
Теоретические и методологические основы программирования 

© Wolfgang Goerigk, Hans Langmaack, 2003 
ISSN 1727-4907. Проблемы программирования. 2003. № 2 3 

UDC 681.3.51 

Wolfgang Goerigk, Hans Langmaack 

WILL INFORMATICS BE ABLE TO JUSTIFY THE  
CONSTRUCTION OF LARGE COMPUTER BASED SYSTEMS? 
PART II. TRUSTED COMPILER IMPLEMENTATION1 

The present and the previous article on Realistic Correct Systems Implementation to-
gether address correct construction and functioning of large computer based systems. In 
view of so many annoying and dangerous system misbehaviors we want to ask: Can infor-
maticians righteously be accounted for incorrectness of systems, will they be able to justify 
systems to work correctly as intended? We understand the word justification in this sense, 
i.e. for the design of computer based systems, the formulation of mathematical models of 
information flows, and the construction of controlling software to be such that the ex-
pected system effects, the absence of internal failures, and the robustness towards misuses 
and malicious external attacks are foreseeable as logical consequences of the models. 

Since more than 40 years, theoretical informatics, software engineering and compiler 
construction have made important contributions to correct specification and also to correct 
high-level implementation of compilers. But the third step, translation — bootstrapping — 
of high level compiler programs into host machine code by existing host compilers, is as 
important. So far there are no realistic recipes to close this gap, although it is known for 
many years that trust in executable code can dangerously be compromised by Trojan 
Horses in compiler executables, even if they pass strongest tests. Our article will show how 
to close this low level gap. We demonstrate the method of rigorous syntactic a-posteriori 
code inspection, which has been developed by the research group Verifix funded by the 
Deutsche Forschungsgemeinschaft (DFG). 

                                                           
1Supported by Deutsche Forschungsgemeinschaft (DFG) under the grants La426/15 and /16. 
 

1. Realistic Correct Systems  
Implementation 

As an introduction to the present 
article, which focuses on trusted compiler 
implementation, we want to summarize 
and repeat some of the important defini-
tions from the previous article [Goe-
rigk/Langmaack01c] on Realistic Correct 
Systems Implementation. 

Compiler construction is crucial to 
the construction of computer based sys-
tems, and correct realistic compilers are 
necessary for a convincing construction 
process of correct software/hardware sys-
tems. Correct realistic compilation is nec-
essary, can be achieved and it establishes 
a trusted execution basis for further soft-
ware development. Most faults and bugs 
are indeed found in software design and 
high-level software engineering, however, 
we find considerably many compiler bugs 
as well [GccBugList], and one or the 
other turns out to be critical. Unless the 
implementation and integration gap of 
software systems is closed with mathe-
matical rigor, the risk of incorrect code 

generation will always seriously disturb 
the recognition of and the trust in certain-
ties which are guaranteed by mature 
software engineering and formal methods. 

The rigid nature of matter educates 
hardware technologists to be extremely 
sensitive towards hardware failures; they 
are felt as sensations. So system faults are 
mostly and increasingly caused by soft-
ware. This observation is crucial. Software 
engineers are permitted to assume hard-
ware to work correctly, and to exploit 
this assumption for equally sensitive rig-
orous low level implementation verifica-
tion of software. We will demonstrate this 
in a non-self-evident way in particular for 
compilers, because they are crucial to 
low level implementation correctness of 
application software. At the upper end, 
software engineers rely on the machine 
independent semantics for their high-
level languages, but they have to be 
aware of what kind of implementation 
correctness makes sense and can realisti-
cally be guaranteed in their application 
domain. 



Теоретические и методологические основы программирования  

4 
 

Correct realistic compilation is the 
major topic of the German joint project 
Verifix on Correct Compilers of the uni-
versities of Karlsruhe, Kiel and Ulm [Go-
erigk97d, Goos/Zimmermann99]. The goal 
is to develop repeatable engineering me-
thods for the construction and correct 
implementation of compiler programs for 
realistic, industrially applicable imperative 
and object-oriented source programming 
languages and real world target and host 
processors, which generate efficient code 
that compares to unverified compilers. 

A number of key ideas and achie-
vements make this possible and help to 
modularize the entire effort into suffi-
ciently small steps: an appropriate realis-
tic notion of correct implementation and 
compiler correctness [Goerigk/Langma-
ack01c, Mueller-Olm/Wolf99], the reuse 
of approved compiler architecture and 
construction and compiler generator 
techniques [Goos/Zimmermann99], the 
method of a-posteriori program result 
checking [Goerigk+98], mechanical proof 
support [Dold+02], and finally, a trusted 
initial compiler executable for a realistic 
imperative high-level system programming 
language [Goerigk/Hoffmann98b, Goe-
rigk/Hoffmann97]. The initial compiler 
and in particular its low-level machine 
implementation verification is the topic of 
the present paper. The compiler serves as 
a sound bootstrapping and implementa-
tion basis and lifts proof obligations from 
machine code level to much more ab-
stract source code. It is proved to at most 
generate correct implementations of well-
formed source programs; it may fail, e.g. 
due to resource errors, and if the source 
program is not well formed, then the tar-
get code may cause unacceptable errors 
and compute unpredictable results. But if 
the source program is well-formed, and if 
the compiler succeeds, then the target 
code is a correct implementation of the 
source program. The compiler is imple-
mented and runs on a concrete physical 
processor. 

In the companion article [Goe-
rigk/Langmaack01c] on Realistic Correct 
Systems Implementation we gave an ex-
tended motivation also for the impact of 

the question raised in the title of the two 
articles. Furthermore we modularized the 
entire compiler verification effort in three 
steps and developed a mathematical the-
ory which realistically and rigorously al-
lows to express compiling specification 
correctness and high-level and low-level 
compiler implementation correctness com-
positionally by commutative diagrams. 

The present article focuses on the 
realistic method for low-level compiler 
implementation verification by bootstrap-
ping and syntactical a-posteriori code in-
spection, which we have developed in 
order to provide, for the first time, a rig-
orously verified and fully trusted initial 
compiler executable. 

We want to summarize the impor-
tant definitions and observations from the 
previous article [Goerigk/Langmaack01c]. 
We will repeat the definition of correct 
implementation between source and tar-
get programs, and the modularization of 
the entire proof effort in three steps. For 
details, however, we want to refer to [Go-
erigk/Langmaack01c]. 

1.1. Compiling Specification and 
Compiler Implementation. Compiling 
(specification) verification involves se-
mantics. It is the first step necessary to 
modularize the entire correctness proof. 
The second step is correct compiler im-
plementation, i.e. the correct transforma-
tion of the compiling specification to ma-
chine code of the compiler host proces-
sor. Proving its correctness is called com-
piler implementation verification. Correct 
compiler source programs are imple-
mented by bootstrapping. In practice we 
can further modularize compiler imple-
mentation in high-level compiler imple-
mentation and low-level compiler ma-
chine implementation. 

High-level compiler implementation 
corresponds to programming. Likewise, 
high-level compiler implementation veri-
fication is program verification. Machine 
level compiler implementation correctness 
can be established by a trusted initial 
compiler, or by syntactical a-posteriori 
result checking (as in Section 4). 

Three tasks are necessary in order 
to present a convincing correctness proof 



Теоретические и методологические основы программирования 

5 

of a compiler executable on a compiler 
host machine. SL and TL are abstract 
source and target languages with conc-
rete representation domains indicated by 
primes. HL is the compiler host language, 
and HML is the compiler host machine 
language. The compiler program τHL is 
written in HL and compiled into executa-
ble code τHML written in HML. [[τHL]] HL and 
[[τHML]] HML denote the respective semantical 
relations. We will later simplify the situa-
tion and identify source and host lan-
guages as well as target and host machine 
language. Using this notation, we can 
modularize the problem in three tasks: 

1. Specification of a compiling re-
lation C between SL and TL, and compil-
ing (specification) verification w.r.t. an 

appropriate semantics relation  between 

language semantics [[٠]] SL, [[٠]] TL.  
2. Implementation of a correspon-

ding compiler program τHL in HL, and 
high level compiler implementation veri-
fication (w.r.t. C and to program repre-
sentations φSL

SL‘ and φTL
TL‘). 

