
Формальні методи розробки програмного забезпечення

© A. Letichevsky, O. Letychevskyi, V. Peschanenko, A. Guba, 2013

54 ISSN 1727-4907. Проблеми програмування. 2013. № 2

UDC 519.7

A. Letichevsky, O. Letychevskyi, V. Peschanenko, A. Guba

DEDUCTIVE VERIFICATION OF REQUIREMENTS FOR

EVENT-DRIVEN ARCHITECTURE

The current paper presents the technology of processing of requirements for systems with event-driven archi-

tecture. The technology consists of the stages of formalization, formal verification and conversion to design

specifications. The formalization is the formal description of events as formal specifications called basic pro-

tocols. The consistency and completeness of basic protocols, safety properties and user-defined properties are

verified. The deductive tools for dynamic and static checking are used for detection of properties violation. The

method of enlargement allows reducing the complexity of proving and solving. Formal presentation of re-

quirements allows converting them to SDL\UML specifications and generating the test suite. The technology is

realized in IMS system and applied in more than 50 projects of telecommunication, networking, micropro-

cessing and automotive systems.

Requirements capturing stage in

software development process

Requirements capturing technology

has become as a part of software development

process not long ago. The advantages of such

stage are the following:

 a detection on the earlier stages of a

development of the deep hidden errors that

could cause the re-planning or redesign. It

could save the efforts of the test group and

reduce the probability of financial losses in

software projects;

 an automatic generation of a test

suit from the formal presentation of require-

ments for future model;

 an automatic generation of a code

or design specifications on the high levels of

abstraction;

 near 60-70% of discrepancies, gaps

and ambiguities in requirements are detected

during the formalization stage.

Last years, special languages for re-

quirements description have been developed.

They are such as Promela [1] that allows to

describe a system of an interacting automata

for SPIN model checking tool [2], and User

Requirement Notation (URN) [3] recom-

mended by International Telecommunication

Union (ITU) and for which the traversal

mechanism of models on UCM language (a

functional subset of URN language) has been

described [4]. On the other hand, an interest

to deductive methods for requirements veri-

fication has considerably increased. In this

category, the most known tools are Hets [5],

which uses common algebraic specification

language (CASL) [6], STeP [7], PVS [8]. In

2002, ISO completed a standardization of Z-

notation [9], which has been developed since

1974 and proved as a powerful and usable

notation for specification [10] and verification

of software systems [11, 12].

There are two stages in requirements

capturing process:

 a formalization of requirements;

 a verification of formal require-

ments specifications.

Usually the requirements for system

are presented as a set of documentation which

contains the informal text with figures, tables,

diagrams. It describes the behavior of reactive

system as the set of reactions of system or as

the interaction between its components. The

first stage is the formalization of requirements

where the formal specifications are created

manually. These specifications are called

basic protocols [13, 14]. The second stage

includes the work with verification tools that

accepts the formalized requirements as the

input and generates verdict in which the set

of findings is described. Every finding is ac-

companied by counterexample which leads to

the violation.

Specific of our approach is the usage

of deductive tools and symbolic modeling in

verification process. It allows working with

http://teacode.com/online/udc/51/519.7.html

Формальні методи розробки програмного забезпечення

55

the set of scenarios of a system behavior and

with the set of values involved in formaliza-

tion as opposed to traditional model checking

techniques where preference is given to con-

crete values. With this purpose the deductive

tools such as proving and solving machines

for different theories are used in this technol-

ogy. The main previous results of authors are

described in [13 – 15].

Basic protocol language

We deal with the set of reactions of

system presented as event-driven behavior.

The reactive system consists of agents which

could be considered as emitters and consum-

ers. Every requirement presents some local

description and performs some action. Every

agent in system has attributes which define

the agent type.

The model of a system is defined as a

transition system which has the formulas of

some typed logic language L as states. So this

is a symbolic model. Some functional and

predicate symbols of this language are inter-

preted over their type domains like an arith-

metical operations and relations. Other sym-

bols have types defined over fixed domains

but are uninterpreted. They are called attrib-

utes and their values or properties could be

changed during the system functioning.

