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ELASTICSEARCH FOR BIG GEOTEMPORAL DATA

An exponential growth in the volume and complexity of geospatial data, driven by advances in GPS technology,
mobile devices, and Internet of Things (IoT) sensors, has created an urgent need for scalable and efficient
solutions for storage and query processing [1]. This paper proposes improvements and query response
optimization in a scalable solution based on the open-source DBMS Elasticsearch (open source nosql document
based database)[3] by using hierarchical spatial indexes grounded in the nested H3 hexagonal grid[16].

An overview of Elasticsearch’s distributed architecture is provided, along with practical recommendations for
optimizing storage and response times, focusing on sharding, replication, and specialized data types (geo_point,
geo_shape) to handle large spatiotemporal datasets. Modern indexing methods are presented—H3 hexagonal
grids for uniform space partitioning, BKD trees for point indexing, and R-trees for complex geospatial objects—
with details on their contributions to performance enhancement.

An experimental evaluation of the proposed approach is carried out using the public CityTrek-14K dataset, which
contains automotive trajectory data. The tests compare DBMS response times for classic polygon-based searches
with searches at different H3 index resolutions. The results confirm that high-resolution indexing significantly
reduces query times while balancing accuracy and resource usage. Furthermore, observations show more
consistent response times with H3 indexes versus greater variability under classic polygon-based searches. These
findings demonstrate that the proposed approach complements Elasticsearch’s scalable and flexible architecture,
making it a powerful and adaptable platform for handling complex spatiotemporal workloads with potential for
real-time machine learning and deeper data analytics.

Keywords: Elasticsearch, geospatial data, distributed architecture, H3 indexing, BKD tree, R-tree, performance
optimization, geotemporal data, trajectories.
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ELASTICSEARCH JJIS1 BEJIUKUX TEOTEMITOPAJILHUX
JTAHUX

ExcrioHeHuiiiHe 3pocTaHHst 0OCSATIB 1 CKIIaHOCTI I'€ONPOCTOPOBHUX AaHHUX, 3yMOBJICHE PO3BUTKOM TEXHOJIOTIH
GPS, mo0OinbHMX MpUCTPOIB Ta nat4yukiB [HTepHeTy peueit (IoT), crBopmio HaranpHy norpedy B MaciutaboBa-
HUX 1 e)EeKTUBHUX PILICHHSX JUIs 30epiranHs i onpamtoBaHHs 3anuTiB [1]. Y cTarTi 3anpornoHoBaHO Y0CKOHA-
JICHHS Ta ONTUMI3AIliI0 Yacy BiATIOBii Ha 3aIIUTH Y MacIITa0OBaHOMY IpOrpaMHOMY pimreHHi Ha ocHOBI CYB /]
3 BigKpUTUM BuXigauM koxoMm Elasticsearch[16] 3a 1omoMoro BUKOPHCTaHHS i€papXidHUX MPOCTOPOBUX iHIE-
KCiB Ha OCHOBI BKJIaJIeHOT rekcaroHaiabHoi citku H3[3].

Hageneno ormsx posmoainenoi apxitekrypu Elasticsearch ta 3anponoHoBano HaOlp MPaKTHK ST ONTHMI3AIIil
30epeXCeHHS Ta Jacy BIIIMOBIJI 3 aKIICHTOM Ha IIAPJiHT, PETUTIKAIII0 Ta BAKOPUCTAHHS CIICI[ialli30BaHIX THITIB
nIaHuX (geo point, geo shape) amst 0OpOOKHM BETHKHIX IeONpOCTOPOBO-4yacoBUX HabopiB. HaBeneHo cyyacHi Me-
TOJIHM iHIEKcamii — mecTUKyTHY CciTKy H3 mns piBHOMipHOTO po3mnofminty npocropy, BKD-nepeBa ais TouxoBoi
iHgexcarii Ta R-nepeBa st poOOTH 31 CKIaIHUMU T€OMPOCTOPOBUMH 00’ EKTaMH, i3 3a3HAYCHHSAM iXHBOTO BHE-
CKY Y TiBUIIECHHS MPOIYKTHBHOCTI.

