigned a weight of 
1. This approach to adding nodes was chosen 
to minimize the direct impact of mutation [9]. 
Although the new nonlinearity in the connec-
tion slightly changes the function, new nodes 
can be quickly integrated.

As a result of mutations, genomes in 
NEAT gradually increase in size, resulting in 
genomes of different lengths. Allowing ge-
nomes to grow unlimitedly inevitably leads to
a more complex form of the "controlling con-
vention problem" with different topologies and 
combinations of weights [10].

In the course of evolution, there is infor-
mation that accurately reveals the correspond-
ence of genes between individuals. This infor-
mation is the historical origin of each gene. 
Genes with the same historical origin neces-
sarily represent the same structural component, 
although potentially with different weights. 
Therefore, all that the system needs to establish 



377

Експертні та інтелектуальні інформаційні системи, штучний інтелект

genetic alignments is to store records of the his-
torical origin of each gene in the system.

Keeping track of these historical jour-
nals requires minimal computing resources. 
Each time a new gene appears, the innovation 
global number is incremented and assigned to 
that gene. These innovation numbers essen-
tially reflect the appearance of each gene in the 
system [11].

These historical markers provide 
NEAT with powerful capabilities [12]. Now 
the system has an accurate knowledge of 
which genes correspond to each other. During 
the crossing process, genes from both genomes 
with matching innovation numbers are paired 
and called matching genes. Genes that do not
match are classified as redundant. These re-
dundant genes represent structural components 
that are not present in the rest of the genome 
[13]. In the generation of offspring, genes are 
randomly selected from either parent, while all 
redundant genes are included sequentially 
from the parent with the best fit. Therefore, 
historical markers allow NEAT to perform 
crosses using linear genomes.

By introducing new genes into the pop-
ulation and combining genomes with different 
structures, the system can create a population 
with a diverse topology. However, it is obvious 
that this population alone is not enough to pre-
serve topological innovation. Smaller struc-
tures tend to be optimized faster than larger 
ones, and adding nodes and connections usu-
ally initially reduces the fitness of the network. 
The newly added structures have a limited 
probability of surviving longer than one gener-
ation, even though the innovations they repre-
sent may be vital to solving problems [14].

The degree of compatibility between a 
pair of genomes is naturally determined by the 
number of redundant genes. The greater the di-
vergence between two genomes, the less evo-
lutionary history they share. Therefore, in 
NEAT, we can quantify the compatibility dis-
tance, denoted as δ, for different structures
through a direct linear combination of several 
factors, including the number of redundant 
genes (E), the number of non-overlapping 
genes (D), and the average weight differences 
between the corresponding genes (W), which 
includes even non-functional genes. The 

formula for calculating the compatibility dis-
tance is as follows:

1 2
3 .c E c D c W

N N
 = + +

The coefficients 1 2 3, ,с с с provide a 
means of adjusting the relative importance of 
the three factors in calculating the compatibil-
ity distance. The Factor N, which represents 
the number of genes in the largest genome, is 
used to normalize the genome size. The thresh-
old of compatibility, called t , is used in con-
junction with the distance measure  , to deter-
mine how genomes should be classified into 
species. An ordered list of species is main-
tained to organize the population into species.

Each existing species is characterized 
by a randomly selected genome of the next 
generation, which serves as a representative 
genome. To assign a given gene, called g ,
from the current generation to a species, it is 
placed in the first species, for which g is con-
sidered compatible with the representative ge-
nome of that species. This method ensures that 
the species do not overlap and do not share any 
common members [15]. If the genome g is in-
compatible with any of the existing species, a
new species is created, where g is a repre-
sentative genome.

The NEAT reproduction mechanism 
uses explicit fitness sharing, which means that 
organisms belonging to the same species must 
collectively share the fitness of their niche. 
This arrangement ensures that a species cannot 
grow excessively, even if a significant number 
of its members are doing very well. Therefore, 
it is unlikely that one species will dominate the 
entire population. To calculate the adjusted 
suitability, denoted as if  , for a given organism
i its distance  from all other organisms j
in the population is taken into account:
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the number of organisms of the same species 
as organism i . This decrease is natural, as spe-
cies are already clustered by compatibility with 
the threshold t . Each species is assigned a 
potentially different number of offspring. Then 
the species are multiplied, first excluding the 
members with the lowest efficiency from the 
population [16]. Then the entire population is 
replaced by the offspring of the remaining or-
ganisms in each species.

Description and development 
of the system

For the development, we used the Py-
thon programming language together with the 
PyGame visualization package. The Python 
programming language is best suited for the 
development of neural networks, and the 
PyGame package is suitable for visualizing the 
system's operation [17].

For the successful implementation of 
the project, it is necessary to choose the opti-
mal configuration of the NEAT algorithm 
(Fig. 1).

Fig. 1. NEAT algorithm configuration

The NEAT section defines parameters 
specific to the system:
• fitness_criterion: used to calculate the com-

pletion criterion based on the genome fit-
ness set.

• fitness_threshold: when the value of the fit-
ness function calculated with fitness_crite-
rion, reaches the threshold specified in the
code, the evolution process is completed.

• pop_size: number of individuals in each
generation.

• reset_on_extinction: this parameter is set to
True. When all species die out

simultaneously due to stagnation, a new
random population will be created.

The DefaultGenome section defines 
the parameters for the built-in DefaultGenome 
class. This section is necessary for the imple-
mentation of the genome when creating an in-
stance of the Config:
• activation_default: attribute of the default

activation function assigned to new nodes.
• activation_mutate_rate: the probability that

a mutation will replace the node's activation
function with a randomly determined acti-
vation_options parameter.

• activation_options: activation functions that
can be used by nodes.

• aggregation_default: attribute of the default
aggregation function assigned to new nodes.