3. Implementation of a correspon-
ding compiler executable τHML in HML, 
and low level compiler implementation 
verification (with respect to [[τHL]] HL and 
program representations φSL‘

SL‘‘ and φTL‘
TL‘‘ ). 

The last two tasks establish imple-
mentation correctness relations between 
compiling specification, compiler source 
program and compiler executable. Every 
task will be formalized by a correspond-
ing commutative diagram (Figure 1). 

 
Fig 1. Three tasks for correct compiler specification and implementation 

In Figure 1, A ⇀ B denotes the 
domain of relations and A → B of (partial) 
functions from A to B. The semantical 
mappings [[٠]] SL and [[٠]] TL are functions 
from source language SL resp. target 
language TL to their semantical domains 
SemSL and SemTL (i.e. the semantics of a 
well-formed program is uniquely deter-
mined). Compiling specifications C typi-
cally allow for more than only one target 
program, and also compiler program se-
mantics might be non-deterministic. 
Data and program representations, which 
map abstract programs to concrete pro-
gram representations and to their string 
representations, are in general relations, 
anyway. 

1.2. Preservation of Relative Cor-
rectness. In this article we focus on com-
pilers and transformational programs and 
formalize operational program semantics 
by error strict relations f ⊆ Di × Do be-
tween input and output domains, which 
are extended by individually associated 

disjoint non-empty error sets Ω = A ⊎ U 
of acceptable and unacceptable errors. 
One particular error ⊥ models infinite 
computations. 

If fs is a source and ft a target pro-
gram semantics, and if ρi and ρo are data 
representation relations (strongly error 
strict in both directions), then we define ft 
to be a correct implementation of fs relative 
to ρi and ρo and associated error sets, iff 



Теоретические и методологические основы программирования  

6 
 

( ρi ; ft ) (d) ⊆ ( fs ; ρo) (d) ∪ Ao 

holds for all d ∈ Di
s with fs (d) ⊆ Do

s ∪ Ao
s. 

This exactly captures the intuitive re-
quirements: d ∈ Di

s is called admissible, if 
it does not cause an unacceptable error 
outcome, i.e. if fs (d) ∩ Uo

s = ∅. Non-
admissible inputs may cause unpredict-
able or arbitrary results. But if d is admis-
sible, then we can trust in results com-
puted by target program semantics: Ei-
ther the result is correct (representation 
of a corresponding source program out-
put) or the target program execution 
aborts (observably) with an acceptable 
(resource) error. 

 
Fig 2. Correct Implementation 

The symbol ⊑ denotes this refine-
ment relation, and '';'' denotes (diagram-

matic) relational composition. ρi ; ft ⊒ fs ; ρo 

(or ft ⊒ fs for short) means that ft correctly 
implements or refines or is better than fs. 

Note that ⊑ depicts (basically) a relati-
onal inclusion in opposite direction. De-
tails can be found in [Goerigk/Langma-
ack01c]. Our definition is a relational ver-
sion of relative correctness preservation 

[Mueller-Olm/Wolf99, Wolf00] and can 
be understood as a deliberate generaliza-
tion of partial respectively total correct-
ness preservation. It is both horizontally 
and vertically transitive (compositional). 

1.3. Precise View at the Three 
Steps. We have to refer to [Goerigk/Lan-
gmaack01c] for details, but we want to 
repeat the diagram which precisely de-
fines the proof obligations necessary in 
order to work through a complete com-
piler correctness proof. We will focus on 
the lowest diagram of Figure 3 in this ar-
ticle, and it relates the compiler machine 
executable semantically to the high-level 
compiler implementation. They work se-
mantically on different input and output 
data domains of HL and HML which are 
related by program representation rela-
tions [Goerigk/Langmaack01c]. The dif-
ference is indicated by primes and dou-
ble-primes in Figure 3. We now know 
precisely every conjecture we have to 
prove in order to implement an SL to TL-
compiler correctly as an executable pro-
gram on a host processor HM. 

Every data set, program set and 
semantics space, every program seman-
tics, data representation, program repre-
sentation, semantics function, compiling 
specification, compiler semantics and se-
mantics relation has to be appropriately 
extended by unacceptable and acceptable 
error elements. The commutative dia-
grams of Figure 2 and 3 precisely express 

Fig 3. This diagram is again, but now precisely, illustrating the three steps for correct  
compiler implementation as of Figure 1 



Теоретические и методологические основы программирования 

7 

that C is a correct compiling specifica-
tion, and that τHL respectively τHML are 
correct compiler programs. 

Programs and their representations 
have equal semantics. But we should ex-
plicitly note that in diagram 3 the com-
piler program τHML is not a representation 
of τHL. These two programs have in gen-
eral different semantics, but the former is 
a correct implementation of the latter. 

1.4. T-Diagram Notation. McKee-
man's so-called T-diagrams allow to illus-
trate the effects of iterated compiler ap-
plications in an intuitive way. We use 
them as shorthand notations for particu-
lar diagrams as of Figure 4. 

 
Fig 4. The situation which we will abbreviate 

by McKeeman's T-diagrams 

Recall that ℂ is the natural correct 
compiling specification from SL to TL. 
Well-formed programs and their (syntac-
tical) φ-representations have equal se-
mantics, and τHL‘ ∈ φHL

HL‘(τHL) is a well-
formed HL'-program compiling syntactical 
SL' programs to syntactical TL'-programs. 
HL' is the domain of perhaps more con-
crete syntactical representations of HL-
programs. In this situation we use the T-
diagram (Figure 5) 

 
Fig 5. McKeeman's T-diagram as a short-

hand for the above situation 

as an abbreviation for the diagram in 
Figure 4. However, we have to keep in 
mind that the concrete situation is a bit 

more involved, that the T-diagrams do 
not explicitly express crucial differences 
between various program representations. 
We need to distinguish programs, pro-
gram semantics and (syntactical) program 
representations in order to suffice re-
quirements from practice. We cannot put 
practitioners short by elegant but too 
nebulous idealizations. 

2. Related Work on Compiler  
Implementation Verification 

An extended discussion of related 
work in the field of compiler verification 
has been presented in our previous arti-
cle [Goerigk/Langmaack01c]. Recall that 
we find intensive work on steps 1 and 2, 
i.e. on compiling specification and on 
high level compiler implementation veri-
fication, although often under unrealistic 
assumptions so that the results have to be 
handled with care. Step 3, however, has 
nearly totally been neglected so far. If the 
phrase ''compiler verification'' is used, 
then most of the authors mean step 1. 
There is virtually no work on full com-
piler verification. Therefore, the ProCoS 
project (1989—1995) has made a clear 
distinction between compiling verification 
(step 1) and compiler implementation veri-
fication (steps 2 and 3) [Langmaack97b]. 

Compiling verification is part of 
theoretical informatics and program se-
mantics, and high level compiler imple-
mentation verification (step 2) is a field 
within software engineering. However, 
compiler implementation correctness then 
further depends on existing correct initial 
host compilers, which are not available 
up to now. Hackers might have intruded 
Trojan horses [Thompson84, Goerigk99b] 
via unverified start up compilers (cf. the 
introduction to the first article [Go-
erigk/Langmaack01c] and the following 
Section 4). This in view, we are finally 
left on human checkability of mechanical 
proof protocols (a-posteriori-proof check-
ing) and initial compiler machine code. 