[IpoBeneHo excriepuMeHTaIbHE TECTYBaHHs 3aIIPOIIOHOBAHOTO MiIXO01y Ha OCHOBI IyOJiYHOrO HabOpy JaHMX
CityTrek-14K, 110 MiCTHTb J1aHi IIPO TPAEKTOPIIO PyXy aBTOMOOUILHOTO TpaHcHopTy. ExcriepuMenTaibHe Tec-
TYBaHHS 3/J[IIICHEHO LIUIIXOM MOPiBHAHHSA 4acy Bianosini CYB/] Ha KjacuyHi 3anMTH MOLIYKY 3a IOJIrOHOM Ta
Yacy BIJIOBi/I Ha NOIIYK 3a pi3HUMHU piBHAMU H3-iHnekciB. Pe3ynbpraTi eKcnepiuMeHTIB MiATBEPKYIOTh, 10
IHJIeKcallisl 3 BUCOKOIO PO3/ITIBHOIO 3/IaTHICTIO OMITHO CKOPOYY€E Yac 3alMTIB, 3a0e3Meuyrouu OalaHc Mix To-
YHICTIO Ta BUTpaTaMu pecypciB. Takoxk CriocTepesKeHHs OKa3yloTh OiIbII OJHOPIIHUN Yac BIAIOBIJI 3 BUKO-
puctanasiM H3-iHmekciB mOpiBHAHO 3 OLTBIIOI0 BapiaTUBHICTIO Y 3aTPHMIIL Y BIATIOBiAl MPpH KIACHYHOMY IIO-
OIyKy 3a MOJIroHoM. Lli BHCHOBKH i ITBEPIKYIOTh, IO 3alIPONOHOBAHUH MiIXi/l JOMOBHIOE MacIITabOBaHy Ta
rayuKy apxitektypy CYB/I Elasticsearch, po0istau ii moTy»KHOIO Ta THyYKOIO IDIaTHOPMOFO Tl 00poOKH CKIta-
JHUX T'eOIPOCTOPOBO-YACOBHX HABAHTAXKEHB 13 IIEPCIEKTHBOIO POLINPEHHS 10 MAIIHHHOTO HaBYAHHS B Pealib-
HOMY Yaci Ta TIu0IIo] aHAITHKY TaHHX.

Kurouosi cnosa: Elasticsearch, reornpocropoBi nasi, posnojinena apxirekrypa, H3-innekcauis, BKD-znepeso,
R-zmepeBo, onTumisanis IpOAYKTHBHOCTI, T€OTEMITOPaJIbHI AaH1, TPA€KTOPii.
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1. Introduction

The exponential growth in geospatial
data volume and complexity, driven by
advancements in GPS technology, mobile
devices, and Internet of Things (IoT) sensors,
has created an urgent need for scalable and
efficient storage and querying solutions.
Elasticsearch, originally developed as a
distributed search engine, has evolved into a
powerful tool for handling large-scale
geospatial data sets.

Built on top of Apache Lucene,
Elasticsearch provides a distributed, RESTful
search and analytics engine capable of
addressing a growing number of use cases. Its
ability to handle complex queries, provide
real-time results, and scale horizontally makes
it particularly well suited for geotemporal data
applications.

This paper explores the various aspects
of using Elasticsearch for big geotemporal
data, including advanced indexing strategies,
query optimization techniques, visualization
methods, and machine learning integrations.
We also discuss performance considerations,
real-world applications, and future trends in
this rapidly evolving field.

2. FElasticsearch Architecture and
Geospatial Data Handling

Core Components of Elasticsearch

Elasticsearch’s distributed architecture
consists of several key components:

Elasticsearch Cluster

Node 1 Node 2

Primary Shards Replica Shards

(00|50 {{E

Fig. 1. Elasticsearch distributed architecture
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As shown in Figure 1, Elasticsearch
employs a distributed system architecture
where data is organized hierarchically between
multiple nodes in a cluster. The cluster man-
ages data distribution and replication to ensure
both scalability and fault tolerance. Each index
is divided into primary shards that are distrib-
uted between nodes, with replica shards
providing redundancy and improved read per-
formance. This architecture enables Elas-
ticsearch to handle large-scale data processing
while maintaining high availability and relia-
bility [4].

o Nodes:  Individual  FElas-
ticsearch instances that store and process data.

o Clusters: A collection of nodes
working together to distribute data and pro-
cessing.

o Indices: Logical containers for
storing related documents.

o Shards: Subdivisions of indi-
ces that allow for horizontal scaling.

. Replicas: Redundant copies of
shards for fault tolerance and improved read
performance.

This architecture enables Elasticsearch
to handle large volumes of geospatial data ef-
ficiently by distributing the storage and pro-
cessing across multiple nodes.