• aggregation_mutate_rate: the probability
that a mutation will replace the node's ag-
gregation function with a randomly deter-
mined aggregation_options parameter.

• aggregation_options: aggregation functions
that can be used by nodes. New aggregation
functions can be defined in the same way as
new activation functions.

A description of the car driving on the 
race track is shown in Fig. 2. The program code 
describes:
• Uploading a car image, setting car dimen-

sions.
• Determining the starting position and speed

of the car.
• Create a list where data from the car sensors

will be recorded.
• Setting the initial parameter to check if the

car has not crashed.
• Setting the initial parameters of the distance

and time traveled.

Fig. 2. Description of the race car

After that, the system aims to autono-
mously navigate race tracks of varying 
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complexity by evolving the neural network ar-
chitecture through an iterative evolutionary 
process [18]. Our model is a neural network 
with five input neurons - sensors - and four out-
put neurons - actions it can perform between 
them (Fig. 3).

Fig. 3. Input and output neurons

Next, we added some hidden layers 
with additional neurons. These layers increase 
the complexity and sophistication of our 
model, but they also increase the training time 
and the likelihood of neurons "overfitting" 
(Fig. 4).

Fig. 4. Hidden layers

All neurons are interconnected, the 
connections between neurons have a certain 
weight depending on all those values to which 
the model will react in a certain way based on 
the input data (Fig. 5).

Fig. 5. Connections between neurons

Initially, sensor values and actions are 
completely random, but over time, cars learn 
to perform actions more rationally and 

efficiently. However, for each action that cars 
perform, they will receive a reward or a pen-
alty, and this is realized by using a so-called 
fitness function. In our simple model, the fit-
ness function of a car increases depending on 
the distance it travels without accidents. After 
each generation, the cars improve - the cars 
with the highest fitness function are likely to 
survive and reproduce, while cars that do not 
perform as well will disappear after a while. 
When a car is reproduced, it won't simply copy 
its parent's properties. It'll be similar but not 
identical, potentially improving performance
on the track and avoiding accidents. Thus, cars 
that are very similar to each other form their 
own species. If a species does not improve 
within a fixed number of generations, it be-
comes extinct. Taking all these principles into 
account, an environment was created in which 
the best cars survive and reproduce, while the 
worst disappear. The basic principle is that 
what works is likely to survive and be repro-
duced.

Testing the system
First, the system was tested for a simple 

oval track. The simulation start function is 
shown in Fig. 6:

Fig. 6. The function of starting 
a simulation

The self-driving car successfully over-
comes the track during the first few genera-
tions. With each new generation, the car in-
creases its speed and completes the track 
faster. After the fourth generation, there are 
several cars that successfully pass the track. 
Further, with the following generations, the 
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number of cars and their speeds are constantly 
increasing.

The implementation of creating popu-
lations and running a simulation with 1000 
generations is shown in Fig. 7.

Fig. 7. Code snippet for creating populations 
and starting a simulation

We can also see how the cars were di-
vided into two groups, forming two types 
(Fig. 8-10).

Fig. 8. Third generation on a simple oval 
track

Fig. 9. Fourth generation on a simple oval 
track

Fig. 10. The fifth generation on a simple oval 
track

Then the system was tested on a more 
complex track with many turns. Until the fourth 
generation, the cars could not drive through the 
first turn. But the model gradually develops, 
trains, and therefore, after the fourth generation, 
it can easily overcome this turn. Then there are 
problems with other turns. With each subsequent 
generation, the model improves and covers a 
greater distance of the track. More and more cars 
successfully complete the track before crashing. 
And finally, after twenty-four generations, one 
car successfully completes the track without an 
accident. With each new generation, there are 
more cars and they gradually increase their speed 
to drive faster around the track. In this example, 
we can clearly see how the NEAT neural net-
work learns and develops (Fig. 11-13).

Fig. 11. Fourth generation on a challenging 
track

Fig. 12. Twenty-first generation on a chal-
lenging track
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Fig. 13. The twenty-fourth generation on a 
difficult track

Testing the system on different tracks 
confirmed the system's functionality.

Conclusions
Thanks to the integration of NEAT, Py-

thon, and Pygame, a system capable of auton-
omously navigating race tracks of varying 
complexity was successfully created.

Throughout the development process, 
the capabilities of NEAT, a neuro-evolutionary 
algorithm, were used to develop a neural net-
work architecture that demonstrates intelligent 
behavior. NEAT facilitated the automatic gen-
eration and modification of neural network 
structures, allowing the system to adapt and 
learn based on interaction with the environ-
ment.

The Python language is quite conven-
ient for implementing such tasks thanks to a 
large number of libraries. Pygame provided us 
with the necessary tools for graphics render-
ing, collision detection, and time control, 
which allowed us to create a visually interac-
tive environment for the system.

Iterative cycles of training and evalua-
tion, as well as system refinement and optimi-
zation, have played a crucial role in improving 
the system's performance and adaptability. 
Thanks to several generations of evolution and 
continuous improvement, neural networks 
have learned to navigate race tracks, maintain 
a high average speed, avoid collisions, and 
adapt to various racing challenges.

This project demonstrated the potential 
of NEAT and its integration with Python and
Pygame in the development of intelligent con-
trol systems for self-driving cars. The devel-
oped system serves as a basis for further devel-
opment of self-driving cars, as it can be 

extended to handle more complex scenarios 
and integrate with real-world hardware.

In general, the successful development 
of an intelligent control system for an un-
manned vehicle based on NEAT demonstrates 
the effectiveness of evolutionary algorithms in 
solving complex control problems. This sets 
the stage for further research and refinement in 
unmanned driving, fostering the development 
of safer and more efficient transportation sys-
tems.
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