Literature on low and machine 
level compiler implementation verifica-
tion (step 3) is by far too sparse. There 
are only demands by some researchers 
like Ken Thompson [Thompson84],  
L.M. Chirica and D.F. Martin [Chirica/ 



Теоретические и методологические основы программирования  

8 
 

Martin86] and J S. Moore [Moore88, 
Moore96], no convincing realistic meth-
ods. Here is the most serious logical gap 
in full compiler verification. Unfortu-
nately, a majority of software users and 
engineers — as opposed to mathemati-
cians and hardware engineers — do not 
feel logical gaps to be relevant unless 
they have been confronted with a 
counter-example. So we need 

A. convincing realistic methods 
for low level implementation verification 
(step 3) 

B. striking counter-examples (fail-
ures) in case only step 3 has been left out. 

Let us first step into B and hence 
go on with an initial discurs on the po-
tential risk of omitting the low level ma-
chine code verification step for compilers. 

3. The Risk of Neglecting Machine Level 
Verification 

Ken Thompson, inventor of the op-
erating system Unix, stated in his Turing 
Award Lecture ''Reflections on Trusting 
Trust'' [Thompson84]: 

''You can't trust code that you did not 
totally create yourself. (Especially code 
from companies that employ people 
like me.) No amount of source-level 
verification or scrutiny will protect you 
from using untrusted code.'' 

He underpinned his statement by 
sketching the construction of an execu-
table binary machine code version of a C-
compiler which was wrong, although his 
version successfully passed N. Wirth's 
strong compiler or bootstrap test 
[Wirth77], which is well-known to be ex-
tremely hard to deceive, and although we 
may even assume that the corresponding 
C-version of his compiler has been verified.  

Let us assume there exists a binary 
version τ0 of a C-compiler running on a 
machine M0, and a (different) C-compiler 
τ1 written in C generating code for a ma-
chine M1. A two step bootstrapping proc-
ess of τ1 on M0 generates a version τ3 (of 
τ1), which is now formulated in binary 
M1-machine code. If we assume τ0 and τ1 
correct, and the machine M0 to work cor-

rectly, then τ3 is correct as well [Lang-
maack97a, Goerigk96b, Hoffmann98b]. 

By a third bootstrapping step of τ1, 
we may compile τ1 to a new M1-binary τ4 
using the compiler τ3 on machine M1. If 
we assume the machine M1 to work cor-
rectly as well, then τ4 and τ3 are identical 
[Goerigk99a], at least if we assume every 
involved program deterministic. The third 
bootstrapping step (and checking identity 
of τ3 and τ4) is N. Wirth's so called strong 
compiler or bootstrap test. It is employed 
for safety reasons, if at least one of the 
four above correctness assumptions can-
not be guaranteed. 

 
Fig 6. Wirth's strong compiler test. Note: 

Even if M0 and M1 are the same machine, τ0 
and τ2 need not necessarily generate identi-
cal code. τ0 and τ2 are two different compil-
ers. In general, we know nothing about τ0's 

target code. 

But let us come back to Ken 
Thompson's scenario: He manipulated τ0, 
constructed a malicious τ̄ 0 that finally 
produced a wrong τ̄ 3, although he fol-
lowed the entire above bootstrapping 
process and τ̄3 passed the strong com-
piler test. Although the compiler source 
program τ1 remains correct (unchanged), 
and even if the machines M0 and M1 work 
correctly, τ̄3 incorrectly translates at least 
one C-source program, in his case the 
Unix login command. He has introduced 
a Trojan Horse in τ0, which is a very hid-
den error hard to detect by tests. The 
manipulation of τ0 can even be steered so 
that τ̄3 generates incorrect target code 
for exactly two C-source programs [Goe-



Теоретические и методологические основы программирования 

9 

rigk99b] — one of which must be the 
compiler source program τ1 itself, be-
cause otherwise, due to the strong com-
piler test, τ̄3 would be correct. 

In any case, the crucial insight is 
that all this might happen even if τ1 is 
verified on source level [Goerigk99b, Go-
erigk00b]. Moreover, if the user would 
try to convince her/himself of correctness 
by a test suite, as this is common practice 
today, she/he would have to find at least 
one of the two incorrectly compiled pro-
grams among those billions of (and theo-
retically infinitely many) test candidates. 

We easily imagine that program 
validation by test is heavily overcharged 
in case of compilers if their generation 
employs unverified auxiliary software, 
like τ0 in our case. We should well real-
ize the security impact of all this. Virtu-
ally every realistic software generation 
basically depends on running non-veri-
fied auxiliary software. Since computers 
nowadays are usually connected to the 
world wide net, the software is more or 
less open to hacker attacks, and might 
already have been manipulated from out-
side. Fighting security attacks causes 
much harder problems than avoiding un-
intentional bugs (safety). Safety, in a 
sense, relies on statistically distributed 
bugs by constructors' mistakes or materi-
als' faults, whereas for security we have 
to be aware of subversive intent. 

Note that one possible procedure 
in order to uncover the malicious Trojan 
Horse is to perform the compiler boot-
strap and hence use the compiler itself as 
a test case. But note: this test case would 
have to be performed very carefully, 
which means that we have to run the 
generated compiler τ̄ 3, apply it to τ1 and 
to compare the result τ4 with the ex-
pected verified result that is given as part 
of the test suite. We doubt, that any ex-
isting compiler binary (like τ4) has ever 
been verified in this sense yet. Actually, 
this is one of the essential tasks of the 
present paper. 

Unless we verify τ3 to be a correct 
implementation of (the verified) τ1, any of 
the compiler executables τ0, τ2, τ3, τ4, any 

further bootstrapped compiler implemen-
tation, and any source program compiled 
by one of these programs might eventu-
ally cause disastrous, even catastrophic 
effects. We think that this well serves as 
a striking counter example. 

4. Realistic Method for Low Level  
Compiler Generation 

The question we are going to an-
swer now is how we attack task A of step 
3. A first idea might be to apply software 
engineering philosophy as for high level 
implementation verification, i.e. to step-
wise refine the high level implementation 
down to executable binary machine code 
HML using verified transformation rules. 
Then, as in the 60´s, we would have de-
veloped the entire machine code written 
compiler by hand, although nowadays 
supported by using the computer as an 
efficient typewriter and maybe for check-
ing correct application of the implemen-
tation rules. However, as we have seen 
before (section 4), we ought to have 
doubts trusting implementations of auto-
matic checking routines as long as there 
are no trusted, i.e. correctly implemented 
initial compiler executables available. 
Even if trained in mathematical rigor, no 
software scientist would ever manually 
construct or, more importantly, certify, a 
real world compiler executable in ma-
chine code. 

Therefore, we follow a different 
approach, the Verifix-idea, to generate 
even initial compiler implementations by 
an approved method, thereby incorporat-
ing the necessary verifications. We pur-
sue N. Wirth's idea to bootstrap the 
compiler and add a sufficient variant of 
the strong bootstrap test [Goerigk/Hoff-
mann98]. 

We identify source and high level 
implementation language SL = HL and 
take a proper sublanguage ComLisp [Go-
erigk/Hoffmann96] of ANSI-Common-
Lisp = SL+. We further identify target 
and low level implementation language  
TL = HML and take the binary machine 
code of a concrete processor M, e.g.  
DEC α or INMOS-Transputer-T400. An 
existing ANSI-Common-Lisp system with 



Теоретические и методологические основы программирования  

10 
 

compiler τ0 is running on a workstation M0 
with machine code TL0 = HML0, so that 
our initial two bootstrapping steps to-
gether are a cross-compilation to TL-code 
using the workstation as host machine. 

 
Fig 7. Steps 1 and 2 for an initial full correct 

compiler implementation 

According to step 1 and 2 (section 
1.1) we develop a correct SL to TL-
compiling specification C and correctly 
implement it as a compiler program τSL, 
now in SL = HL itself. 