Geospatial Data Types and Mapping
Elasticsearch supports two primary

mapping types for geospatial indexing:
e geo_point: Used for storing latitude
and longitude coordinates as a single

field;
e geo_shape: Used for storing complex
shapes such as polygons,

linestrings, and multi — polygons.

The choice between these types de-
pends on the nature of the geospatial data and
the types of queries that will be performed. For
example, geo_point is suitable for simple lo-
cation-based queries, while geo_shape allows
for more complex spatial operations like inter-
sections and containment checks [5].
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Indexing Strategies for Geotemporal
Data

Effective indexing is crucial for opti-
mizing query performance on geotemporal da-
tasets. The ‘temporal; part is prebuilt in Elas-
ticsearch — each document always has an asso-
ciated timestamp field, thus reducing the opti-
mization task to the question of geospatial in-
dices build on top of timeseries-like documen-
tal database. Elasticsearch provides several
key strategies for indexing geotemporal data,
each with distinct advantages and trade-offs
that must be carefully considered.

Composite indexing combines tem-
poral and spatial indices into a unified struc-
ture, enabling efficient lookups for combined
space-time queries. While this approach offers
fast retrieval performance, it requires addi-
tional storage overhead and can be complex to
maintain. Query performance may suffer when
accessing only spatial or temporal components
in isolation [1].

Composite Index

Temporal Index

Spatial Index l

T Combined T
Space-Time Query

Spatial Query Temporal Query

Fig. 2. Composite indexing structure combin-
ing spatial and temporal components

Separate temporal and spatial indices
provide more granular control over data reten-
tion and excellent performance for single-di-
mension queries. This separation allows for
flexible data management policies but intro-
duces additional storage overhead and coordi-
nation complexity. Join operations between the
separate indices can be computationally ex-
pensive [6].

Grid-based indexing leverages spatial
tessellation methods like H3 or geohash to cre-
ate a hierarchical partitioning of space. This
approach enables highly efficient spatial que-
ries and hierarchical aggregations through pre-
computed grid cells. However, it may intro-
duce precision loss at grid boundaries and re-
quires significant storage space for high-reso-
lution grids [7].

Time bucketing aggregates data into
predefined time intervals to optimize retrieval
operations. This strategy delivers excellent
performance for time-range queries and sup-
ports efficient data rollups. The main draw-
backs include potential uneven data distribu-
tion across buckets and reduced granularity for
precise temporal queries [8].

Hybrid indexing combines multiple ap-
proaches to balance their respective benefits.
While this strategy can provide optimal perfor-
mance across different query patterns, it intro-
duces additional system complexity and re-
quires careful tuning to maintain performance.
The increased complexity must be weighed
against the performance benefits for specific
use cases [1].

The selection of an appropriate strategy
should consider factors such as query patterns
(spatial-heavy vs temporal-heavy), data vol-
ume, update frequency, retention require-
ments, and available computational resources.

3. Advanced Indexing
Techniques

H3  Indexing for
Optimization

Geospatial

H3 technology built and open-sourced
at Uber is an advanced spatial indexing system
that enhances Elasticsearch’s ability to handle
geospatial data. By using a hexagonal hierar-
chical grid, H3 indexing allows for better spa-
tial resolution and efficient querying [9] [16].

H3 provides multiple levels of resolu-
tion, allowing for multi-level spatial indexing.
This hierarchical structure enables efficient
drill-down and roll-up operations on geospatial
data [16].

Fig. 3. H3 hierarchical hexagonal grid system
on a globe
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Efficient Partitioning

Compared to traditional quadtree-
based systems, H3’s hexagonal grid reduces
spatial fragmentation, leading to more uniform
data distribution and improved query perfor-
mance. The hexagonal structure provides sev-
eral advantages:

o Uniform adjacency: Each hexa-
gon has exactly six equidistant neighbors.

U Compact representation: Hexa-
gons approximate circles better than squares,
reducing edge effects.

o Hierarchical nesting: Parent-
child relationships between resolutions are
well-defined.

o Edges overlapping: H3 cells of
a higher resolution nest into the cell of higher-
resolution in a way that is edges are over-
lapped, thus partially solving the problem
where two indexed points are in different cells
[10].

Query Acceleration

H3 indexing improves the performance
of various spatial operations:

Table 1
H3 Query Performance Improvements
Operation Result  Reason
Spatial Joins Faster = Reduced edge
cases
Distance Cal- Accu-  Uniform cell

culations racy sizes

Aggregations Effi- | Hierarchical
ciency  structure

BKD Trees for Geospatial Indexing

For geospatial indexing, Elasticsearch
uses BKD (Bounding K-D) trees, which are a
variation of k-d trees optimized for disk-based
storage [3]. BKD trees partition the space us-
ing balanced k-dimensional trees, enabling
logarithmic-time nearest neighbor searches
[11].