The language L used in verification

system is implemented so far [15] contains

integer, real, enumerated, Boolean and sym-

bolic types with linear arithmetic operations

and inequalities for an arithmetic types, logi-

cal connectors for Booleans and equality for

all types. The domain for symbolic type is the

set of terms with distinguished set of con-

structors and access operations. Arrays are

considered as functions with restricted do-

mains for indices.

Every reaction of system could be pre-

sented by the following entities:

 trigger event;

 waiting state;

 changing of environment state;

 actions caused by trigger event.

It could be described by means of the

basic protocol which contains three compo-

nents – precondition, action and postcondi-

tion. Precondition is the formula in basic

language L. Basic protocol is applicable if

this formula is true for given state of envi-

ronment. Postcondition is the changing of at-

tributes. It could consist of the formula in

language L or the imperative statements like

assignment. Action is the list of operations

performing by agent. Basic protocol with its

three components could be presented as

MSC-diagrams [16].

Fig. 1. Example of the basic protocol

The diagram presents the source re-

quirement:

“Upon receiving of signal RELE_ON

in warming mode when the temperature ex-

ceeds 50 degrees the device should change

the mode into cooling and set the tempera-

ture in 40 degrees.”

The set of actions performing by the

agent “Device” is presented by MSC-

statements like receiving the message and

MSC-action which is titled as “Mode Chang-

ing”. The formulas of precondition and post-

condition define the changing of symbolic

state of the environment presented by attrib-

utes Mode and T.

The process of formalization of re-

quirements is definition of waiting states of

system behavior where the set of triggers is

awaited and the changing of environment

states caused by trigger event. This appro-

ach is very convenient, because software de-

signer typically specify system requirements

as a set of possible behavior fragments ex-

pressing the system functionalities, and ba-

sic protocols resemble such natural language

Формальні методи розробки програмного забезпечення

56

requirements statementsused in engineering

practice. The only difference is the using of

the formal language instead of a natural lan-

guage.

Symbolic modelling of requirements

If we will determine the initial state

0f of system as some initial formula we can

apply basic protocol for this formula by the

following way.

 define the applicability of basic

protocol or satisfiability of precondition and

symbolic state of environment;

 compute the new formula f by

means of special function called predicate

transformer [15] that has current symbolic

state of environment and postcondition as ar-

guments.

Applying the basic protocols we could

obtain the set of histories. Each history is pre-

sented by a sequence:

0 1 2f f f  

Every formula if is the symbolic state

of system and process of generation of such

histories presents symbolic modeling of re-

quirements. In that way we can simulate the

work of system obtaining different scenario

of system behavior [13].

Symbolic modeling [17] of require-

ments is used for definition of reachability of

some property in the system behavior. Prop-

erty is reachable if we can reach such sym-

bolic state of system which is consistent with

this property that is the conjunction of the

property and the state is satisfiable. We can

check also the reachability of violation of

user-defined property. For example, we can

check whether some safety property S is

violated. If during symbolic modeling we

reach the state that is the formula f and

f& ~  S is satisfiable then we’ve detect

safety violation.

There are the following properties that

could be verified:

 inconsistency. Formula of incon-

sistency could be defined statically and

checking of satisfiability of this formula gives

the possibility to detect the non-determinism

in requirements;

 incompleteness. Static proving of

incompleteness formula detects the possible

candidates for deadlocks in the system.

Launching of symbolic modeling tools de-

fines the reachability of deadlock with coun-

terexample given as MSC trace;

 safety. The safety violations also

could be detected by proving with presenta-

tion of counterexample leading to this finding.

Verification system

The verification system was devel-

oped by authors where the symbolic model-

ing of formal requirements specifications

and proving of mentioned above static prop-

erties was provided. Special deductive sys-

tem has been developed for this purpose.

It contains the proving machine and solver

for integer and real arithmetic based on the

algorithms of Fourier–Motzkin and Press-

burger and proving machine with solver for

enumerated and symbolic types. The input

of system is the formalized requirements as

a set of basic protocols. User could input the

properties of safety which could be checked.