High level syntactical programs in 
SL' and TL' are SL-data, i.e. s-expression 
sequences. Abstract syntactical programs 
in SL and TL are associated to SL', TL' by 
bijections φSL

SL‘ and φTL
TL‘. We formulate C 

such that it will relate target programs 
πTL to well-formed source programs πSL at 
most, i.e. for which source semantics 
[[πSL]] SL are defined. We construct τSL 
such that, if applied to well-formed 
source programs in SL', τSL, or more pre-
cisely [[τSL]] SL, executed on an imagined 
SL-machine, will either terminate suc-
cessfully or abort with an acceptable er-
ror due to target machine resource ex-
haustion. τSL has a pre-condition that re-
stricts its inputs to representations of 
well-formed source programs. That is to 
say, τSL might not check for well formed-
ness; but then, [[τSL]] SL has to have an un-
acceptable error outcome, perhaps speci-
fied non-deterministically, if applied to 
SL-data that do not represent well-formed 

SL-programs (see the discussion on ℂ in 
[Goerigk/Langmaack01c]). 

We will also need a version τ''SL 
which works on machine representations 

of s-expressions, for instance on character 
sequences (strings, cf. Figure 8), which 
form a particular subset of all s-ex-
pression sequences. Then, φSL‘‘

SL‘‘ = φTL‘‘
TL‘‘ 

are the known string representations for 
s-expressions, and their inverses are sin-
gle-valued functions (a string denotes at 
most one s-expression sequence). Note: 
τ''SL is to be a correct implementation of 
τSL. The operator read-sequence (used in 
τSL in order to read s-expression se-
quences) is programmed in τ''SL as a 
function procedure which reads character 
sequences (using operators read-char and 
perhaps peek-char) and returns a list of s-
expressions. Analogously the output is 
programmed using character output, i.e. 
the operator write-char. τ''SL‘‘ denotes a 
string version representing τ''SL, i.e. (τ''SL, 
τ''SL‘‘) ∈ φSL

SL‘‘. 

 

Fig 8. A correct compiler τ''SL mapping  
character sequences in SL'' to character  

sequences in TL'' 

 
Fig 9. Bootstrapping the initial compiler. A 
sufficient variant of Wirth's strong compiler 
test (a-posteriori-syntactical code inspection) 

guarantees fully correct implementation 

Let us now (unrealistically) assume 
for a moment, that τ0, M0's (the work-



Теоретические и методологические основы программирования 

11 

station's) Lisp-compiler, has been cor-
rectly developed and correctly imple-
mented in TL0. Then a threefold boot-
strapping (Figure 9) of τSL (often of a 
byte-sequence or string representation) 
eventually generates τ̄ TL, provided that 
the three compiler executions of τ0, τ2, 
and τTL successfully terminate with regu-
lar outputs τ2, τTL, and τ̄ TL, respectively. 
Since τSL and τ0 are assumed correct, and 

whenever the data abstractions ρi
SL

TL
-1
, 

ρo
SL

TL
-1
, ρi

SL +
TL0

-1
, and ρo

SL +
TL0

-1
 are single-

valued functions, we have the following 
bootstrapping theorem [Langmaack97a, 
Goerigk99a, Goerigk00a]: 

Theorem 4.1. (Bootstrapping theo-
rem) The compilers τ2, τTL, and τ̄ TL are 
correct, even correctly implemented on 
hardware processor M0 resp. M. They are 
all correct refinements of C and τSL. 

In our case ρi
SL

TL
-1
, ρi

SL +
TL0

-1
, ρo

SL
TL

-1
 

and ρo
SL +

TL0

-1
 are single-valued functions; 

actually, they are just the same as φSL‘‘
SL‘‘

-1
, 

φSL‘‘+ 
SL‘‘+

-1
, φTL‘ 

TL‘‘
-1
, and φTL’ 0

TL ‘‘0

-1
, respectively. 

We prove Theorem 4.1 by successive ap-
plication of a bootstrapping lemma: Let τ0 
and τ1

1 be two correct compilers and let 
us apply τ0 to τ1: 

 
Fig 10. Bootstrapping an initial compiler im-

plementation τ2 

What can we expect in case of a 
successful compilation with a regular re-
sult τ2 respectively a representation τ2‘? 
The T-diagrams represent two commuta-
tive diagrams (Figure 11 for τ0, and Fig-
ure 12 for τ1). 

                                                           
1 We use τ1 here instead of τSL, because the follow-
ing argument works for any correct compiler 
source program. 

Moreover, τ0 is correct, and the result 
of applying τ0 to τ1‘ is the regular HL-datum 

τ2‘ ∈ Do
HLΩ = TL´Ω. Thus, [[τ1‘]] SL‘ ⊑[[τ2‘]] 

TL‘,which means ρi ; [[τ2‘]] TL‘ ⊒ [[τ1‘]] SL‘ ; ρo. 
 

 
Fig 11. Extended view at Figure 10 (part 1 

for τ0) 

 
Fig 12. Extended view at Figure 10  

(part 2 for τ1) 

Hence, also the diagram in Figure 13 is 
commutative and, thus, vertical composi-
tion of the diagrams in Figure 12 and in 
Figure 13 finally yields the following 
bootstrapping lemma: 

Lemma 4.2. (Bootstrapping lemma) 

If (ρi
-1 ; [[٠]] SL´) and (ρo

-1 ; [[٠]] TL´ ) are rea-
sonable semantics functions (e.g. if ρi

-1, ρo
-1 

are partial functions like in our case us-
ing Lisp s-expression sequences), then 
Di

TL and Do
TL may be conceived to be con-

cretizations 
SL´´ and 

TL´´ of the pro-

gramming languages 
SL, 

SL´ and 
TL, 

TL´, and in case of regular termination of 
τ0´ applied to τ1´, [[τ2´]] TL‘ = [[τ2]] TL is a cor-
rect implementation of [[τ1‘]] SL‘ = [[τ1]] SL and 

by vertical composition also of C  (Figure 



Теоретические и методологические основы программирования  

12 
 

12, perhaps different from ℂ). Thus, τ2‘ 
and τ2 are correct compiler programs with 
the T-diagram shown in Figure 14. 

 

Fig 14. If τ0 and τ1 are correct compilers, then 
so is τ2 

Let us start a minor detour and 
come back to the discussion in the first 
article [Goerigk/Langmaack01c]: The 
proof of the bootstrapping lemma shows, 
that the (compiler generating) compiler 
τ0‘ needs not be a regularly terminating 
program for all well-formed input pro-
grams in SL' in order to be useful. τ0‘, ap-
plied to a well-formed program πSL‘ in 
SL', even to a well-formed compiler like 
π1‘, might run into an acceptable error in 
ATL‘ = Ao

HL, perhaps due to a resource 
violation like a memory overflow. 

If τ0‘ terminates regularly, however, 
then the associated regular result τ2‘ in 

TL' is again a well-formed and correct 
SL 

to 
TL-compiler. In other words: Since we 

cannot expect τ0‘ to yield regular results 
for all (arbitrarily large) source program 
representations, τ0‘ will in general be cor-
rect in the sense of preservation of rela-
tive (partial) program correctness, but not 
in the sense of preservation of regular (to-
tal) correctness [Goerigk/Langmaack01c]. 

Thus, the expected error behaviors 

of SL -programs and in particular of τ1 
and hence also of τ2, on the one hand, 
might be of quite a different nature than, 

on the other hand, of SL and hence in 

particular of τ0. 
SL might even be a 

process programming language such that 

we expect 
SL-programs and their imple-

mentations in 
TL to be regularly (totally) 

correct. If τ1 preserves regular (total) pro-
gram correctness, then so will τ2, i.e. the 
result of applying τ0 to τ1 [Goerigk/Lang-
maack01c]. 