The time complexity for querying a
BKD treeis:  O(logN + k)

Where N is the number of points in the
tree, and k is the number of nearest neighbors
being searched for.
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R-Tree Indexing for Geo-shapes

For complex spatial shapes, Elas-
ticsearch uses R-Trees, which are tree data
structures used for spatial access methods. R-
Trees group nearby objects and represent them
with their minimum bounding rectangle in the
next higher level of the tree [1], [12].

The average time complexity for que-
rying an R-tree is:

0(mlog,,N)

Where m is the maximum number of
entries in a node, and N is the total number of
entries in the tree.

4. Query Optimization and
Performance Tuning

Query Types and Optimization
Techniques

Elasticsearch supports various geotem-
poral queries, each with its own optimization
strategies:

e Time Range Queries: Utilize date his-
togram aggregations for efficient time-
based analysis.

e Spatial Point Queries: Leverage
geo_point indexing and
geo_distance filters for fast lookups.

e Spatial Range  Queries:  Use
geo_bounding_box or geo_polygon
filters for efficient area-based searches.

e Spatiotemporal Aggregation Queries:
Combine geohash_grid aggregations
with date histograms for multi-dimen-
sional analysis.

e Trajectory Queries: Implement path
simplification algorithms to reduce
data points while maintaining spatial
accuracy [13].

Sharding Strategy

Effective sharding is crucial to main-
tain performance in large-scale geospatial ap-
plications. Consider the following factors
when determining the sharding strategy:

e Data volume: The number of shards
should be proportional to the expected
data volume.

e Query patterns: Design sharding to
benefit from data locality based on
common query patterns.
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e Hardware resources: Balance the num-
ber of shards against available CPU
and memory resources [14].

A general guideline for shard sizing is:

Total Data Size

Number of Shards = Desired Shard Size

Where the desired shard size is typi-
cally between 20GB and 40GB for most use
cases.

Caching and Memory Management
Optimize  Elasticsearch’s  caching
mechanisms for geospatial workloads:

e Field data cache: Limit the field data
cache size based on the frequency of
aggregations on geo-fields.

e Query cache: Adjust the
querycachesize to accommodate fre-
quently executed geospatial queries
[6].

e Shard request cache: Enable for read-
heavy workloads with repetitive geo-
spatial queries [15].

5. Experimental Evaluation

Dataset Description

The CityTrek-14K dataset was selected
for our experimental evaluation due to its ex-
tensive coverage and detailed temporal and
spatial data. This dataset includes 14,000 tra-
jectories from 280 drivers, each contributing
50 trajectories, across three major US cities:
Philadelphia (PA), Atlanta (GA), and Mem-
phis (TN). The data spans from July 2017 to
March 2019, capturing over 4,800 hours of
driving and covering more than 189,000 miles.
The data set is collected at a frequency of 1Hz,
providing a granular view of driving patterns
while ensuring privacy through anonymization

[4].
Experimental Setup

The experiment aimed to assess the
performance of geospatial queries in Elas-
ticsearch, comparing direct geospatial queries

with those that used H3 indices at various res-
olutions.

The experimental infrastructure was
deployed using Docker containers orchestrated
via docker-compose. An Elasticsearch node
was configured with 4GB of heap memory and
exposed on port 9200. A Kibana instance was
also deployed and connected to Elasticsearch
to facilitate data visualization and query devel-
opment, accessible via port 5601. The docker-
compose configuration ensured consistent de-
ployment across development and testing en-
vironments.

Data Ingestion

The trajectory data was loaded into an
Elasticsearch cluster. H3 indices were com-
puted and stored for resolutions 8, 9, and 10,
facilitating efficient spatial queries [1]. Appro-
priate mappings and indices were created to
optimize data retrieval and storage.

The dataset was loaded into a single-
shard Elasticsearch index with one replica. The
total size of 17 million observations amounted
to 1.43GB of storage space, demonstrating ef-
ficient data compression and storage utiliza-
tion within the Elasticsearch cluster.

Storage

143gb Primary 143gb Total

¢ Shards 1 Primary / 1 Replica

Fig. 4. Elasticsearch index storage statistics

Results

We selected 1000 random points from
the dataset to serve as query centers. For each
point, a 500-meter buffer was created to define
the query area. Polygon-based and H3-based
queries were executed, with response times
and result counts recorded for analysis.