Static checker prove the completeness, con-

sistency and safety and if a violation has

been detected then the system is trying to

reach the violation by forward and backward

symbolic modeling [15]. It also gives the

counterexample as a scenario of system be-

havior in the case of reachability of the find-

ing. There is a scheme of requirements pro-

cessing technology below:

Fig. 2. Requirements processing technology

The input of the system is the source

documentation which contains the require-

ment in a text form. There could be thou-

sands of pages with figures, tables and other

Формальні методи розробки програмного забезпечення

57

non-formal descriptions. Verification engi-

neer formalizes the information as the set

of the system reactions. He defines the envi-

ronment as the set of agents with its attrib-

utes. Then he tries to find descriptions of

external triggers for system in documenta-

tion which causes the changing of environ-

ment and creates the basic protocols. He

could use the incremental verification or

create the whole set of basic protocols. Af-

ter launching of verification system the veri-

fication verdict could be obtained and re-

sults are presented to customer. Customer

should correct or refine the requirements and

the verification stage will continue until ab-

sence of violations.

The other possibility of verification

system is to generate the design specification

like SDL/UML models. The result of genera-

tion could be used in further refinement and

detailing of model.

Invariants techniques

Originally basic protocols are not or-

dered. Therefore after applying basic proto-

col and transforming current state by predi-

cate transformer, any other protocol can be

applied. So we should check the applicability

for all basic protocols, and each check re-

quires the use of deductive system. The

symbolic technology allows reducing the ex-

pensive proving and solving processing dur-

ing the modeling of a system behavior by

means of computing invariant properties.

In real industrial projects there can be

thousands of basic protocols, so to reduce the

search time for the next applicable basic pro-

tocol is an actual problem. To make this

search more efficient the succession relation
2DF  is computed statically for the set of

basic protocols. This relation by definition

must satisfy the following property: basic

protocol 'd can be applied after d in some

trace starting from the initial state of the sys-

tem  DLS , only if   Fdd ', .

The first approximation F0 of succes-

sion relation is the following:

0)(')1()',(0  xxdFdd 

Here)(' x is the precondition of 'd .

Let us prove that F0 is a succession relation.

Let there is a trace where 'd can be applied

after d. This trace must contain fragment
a a

s s s


   such that '.''
'

sss
dd

 From the

monotonicity of predicate transformer it

follows

 0)(''),1(')(xxsdssd 

.0)(')1( xxd 

Therefore   0', Fdd  . Succession re-

lation 0F can be strengthened using invariant

properties of requirements. Formula  is a

preinvariant of a basic protocol d if it is va-

lid each time before application of this pro-

tocol. Formula  is a postinvariant of a basic

protocol d if it is valid each time after appli-

cation of protocol d . A formula  1d is a

postinvariant of d . The succession relation

can be strengthened by adding arbitrary invar-

iants as conjunction members to  1d .If we

know some postinvariant of a protocol B

then we can check the consistency of this

invariant with the applicability conditions

for all protocols and reduce the set of suc-

cessors of B to only those protocols for

which these conditions are consistent with

postinvariant of B (conjunction is satisfia-

ble). Therefore the network of basic proto-

cols can be constructed and the reachability

search is reduced from the search in an in-

finite tree to the search in a graph which is

much more efficient.

A protocol B is called initial, if the

condition of its applicability is consistent with

the initial state. If preinvariant of a protocol

B is 0, and it is not initial, then B is not

reachable from the initial state.

The computation of the strongest in-

variants gives the possibility to define the

strongest succession relation preliminary and

avoid the expensive redundant proving and

solving during simulation. In this case the

reachability of a protocol coincides with the

existence of a path from the initial protocol.

The reachability of a property also can be

computed without trace generating. For this

purpose one must check the consistency of

this property with the postcondition of all

reachable protocols.

Формальні методи розробки програмного забезпечення

58

Unfortunately, it is possible that the

strongest invariant does not exist (not ex-

pressible in the logic language). In this case

we can be satisfied by computing finite ap-

proximations of invariants. This computa-

tion is performed solving corresponding

equations for minimal fixed points.

The invariants that were computed

during verification could be used on the

step of design. For continuation of work

with design specifications it is necessary

to move to the lower level of abstraction

and the refinement of specifications shall

be provided on the level of design specifi-

cations.

Fig. 3. Checking of integrity of requirements

and design specifications

The design specifications could be la-

beled by invariants and it will give the possi-

bility to check whether the refining specifi-

cation correspond to source requirements.