That is to say: A partial correctness 
preserving compiler τ0 may well generate 
a total correctness preserving compiler 
executable τ2 from a corresponding total 
correctness preserving compiler source 
program τ1. We hence have just given the 
proof, that there is no need for trusted 
compilers to be correct in the sense of 
preservation of total correctness. We do 
not depend on a guarantee of well-defi-
nedness while bootstrapping compilers.  

This ends our detour and we come 
back in particular to the strong compiler 
(bootstrapping) test. Since τSL, restricted 
to well-formed SL-programs, is determi-
nistic, we also have the following strong 
compiler test theorem (variants can also 
be found in [Langmaack97a, Goerigk99a, 
Goerigk00a]). Whereas the proof of the 
bootstrapping theorem (4.1) is a simple 
application of the bootstrapping lemma, 
the proof of the strong compiler test 
theorem requires a more explicit exploi-
tation of the bootstrapping lemma. 

Theorem 4.3. (Strong compiler test 
theorem) The compilers τTL and τ̄ TL are 
equal.  

Proof. Let τSL and τ0 play the roles 
of τ1 and τ0 in the lemma. We take a rep-
resentation τSL´ of (the well-formed ab-
stract s-expression) τSL. τSL´ is also a rep-

Fig 13. Commutative diagram corresponding to [[τ1‘]] SL‘ ⊑ [[τ2‘]] TL‘ 



Теоретические и методологические основы программирования 

13 

resentation of the abstract SL+-program 
τSL. SL and SL+ have the same input and 
output data domains (of concrete s-
expression sequences). τSL and τSL´ have 

the same semantics [[τSL]] SL = [[τSL]] SL+ = 
= [[τSL´]] SL´ = [[τSL´]] SL+´. 

Let τ2´ be the concrete result of 
successfully applying τ0 to τSL´ on host 
machine M0. Due to the proof of the 
bootstrapping lemma we have the follow-
ing commutative diagram: 

Recall that we introduced lan-
guages SL'' and TL'' as reasonable repre-
sentations of SL, SL' and of TL, TL'. SL 
and SL' resp. TL and TL' are isomorphic, 

and the inverses of ρi
SL +

TL0
 and ρo

SL +
TL0

 are 
single valued functions. 

Let τTL´´ be the concrete successful 
result of compiling τSL´ by τ2´ again on 
the host machine M0. Again, due to the 
proof of the bootstrapping lemma we 
have 

Let τ̄ TL´´ be the concrete successful 
result of compiling τSL´ by τTL´´, now on 
machine M. Since τSL is assumed deter-
ministic (which actually can be guaran-
teed by construction), τTL´´ and τ̄ TL´´ are 
representations of one and the same con-
crete s-expression sequence τTL´ = τ̄  TL´ in 
Do

SL+ = Do
SL = TL' and of τTL = τ̄  TL in the ab-

stract language TL. �  

We can not prove equality of τTL´´ 
and τ̄ TL´´. Equality does in general not 
hold, because the code of τTL´´ and of τ̄  TL´´ 
has been generated by two perhaps dif-
ferent code generation mechanisms of τ2ґ 
on M0 resp. of τTL´´ on M, i.e. by two dif-
ferent compilers on two different ma-
chines. The code τTL´´ is influenced by 
runtime-system code (in particular by 
print-routines) which τ0, e.g. the existing 
SL+ = ANSI-Common Lisp compiler run-

ning on M0, attaches as part of τ2´´ (which 
generates τTL´´), whereas the code of τ̄ TL´´ is 
influenced by runtime-system code which 
our compiler executable (τ 2´) attaches as 
part of τTL´´ (which generates τ̄ TL´´). 

Let us for instance assume τTL´´ and 
τ̄ TL´´ to be character sequence (string) 
representations of τTL resp. τ̄ TL. Since 
there are different correct string repre-
sentations of one and the same s-
expression, the M0-print routine of τ2´ 
might print τTL´´ differently to how τTL´´ 
prints τ̄  TL´´. But nevertheless, both are 
correct printed representations of the 
equal s-expressions τTL´ resp. τ̄  TL´. 

However, we could add a further 
bootstrapping step comparing the string 
results of τTL and τ̄ TL. Since we would 
then use the same print routines, and be-
cause our programs are deterministic, we 
would finally get equal string representa-



Теоретические и методологические основы программирования  

14 
 

tions τ̄ TL´´ = ¯̄τ TL´´, if the bootstrap succeeds. 
In order to see this, we exploit that τTL, 
τTL´´, τ̄ TL, τ̄ TL´´ are semantically equal and 
that their string representations represent 
one and the same s-expression. Here is 
another important remark: The loading 
mechanism on machine M must not de-
pend on different binary (character se-
quence) representations τTL´´ resp. τ̄ TL´´ of 
τTL = τ̄ TL. The loader has to load the same 
abstract M-machine program in both 
cases.  

In any case, we could also start the 
entire bootstrapping process by applying 
τ0 on M0 to τ''SL´´. Recall that the latter is 
a version of our compiler source program 
τSL which does not use the standard op-
erators read and print of the runtime-
system of the implementing compiler to 
read and print s-expressions, but com-
prises its own reading and printing rou-
tines (implemented by character in-
put/output-routines read-char, peek-char, 
and write-char). Hence, it transforms 
character sequences. In that case, both 
programs are guaranteed to deterministi-
cally compute the same sequence of 
characters, even on different machines. 
Like in the proof of Theorem 4.3 we 
could then show equality of the character 
sequences τ''TL´´ = τ̄ ''TL´´, because their rep-
resentations by φTL‘ 

TL‘‘ are single-valued.  
But note that this is again only 

true if we compare the printed character 
sequences. On binary level, they might 
for instance be represented in different 
character codings on M0 and M, say in 
8bit-ASCII or in 16bit-Unicode. 

Let us end this section with the fol-
lowing remark: We are well aware that 
the previous observations are tedious, 
cumbersome and by far not obvious. But 
on the other hand, we have too often 
seen compilers generating wrong code 
just because they have been bootstrapped 
or cross-compiled in a quick-and-dirty 
process, forgetting about potential code 
representation problems like for instance 
byte order, alignment or even different 
character codes used on different ma-
chines. Fortunately, our rigorous mathe-
matical treatment of code generation and 

compiler bootstrapping enables to un-
cover any of these tedious problems and 
to talk about them precisely. 

5. Source Level Verification is not  
Sufficient 

Note, that all this has been proved 
under the unrealistic assumption that τ0 is 
correct. But there is no guarantee in the 
situation we are aiming at: We want to 
construct and generate an initial (first) 
correctly implemented compiler executa-
ble. Nevertheless, we can use τ0 and τ2 as 
intelligent (and efficient) tools, and they 
will often succeed to produce the correct 
result. We just have to assure this fact. 
This is the key idea of our approach to 
low level compiler implementation verifi-
cation.  

However, the successful bootstrap 
test (τTL = τ̄ TL) does not help. It is well-
known that it might succeed for incorrect 
compiler source programs τSL. Just con-
sider a source language construct, which 
is incorrectly compiled but not used in 
the compiler itself. 

Our situation is more delicate: τSL 
is a verified compiler source program. 
Unfortunately, we can prove [Goerigk99a, 
Goerigk99b, Goerigk00b] even in this 
case: Although τ̄ TL is successfully gener-
ated from the verified τSL by threefold 
bootstrapping and passes the strong 
compiler test, τTL is not necessarily cor-
rect. Ken Thompson's Trojan Horse, 
originally hidden in τ0, might have sur-
vived so that we find it both in τTL and in 
τ̄  TL (and also in τ2). 