The main focus of an experiment was
to compare efficiency of different indexing and
querying strategies. Thus, the main metric cho-
sen is time of response for the search request.
The experimental results are summarized in
Table 2, which shows the performance metrics
for different query approaches:
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Distribution of Response Times by Method (Line Plot)
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Fig. 5. Query time distribution

Table 2
Query Performance Comparison

Query Min (s) Max | Mean (5)
Type O)

Polygon 0.006 0.178 0.013
H3 (Res 0.003 0.110 0.006

H3 (Res 0.003 0.085 0.007

H3 (Res 0.004 0.104 0.008

From the chart, we observe clear trends
in response time distributions across different
query methods:

H3-indexed queries (Resolutions 8, 9,
10) generally exhibit faster response times
compared to direct geo-polygon queries. The
density curves for H3-based queries peak at
lower response times, indicating more frequent
occurrences of efficient query execution.

Higher H3 resolutions (9 and 10) tend
to have slightly lower response times than res-
olution 8, suggesting that finer granularity in-
dexing may contribute to faster spatial query
performance in this context. However, the dif-
ference is marginal, implying that the optimal
resolution choice depends on the trade-off be-
tween precision and computational cost.

Direct geo-polygon queries have a
broader and more right-skewed distribution,
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indicating occasional longer response times.
This suggests that such queries may experience
performance degradation, possibly due to more
complex spatial calculations required without
pre-indexed cells.

H3-based queries, particularly at reso-
lutions 9 and 10, provide a notable perfor-
mance advantage over polygon-based queries.
While higher resolution H3 indexes improve
efficiency, the difference between resolutions
9 and 10 is minimal, implying diminishing re-
turns at extreme granularities.

Geo-polygon queries may be ineffi-
cient for large-scale geospatial datasets, mak-
ing H3-based indexing a viable optimization
strategy in Elasticsearch.

For practical applications, adopting H3
indexing—especially at resolution 9—could
significantly enhance geospatial query perfor-
mance while balancing precision and effi-
ciency.

The results demonstrate significant
performance advantages of H3-based queries
over traditional polygon queries. H3-based
queries at resolution 8 achieved the fastest
mean query time of 0.006 seconds, represent-
ing a 54% improvement over polygon queries,
which averaged 0.013 seconds. Resolution 9
maintained strong performance at 0.007 sec-
onds, while resolution 10 queries executed in
0.008 seconds, both still notably faster than
polygon queries. The maximum query times
showed even more dramatic differences, with
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H3 resolution 9 queries completing in 0.085 s
compared to 0.178 seconds for polygon que-
ries, a 52% reduction in worst-case latency.
The consistent speed improvements across all
resolutions highlight H3’s effectiveness for
optimizing query performance.

6. Conclusion

Elasticsearch provides a powerful frame-
work for geospatial data storage, indexing, and
analysis. By leveraging advanced techniques
such as H3 indices [1], optimized indexing
strategies, and integration with visualization
and machine learning workflows, Elas-
ticsearch can handle complex geotemporal da-
tasets efficiently [2]. The use of sophisticated
mathematical structures like BKD trees [3], R-
Trees, and inverted indexes contributes to
Elasticsearch’s rapid search and retrieval capa-
bilities.

Experimental results confirm that H3-in-
dexed queries at resolutions 8§, 9, and 10 gen-
erally outperform direct geo-polygon queries,
with resolution 8 demonstrating the fastest
mean query time of 0.006 seconds—a 54% im-
provement over polygon queries (0.013 sec-
onds on average). Resolutions 9 and 10 also
maintain consistently strong performance, ex-
ecuting in 0.007 and 0.008 seconds respec-
tively. Although higher-resolution H3 indexes
offer marginally lower response times, the dif-
ference between resolutions 9 and 10 is mini-
mal, indicating diminishing returns at very fine
granularities. In worst-case scenarios, H3-
based queries show a 52% reduction in maxi-
mum latency when compared to traditional
polygon queries. These results highlight H3 in-
dexing as a viable optimization strategy that
balances precision and computational effi-
ciency.

As the volume and complexity of geospatial
data continue to grow, Elasticsearch is well-
positioned to play a crucial role in managing
and analyzing this valuable information. Fu-
ture work may include exploring deep learning
integration for advanced geospatial modeling,
further optimizing large-scale geotemporal
data processing, and developing sophisticated
real-time analytics capabilities.
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