There are two options. These invariants that

are called annotations could be checked

during modeling of design specifications if

such simulation tools exist. From the other

side it could be prove by tool which is de-

veloping by authors – Insertion Modeling

System [18], where annotations could be

proved during symbolic modeling of de-

sign specifications. The other option is to de-

compose updated design specification into

basic protocols and repeat verification.

During this stage the invariants will be

updated and the new set of annotations for

design specifications could be formed.

Enlargement technique

The set of basic protocols could be en-

capsulated as enlarged basic protocol if it

composes the connected component in an ori-

ented graph which presents the succession

relation of basic protocols. If this relation has

been strengthened by invariants it is possible

to define pre- and postcondition for enlarged

basic protocol. If the folded connected com-

ponent will be encapsulated to single node in

graph then the set of input and output arrows

could be defined for it. We can consider the

set of preinvariants  1 2, ,P P for successors

as the input arrows and correspondingly the

set of postinvariant  1 2, ,Q Q for prede-

cessors as output arrow. So the precondition

for enlarged basic protocol could be defined

as disjunction  21 PP P1. The postcon-

dition could be defined as disjunction

 2211 QPQP P1.

If we hide the set of basic protocols

into the enlargement basic protocol it is pos-

sible to reduce the significant interleaving

and verify the properties for different subsets

of basic protocols. There are the following

possibilities:

 enlarging of an agent behavior. If

we have some agents interacting one with an-

other then we can encapsulate the behavior

of a single agent into the enlarged basic pro-

tocol. It gives the possibility to detect

the properties violations on the high level ab-

straction that reduces the complexity of com-

putations;

 incremental verification. Some ini-

tial part of basic protocols could be verified

separately. After verification of this part it

could be inserted into the enlarged basic pro-

tocol. It gives the possibility to avoid expo-

nential explosion in the number of projects;

 features interaction. After verifica-

tion of feature it is possible to encapsulate it

into the enlarged basic protocol and continue

processing with the other features. It could

give the possibility to avoid repetition of veri-

fication of common parts of system;

 enlarging of the set of agents. The

group of agent could be folded into one entity

that presents the enlarged agent. The interac-

tion between agents could be reduced to the

Формальні методи розробки програмного забезпечення

59

interaction between enlarged agents and prove

the absence of violation on such level of ab-

straction.

Applications

There are more than 50 industrial ex-

amples which were processed by verification

system [19]. According to the rules of cus-

tomers, the details of these projects couldn’t

be published. The examples of verification of

several commonly known algorithms are pre-

sented below. These are telecommunication

systems and protocols, telephony, automotive

systems, networking, microprocessing and

other projects. Process of verification started

from formalization of requirements as a set of

basic protocols. It is interesting that 70% of

errors, discrepancies and gaps in requirements

were detected during formalization. Verifica-

tion engineer should not be as a specialist in

subject domain which belongs to verified sys-

tem. He considers the requirements as abstract

statements which should be consistent. Such

methodic could detect missed logic content

and avoid the ambiguity in understanding of

requirements by developers.

The more deep hidden errors have

been detected after launching of verification

system. The findings detected during verifica-

tion are presented by counterexamples which

show the scenario leading to violation.

Usage of enlargement techniques in

verification of Hard Handoff feature in tele-

communication protocol.

The requirements for the feature of

telecommunication protocol present 1150

pages in event-driven style. Each requirement

presents the consuming of messages by agent,

processing of its parameters and sending of

messages to other agents. There are 4 differ-

ent types of agents that are considered in this

protocol – Mobile Station, Base Station, Mo-

bile Manager and Mobile Station Communi-

cator. Actually the requirements were pre-

pared for Mobile Manager component. Hard

Handoff feature is considered as transition of

mobile phone from one cell to another and all

messages from phones and bases are pro-

cessed by Mobile Manager. There is the num-

ber of features such as parsing of message,

calculation of some parameters which could

be implemented by programming with state-

ments like nested cycles, non-linear functions.

It is hard and unnatural to implement it by

basic protocols. These features could be pre-

sented as folded entities which could be for-

malized as enlarged basic protocols and be

refined on the next level of abstraction which

is design specifications.