In [Goerigk99b, Goerigk00b], we 
prove this fact mechanically using M. Ka-
ufmann's and J Moore's logic and theo-
rem prover ACL2 [Kaufmann/Moore94]. 
Ken Thompson's Trojan Horse can be ex-
pressed in high level language, even in 
the clean and abstract Boyer/Moore-logic 
of first order total recursive functions. We 
need no ugly machine code to construct 
such a malicious program part. The situa-
tion is even more delicate if we consider 
preceeding or subsequent compilation 
phases: If only one phase is corrupted, 
the only chance to uncover that error is 



Теоретические и методологические основы программирования 

15 

to rigorously check the target code of ex-
actly that phase, while the compiler ex-
ecutable τTL (or τ2) compiles τSL. No other 
test will help, unless the user by accident 
runs τTL on exactly that one additional 
incorrectly compiled source program that 
eventually causes catastrophic effects 
(and waits for the catastrophe to happen). 

6. Realistic Method for Low Level  
Compiler Verification 

Let us now drop our assumption 
that τ0 is correct. Also note that, in gen-
eral, programs are non-deterministic. By 
twofold bootstrapping of τ''SL resp. τ''SL´´ 
on machine M0 we generate an output 
string s which is supposed to be a string 
representation of τ''TL. This is according 
to the first two steps of Figure 9. Since τ0 
and hence τ2 might be incorrect, we have 
to make sure with mathematical rigor, 
that s is indeed a representation of τ''TL. 

Our method of low level compiler 
implementation verification is as follows: 
Let τ''TL be a program written in TL such 
that τ''SL C τ''TL holds, i.e. let τ''SL, τ''TL ful-
fill the compiling specification which was 
verified in step 1 (Figure 7). Hence, τ''SL's 

and τ''TL's semantics are related by ⊑. 

 
Fig 15. Correct implementation of correct 

compiler source programs. The extended se-
mantics, defined on Di

SL Ω resp. Di
TL Ω, carries 

an unacceptable error outcome in Ui
SL resp. 

Ui
TL indicating the cases where inputs do not 
represent well-formed SL- or TL-programs 

φSL‘‘
SL‘‘ , φ

TL‘‘
TL‘‘ are the natural 1-1-

mappings on character sequences. How 
ρi

SL
TL, ρo

SL
TL are precisely defined depends 

on which primitive standard input-output-
routines are actually used in SL and TL. 

Since ρi
SL

TL
-1 = ρo

SL
TL

-1 is single-va-
lued, representations of well-formed pro-
grams have unique semantics in Sem SL 

resp. Sem TL. Due to vertical composability 
(cf. [Goerigk/Langmaack01c]), τ''TL is a 
correct SL'' to TL''- compiler correctly 
implemented in TL. Figure 15 accom-
plishes Figure 7 and 8 and yields Figure 1 
in our special situation. 

Any of our data including pro-
grams are representable by s-expressions. 
Thus, we may assume that any of our 
source and target languages L have  
s-expression-syntaxes, i.e. syntactical pro-
grams are s-expression sequences. Input 
and output data domains Di

L, Do
L are sets 

of s-expression sequences as well. Note 
that characters are particular s-expressi-
ons, and hence character sequences 
(strings) are particular s-expression sequ-
ences. Not every syntactical program (s-
expression) is well-formed. In fact, the set 
of well-formed programs is exactly the 
domain of definition of the semantics 
function [[٠]] L ∈ Sem L. 

Compiling specifications C are of-
ten defined by syntactical rules (e.g. by 
term rewriting), whereas correctness of 
τ''TL is a semantical matter. That is to say: 
We have a reduction of the correctness 
problem from semantics to syntax. The 
previous paragraphs sketch the proof of 
the following theorem: 

Theorem 4.4. (Semantics to Syntax 
Reduction) If s is a string, if τ''TL =  
= (φTL

TL‘‘ ; φ
TL‘‘

TL‘‘)
-1(s) and if syntactical che-

cking of τ''SL C τ''TL is successful, then τ''TL 
is a well-formed SL'' to TL'' compiler cor-
rectly implemented in TL. 

It is not in all cases necessary to 
completely verify an algorithm before-
hand in order to trust a computed result. 
In the proposed process for correct com-
piler construction, we verify τSL resp. τ''SL 
a-priori (steps 1 and 2), but verification of 
τTL resp. τ''TL (step 3) is an a-posteriori 
syntactical result checking. It allows for 
using unverified supporting software, e.g. 
compilers τ0 and τ2 on machine M0. They 
are used as intelligent but not necessarily 
correct type writers. Checking guarantees 
to find any error in τ''TL, even intended 
errors like viruses or Trojan horses as of 
section 4. 



Теоретические и методологические основы программирования  

16 
 

The idea of a-posteriori result 
checking is old. We can find applications 
e.g. in high school mathematics, like 
checking division or linear equation solv-
ing by (matrix-vector) multiplication. The 
idea has found its way to algorithms the-
ory [Blum+89], trusted compilation [Lang-
maack97b, Langmaack97c, Goerigk/Hoff-
mann98, Pnueli+98, Heberle+98, Gaul-
+99, Cimatti+97], and systems verifica-
tion [Goerigk+98, Bartsch/Goerigk00d] 
in general. 

6.1. Realistic Syntactical a-poste-
riori Code Inspection. However, since we 
know that realistic compiling specifica-
tions and compilers are of tangible size, 
we might ask if syntactical a-posteriori 
code checking is realistically manage-
able. A first idea might be to look for 
machine support, i.e. to write checking 
algorithms and programs. But we should 
be aware that in this way we might well 
run into circulos vitiosos. We burden our-
selves with new specification and (high 
and machine level) implementation cor-
rectness problems for checking algo-
rithms and programs. If we want to im-
plement an initial compiler fully correctly 
on a machine, there is no way around 
some hand checking. 

Remark: We do not condemn the 
use of programmed computers for proving 
and proof checking. If a software engineer 
believes in auxiliary software to be suffi-
ciently trustful, she or he is allowed to use 
it in order to gain more reliable software 
production. However, the software engi-
neer should then make clear which parts 
of the auxiliary software he/she has used 
and hence relies on although still not be-
ing rigorously verified modulo hardware 
correctness. We have shown techniques 
how to maliciously harm auxiliary soft-
ware. It is most important for the IT-
community to demonstrate sound and re-
alistic means how to stop such ever last-
ing circulos vitiosos. Since source code 
verification may succeed, and since man-
ual machine code verification hardly ever 
will do, we strongly believe that providing 
trustworthy compiler executables is the 
most promising sound basis. 

Verifix has introduced [Goerigk/ 
Hoffmann98, Hoffmann98b] three inter-
mediate languages between SL (Com-
Lisp) and TL (INMOS Transputer- or 
DEC α-code). Because it is necessary to 
finally produce a convincing complete 
rigorous proof document, these lan-
guages have particularly been chosen in 
order to isolate crucial compilation steps 
and to enable code inspection by target 
to source code comparison. Essential 
characteristics and advantages for code 
inspection are: 

• Languages Li are close to their 
preceeding languages Li-1 so that only 
few crucial translation steps are necessary 
per pass. 

• Translation uses standard tech-
niques, does only moderately expand and 
is local in the sense that it does not reor-
der corresponding thick code pieces. 

• We avoid optimization; every 
transition remains well recognizable and 
locally checkable w.r.t. CLi

Li+1 by juxta-
posing corresponding code. 

• Every language has a procedure 
or subroutine concept; source and target 
programs are modularized by correspond-
ing subroutines. 

These characteristics will be re-
flected by our checking (i.e. compiling 
specification and code inspection) rules 
in section 6.2 below. Source, intermediate 
and target languages are: 

1. High level source language is 
ComLisp = SL. Programs consist of non-
nested mutually recursive function pro-
cedures with call-by-value parameter 
passing. Variables are simple, and data 
are Lisp-s-expressions. Denotational, op-
erational copy rule resp. stack semantics 
are well-known [Loeckx/Sieber87, Niel-
son/Nielson92]. 

2. Stack Intermediate Language 
SIL. Programs consist of non-nested mu-
tually recursive parameterless procedures. 
Data remain s-expressions. Operators are 
postfixed (reverse Polish notation), paren-
theses are dropped, and variables are 
represented by frame-pointer based stack 
locations (usually very small relative ad-
dresses) intended to implement proce-



Теоретические и методологические основы программирования 

17 

dure and operator parameters. Opera-
tional stack semantics is straight forward 
and easily comparable to the operational 
SL-semantics. 

3. C-like intermediate language 
Cint similar to Java's virtual machine lan-
guage. All variables are of type integer, 
contents are either immediate or referen-
ces into two linear stack resp. heap ar-
rays. The stack is intended to implement 
SIL's stack, and the heap to refine non-
atomic Lisp-s-expressions (SIL-data). Every 
SIL-program can be implemented in Cint 
with equivalent semantics. 

4. Assembly language TA. Instruc-
tions are machine dependent, e.g. Trans-
puter or DEC α. Symbolic addresses are 
avoided; subroutines are called using 
unique numbers, variables have small 
relative addresses, branches stay within 
subroutine bodies and are instruction 
counter relative. 

5. Machine code TL. Binary or 
hexadecimal notation of byte contents 
with more or less implicit prescription of 
how to load registers and memory of the 
target machine. The implicit prescription 
is materialized by a small boot program 
[Goerigk/Hoffmann97]. Only TA and TL 
are machine dependent. 

Semantics of a TL-program πTL is 
given by execution of the machine M, 
after the instruction counter has been 
loaded with the start address of the main 
part of πTL. Memory cells and registers 
not explicitly mentioned in the loading 
process are assumed to contain arbitrary 
 

data, i.e. πTL might behave non-deter-
ministically, although each instruction 
works deterministically. πTL might in ge-
neral even overwrite itself. However, the 
programs we generate will not. In case 
we prove preservation of partial correct-
ness, they will instead stop with an error 
message like ''stack overflow'', ''heap 
overflow'', ''return stack overflow'' or 
''arithmetic overflow'', or due to operator 
undefinedness. This is guaranteed by com-
piling specification verification (step 1). 

6.2. A Closer Look into a-posteriori 
Code Inspection. In the following we re-
fer to our concrete compiler implementa-
tion from SL = ComLisp to binary Tran-
sputer machine code TL [Goerigk/Hoff-
mann98, Goerigk/Hoffmann97, Goerigk/ 
Hoffmann98b]. The compiler proceeds in 
four separate phases. Each phase is cor-
rectly implemented in ComLisp and gen-
erates an external string representation of 
the intermediate and target programs. 

 

Checking the entire transformation 
of a Lisp-program directly into binary 
Transputer-machine code is unrealistic. 
We would have to check, that the hexa-
decimal representation of the code for 
e.g. a function definition like 

(DEFUN f (x y) (+ (* x y) 3)) 

which compiles into the Transputer-
machine code 

(33 z 4a 
 75 e0 73 75 e1 73 fa d3 75 52 d5 75 74 f9 a2 21 f0 73 58 71 
 f9 a2 21 f0 73 30 73 e4 73 31 73 e5 73 32 73 e6 73 33 73 e7 
 44 70 21 3e f6 43 73 e6 43 73 e7 44 70 21 3c f6 73 34 73 e0 
 73 35 73 e1 75 60 5e d5 75 31 d3 75 30 f6) 

is a correct one. Without any further 
structure of the target code we would not 
be able to do this conscientiously. The 
vertical decomposition into intermediate 
languages gives the necessary structure. 
We will show this using the concrete 
output of our compiler implementation 
for the above function. It has no higher 
control structures (no loops nor condi-

tionals). This slightly simplifies the pres-
entation here because we will not have to 
check relative jump distances for the as-
sembly code. 

6.2.1. Checking the Front End.  
The first two compilation steps are ma-
chine independent. We start with our 
original ComLisp-function and compile it 
to SIL. This essentially is the transfor-



Теоретические и методологические основы программирования  

18 
 

mation of expressions into postfix form. 
The body is compiled to (x y * 3 +), 
augmented by relative positions of vari-
ables and intermediate results. The last 
statement copies the result to the result 
stack position 0. 

(DEFUN f (x y) (DEFUN F 
(+ 
(* 
x (_COPY 0 2) 
y (_COPY 1 3) 

) (* 2) 
3 (_COPYC 3 3) 

) (+ 2) 
) (_COPY 2 0)) 

Let us cite the compiling specifica-
tion rules which are necessary to check 
that this particular source to target code 
transformation has been computed ac-
cording to the specification. Note that 
the software engineer does not even have 
to understand the code semantically in 
order to check this step1. The purely syn-
tactical (but semantically verified) com-
piling specification defines checking 
rules. An average educated software en-
gineer will not be overtaxed and can 
obey them in an informal but neverthe-
less clear, succinct and rigorous mathe-
matical proof style. 

1. CLdef [[ (DEFUN p ( p 1 ... p k ) f 1 ... f m )]] γ ⊇def 

⊇def (DEFUN p  
CLprogn [[ f 1 ... f m ]] ρ, γ, k 
(_COPY k 0)) 

where ρ( p i ) = i-1 for each i = 1, ..., k 
2. CLprogn [[ f 1 ... f m ]] ρ, γ, k ⊇def CLform [[ f 1 ]] ρ, γ, k 

... 
CLform [[ f m ]] ρ, γ, k 

where m ≥ 1 

3. CLform[[(p f 1 ... f n )]] ρ, γ, k ⊇def CLform [[ f 1 ]] ρ, γ, k 
... 
CLform [[ f n ]] ρ, γ, k+n-1 
(p k) 

4. CLform [[c ]] ρ, γ, k ⊇def (_COPYC c k) 
where c is a constant integer, charac-
ter, string or symbol NIL or T 

                                                           
1 Nevertheless, we will sometimes give comments 
on the semantics in order to make this presenta-
tion more intuitive and readable. 

5. CLform [[v ]] ρ, γ, k ⊇def (_COPY ρ(v) k) 
where v is a local variable or formal 
parameter with ρ(v) a defined natural 
number  

We present the compiling specifi-
cation rules in the style of a conditional 
term rewrite system (for details see [Goe-
rigk/Hoffmann97, Hoffmann98b]). Ground 
terms are s-expressions or s-expression 
sequences from the syntactical domains 
of source and target language, i.e. of 
ComLisp and SIL: <program>, <decla-
rations>, <form>, <fname>, <ident>, 
<operator>, <symbol>, <integer>, <cha-
racter>, <string> resp. <program>SIL, 
<declarations>SIL, <form>SIL. Ground 
terms are augmented by rewrite vari-
ables2 and unary rewrite operators like 
CLdef [[٠]], CLprogn [[٠]] or CLform [[٠]] with pa-
rameters ρ, γ, k. Actually, ρ contains rela-
tive addresses for local variables and pa-
rameters, γ maps global variables to ''ab-
solute'' addresses, and k is the relative 
result position corresponding to the 
structural depth of source expressions. 
We just presented those specification 
rules necessary for our example. 

The system of all conditional term 
rewrite rules together defines multivalued 
(non-deterministic) operations associated 
to each rewrite operator, and we under-
stand the single rules above to specify 
that the left hand side ground term set 
contains the right hand side set of 
ground terms by definition (⊇def). This is 
an inclusion by definition, because there 
might be other rules which apply to the 
same left hand side pattern. 

The simple structure of these rules 
guarantees a simple checking process 
because of their compositionality, order 
preservation, at most linear expansion 
and because rewrite operator applications 
are not nested and procedure boundaries 
are preserved. 

                                                           
2 We use the prefix rewrite in order to distinguish 
rewrite variables from those ranging over program 
fragments and rewrite operators from program 
operators. 