All these requirements were formal-

ized as 245 basic protocols. 114 findings have

been detected during formalization. After ver-

ification 36 findings have been detected as

safety violations. There were 14 findings of

incompleteness in systems presented by the

deadlocks with corresponding counterexam-

ples. 4 inconsistencies presented as non-

determinism were detected.

Fig. 4. The set of agents interacting in Hard

Handoff feature of telecommunication

protocol

But the total verification of feature

without methods of enlarging entailed expo-

nential explosion even with usage of only 3

Mobile Managers. The following enlargement

of agents was used:

Fig. 5. Enlargement in Hard Handoff feature

MSC

MM1 MM2 MMx

BS1

MS1

BS2 BS3 BSx

MS2 MS3 MS4 MS5 MS6 MS7 MS8

…

…

…

Mo-

bile

Man-

age-

ment

Set of

BS

with

corre-

spond-

ing MS

on

source

part of

Hard

Handof

f

Mobile

Station

Com-

muni-

cator

Other

MM

with BS

and MS

on

target

part of

Hard

Handoff

Формальні методи розробки програмного забезпечення

60

Such formalization was verified dur-

ing one hour and allowed to detect all find-

ings for Mobile Manager requirements.

Feature interaction in Plain Old Tele-

phone System (POTS)

The requirements for POTS presented

as use-cases where every use-case presents

the single feature. There are 10 different fea-

tures which are intersected and the verifica-

tion of all features together could entail ex-

ponential explosion. It was possible to en-

capsulate the already verified parts of sys-

tem into enlarged entity and continue veri-

fication only with other parts of system. All

features presents interaction of such agents

as Switch, Service Point Control and Op-

eration System. For example the feature

“IN Freephone Billing” repeats part of the

main feature “Basic Call”. The intersected

parts could be folded into enlarged entity

and verification was performed only for parts

of new feature.

Fig. 6. Enlarging in POTS

UCM (Use Case Map) diagram pre-

sents the two features that were decompose to

basic protocols and separated for two sets.

One set contained the basic protocols which

belongs to “Basic Call” feature and to the

both ones. The second set belongs to the “IN

Freephone Billing” feature.

The first set was presented as enlarged

basic protocol. The verification was provided

for enlarged basic protocol and the second set

of basic protocols. The other features could be

also verified by such way with those features

with which the intersection exists.

Enlarging of agents in Generic Attrib-

ute Registration Protocol (GARP)

GARP protocol is a kind of multicast

protocol where the processors are registered

into groups in network. The network is pre-

sented by the set of domains which contain

the certain number of processors. Every pro-

cessor could create, join or leave the group. It

should send the signal in the network by the

corresponding path. The problem is to prove

the absence of deadlocks in described algo-

rithm for arbitrary topology of network and

arbitrary number of agents. Every processor

could be in some state and its transitions are

defined by special state machine. The follow-

ing enlargement was proposed for avoiding of

exponential explosion.

Fig. 7. Enlargement of agents in GARP

We consider every enlarged entity as

the set of agents in some state. When any pro-

cessor performed transition it becomes the

member of the other enlarged entity. Such

abstraction allowed proving the absence of

deadlocks statically inasmuch as it is equiva-

lent to formalization without enlarging and

corresponding theorem is proved.

1. Holzmann G.J. The Spin Model Checker,

Primer and Reference Manual. Addison-

Wesley, 2003, 596 p.

2. Holzmann G. “The Model Checker SPIN” //

IEEE Trans. on Software Engineering. – Vol.

23, N 5, – 1997. – P. 279–295.

3. International Telecommunications Un-

ion.Recommendation Z.151 – User Require-

ments Notation (URN). – 2008.

4. Gunter Mussbacher. Aspect-Oriented User

Requirements Notation. Thesis submitted to

the Faculty of Graduate and Postdoctoral

Studies in partial fulfillment of the require-

ments for the degree of Ph.D. in Computer

Science. University of Ottawa, Ottawa, Cana-

da, September 2010.

5. David Aspinall. Proof general: A generic tool

for proof development. In Susanne Graf and

Set of pro-

cessors in

initial state

Set of pro-

cessors in

state S1

Set of

proces-

sors in

state S2

…

Single processor

Формальні методи розробки програмного забезпечення

61

Michael I. Schwartzbach, editors, TACAS,

volume 1785 of Lecture Notes in Computer

Science, pages 38–42. Springer, 2000.

6. Autexier S., Hutter D., Mantel H., and

Schairer A. Towards an evolutionary formal

software-development using Casl. In C.

Choppy and D. Bert, editors, Recent Trends in

Algebraic Development Techniques // 14th

International Workshop, WADT’99, Bonas,

France, Vol. 1827 of Lecture Notes in

Computer Science. – Springer-Verlag, 2000.

P. 73–88.

7. Nikolaj Bjørner, Anca Browne, Eddie Chang,

Michael Colón, Arjun Kapur, Zohar Manna,

Henny B. Sipma and Tomás E. Uribe. STeP:

Deductive-Algorithmic Verification of Reac-

tive and Real-time Systems.

8. Sam Owre, John Rushby, N. Shankar and Da-

vid Stringer-Calvert. PVS: An Experience

Report. Applied Formal Methods, FM-Trends

98, Boppard, Germany, October 1998.

9. Information Technology — Z Formal Specifi-

cation Notation — Syntax, Type System and

Semantics (ISO/IEC 13568:2002 ed.). 2002 –

07-01. P. 196.

10. Spivey J.M. The Z Notation: A Reference

Manual. Prentice-Hall International, New Jer-

sey, second edition, 1992.

11. Brucker A.D., Rittinger F., and Wolff B.

HOL-Z 2.0: A proof environment for Z-

specifications. Journal of Universal Computer

Science. – Feb. 2003. – 9(2). – P. 152–172.

12. Nipkow T., Paulson L.C., and Wenzel M.

Isabelle/HOL — A Proof Assistant for High-

er-Order Logic, volume 2283 of Lecture

Notes in Computer Science. Springer, 2002.

13. Letichevsky A., Kapitonova J., Letichevsky A.

jr., Volkov V., Baranov S., Kotlyarov V., Wei-

gert T. Basic Protocols, Message Sequence

Charts, and the Verification of Requirements

Specifications // Computer Networks. – 2005.

– Vol. 47. – P. 662–675.

14. Letichevsky A., Kapitonova J., Volkov V., Let-

ichevsky A. jr., Baranov S., Kotlyarov V., and

Weigert T. System Specification with Basic

Protocols // Cybernetics and System Anal-

yses. – 2005. – Vol. 4. – P. 3–21.

15. Letichevsky A.A., Godlevsky A.B., Letichevsky

A.A. Jr., Potienko S.V., Peschanenko V.S.

Properties of Predicate Transformer of VRS

System // Cybernetics and System Analyses. –

2010. – Vol. 4. – p. 3–16.

16. International Telecommunications Union.

Recommendation Z. 120 – Message Sequence

Chart (MSC), 84 p.

17. Symbolic modeling,

http://en.wikipedia.org/wiki/Model_checking

18. Letichevsky A., Letychevskyi O., Peschanenko

V. Insertion Modeling System. In: Clarke

E.M., Virbitskaite I., Voronkov A. (eds.) PSI

2011. LNCS, Vol. 7162, P. 262–274. Spring-

er, Heidelberg (2011)

19. APS&IMS Systems, http://apsystem.org.ua

Data received 24.10.2012

About the authors:

Letichevsky Alexander Adolfovich,

Glushkov Institute of

cybernetics NAS Ukraine,

Head of dep. 100,

Kijv-187, Glushkov av., 50, 03680-CCP,

Letichevskyi Olexandr Olexandrovich,

Glushkov Institute

of cybernetics NAS Ukraine,

Mathematician of dep. 100,

Kijv-187, Glushkov av., 50, 03680-CCP,

Vladimir Peschanenko,

Kherson state university,

Associate professor of Department of Infor-

matics of Kherson State University.

73000 Ukraine, Kherson,

40 Rokiv Zovtna street, 27,

Anton Guba,

Glushkov Institute of

cybernetics NAS Ukraine,

PhD-student of dep. 100,

Kijv-187, Glushkov av., 50, 03680-CCP.

http://en.wikipedia.org/wiki/Model_checking#Symbolic_model_checking
http://apsystem.org.ua/