Теоретические и методологические основы программирования 

19 

The next step is data refinement of 
dynamically typed Lisp-data to a linear 
memory architecture. Relative addresses 
are multiplied by 2 (tag and value field) 
and copied in pairs. We have to focus on 
single SIL statements and compare them 
with pairs of target statements: In order to 
copy the content of x from relative position 
0 to 2, the target code has to copy the tag 
field from 0 to 4 and the value field from 1 
to 5. Operator calls now become subrou-
tine calls into the runtime system – com-
piling specification verification proves that 
the runtime system procedures are correct 
operation refinements of the SIL-operators. 

(DEFUN F (DEFUN F (8) 
(_COPY 0 2) (_SETLOCAL (_LOCAL 0) 4) 

(_SETLOCAL (_LOCAL 1) 5) 
(_COPY 1 3) (_SETLOCAL (_LOCAL 2) 6) 

(_SETLOCAL (_LOCAL 3) 7) 
(* 2) (* 4) 
(_COPYC 3 3) (_SETLOCAL 3 6) 

(_SETLOCAL 3 7) 
(+ 2) (+ 4) 
(_COPY 2 0)) (_SETLOCAL (_LOCAL 4) 0) 

(_SETLOCAL (_LOCAL 5) 1)) 

Again, we cite the corresponding 
conditional term rewrite rules from the 
compiling specification from SIL to Cint  

(ξ is a compiletime environment mapping 
program constants such as symbols, 
strings, and lists to linear heap represen-
tations and addresses): 

1. CSdef [[(DEFUN p f 1 ... f m )]] ξ ⊇def 

⊇def (DEFUN p (s) 
CSform [[ f 1 ]] ξ 
... 
CSform [[ f m ]] ξ ) 

where s is the maximal stack frame 
length needed by f1, . . . ,fm 

2. CSform [[(_COPY i j)]] ξ ⊇def 

⊇def (_SETLOCAL (_LOCAL 2i) 2j) 
(_SETLOCAL (_LOCAL 2i+1) 2j+1) 

3. CSform [[( p i )]] ξ ⊇def (p 2i) 
4. CSform [[(_COPYC n i)]] ξ ⊇def 

⊇def (_SETLOCAL τ 2i) 
(_SETLOCAL n 2i+1) 

where τ is the number tag 3 and n is 
an integer 

This completes checking the ma-
chine independent front end. The next two 
steps are machine dependent. The final 
step generates the machine code above. 

6.2.2. Checking the Back End.  
The first back end phase transforms con-
trol structure into linear assembly code 
with relative jumps. The generated sub-
routine body consists of procedure entry 
code, the main part and procedure exit 
code, three parts which are structured in 
three lists in the TA-code. Entry and exit 
code share the same pattern for every 
procedure. This phase also handles re-
source restrictions of the concrete 32-bit 
machine. But this is a semantical issue 
not to be checked here. 

In order to check the main part, we 
have to compare single Cint-instructions with 
small groups of up to four or five assembly 
instructions. For instance, the instruction 
(SETLOCAL (LOCAL 0) 4) (the second 
line in the Cint-definition) is compiled to the 
instruction sequence LDL 3 LDNL 0 LDL 
3 STNL 4 (first line of the TA-main part 
below). It first loads the frame pointer, then 
the content of relative position 0, which af-
ter loading the frame pointer again is finally 
stored into relative position 4. 

(DEFUN F (8) (_DEFCODE F 51 
(LDL 5 STNL 0 LDL 3 LDL 5  
STNL 1 LDL 3 OPR 10 STL 3 
LDL 5 LDNLP 2 STL 5 LDL 5 
LDL 4 OPR 9 CJ 2 OPR 16 LDL 3 
LDNLP 8 LDL 1 OPR 9 CJ 2 
OPR 16) 

(_SETLOCAL (_LOCAL 0) 4) (LDL 3 LDNL 0 LDL 3 STNL 4 
(_SETLOCAL (_LOCAL 1) 5) LDL 3 LDNL 1 LDL 3 STNL 5 
(_SETLOCAL (_LOCAL 2) 6) LDL 3 LDNL 2 LDL 3 STNL 6 
(_SETLOCAL (_LOCAL 3) 7) LDL 3 LDNL 3 LDL 3 STNL 7 



Теоретические и методологические основы программирования  

20 
 

(* 4) LDC 4 LDL 0 LDNL 30 OPR 6 
(_SETLOCAL 3 6) LDC 3 LDL 3 STNL 6 
(_SETLOCAL 3 7) LDC 3 LDL 3 STNL 7 
(+ 4) LDC 4 LDL 0 LDNL 28 OPR 6 
(_SETLOCAL (_LOCAL 4) 0) LDL 3 LDNL 4 LDL 3 STNL 0 
(_SETLOCAL (_LOCAL 5) 1) LDL 3 LDNL 5 LDL 3 STNL 1) 

(LDL 5 LDNLP -2 STL 5 LDL 5 
LDNL 1 STL 3 LDL 5 LDNL 0  

) OPR 6)) 

The involved rules of the compil-
ing specification1 from Cint to TA are the 
following: 

1. CCdef [[(DEFUN f (σ)s 1 ... s n )]] ϕ ⊇def 

⊇def (DEFCODE f ψ ( f )  
(entrycode (σ))  
(CCstmt [[s 1]] ϕ ,σ 
... 
CCstmt [[ s n ]] ϕ ,σ) 
(exitcode)  

where ϕ = <ψ, | stack |, | heap |> and ψ is 
a subroutine numbering 

2. CCstmt [[( f i)]] ϕ ,σ ⊇def 

⊇def LDC i LDL start LDNL ψ ( f ) OPR 6 
where 0 ≤ i < σ  

3. CCstmt [[(_SETLOCAL e i )]] ϕ ,σ ⊇def 

⊇def CCexpr [[e]] ϕ ,σ LDL base STNL i 
where 0 ≤ i < σ  

4. CCstmt [[(_LOCAL i)]] ϕ ,σ ⊇def 

⊇def LDL base LDNL i 
where 0 ≤ i < σ  

In the first rule, σ is the stack 
frame length of f, and we used σ (see 
also the above code) to stress that the 
procedure entry code is nearly constant, 
i.e. only parameterized by the number σ. 

|stack| and |heap| denote the initial stack 
and heap size. In the second rule, i is the 
relative address of the return value posi-
tion, start contains the jump table start 
address, ψ(f) denotes the (constant) jump 
table position of f 's start address, and 
OPR 6 is the GCALL operation, i.e. the 
subroutine jump. In the third and fourth 
rule, base contains the ''absolute'' stack 
frame base address and i is the relative 
address of the variable to be assigned to 
respectively loaded from. 

Finally, it is easy to check that the 
TA-mnemonics and decimal operands 
have been transformed correctly to in-
struction byte sequences (cf. Figure 16). 
Note, that in order to understand the 
code semantically, we additionally would 
have to know the semantics for instance 
of the Transputer-operations called by 
OPR instructions. We need not know this 
information to perform syntactical check-
ing; the correctness of the code follows 
from compiling verification, whereas we 
have to check the code for compliance 
with the specification. The TL-module 
number #x33 = 51 below is a code 
module (indicated by the character z) 
that has a length of #x4a = 74 bytes. 

(_DEFCODE F 51 (33 z 4a 
(LDL 5 STNL 0 LDL 3 LDL 5 75 e0 73 75 
STNL 1 LDL 3 OPR 10 STL 3 e1 73 fa d3 
LDL 5 LDNLP 2 STL 5 LDL 5 75 52 d5 75 
LDL 4 OPR 9 CJ 2 OPR 16 LDL 3 74 f9 a2 21 f0 73 
LDNLP 8 LDL 1 OPR 9 CJ 2 58 71 f9 a2 

1 The mechanical correctness proof of the corre-
sponding compiling specification [Dold+02] us-
ing the PVS theorem prover unvealed a tedious 
bug in the procedure initialization code. Although 
easy to repair, we prefer to leave the bug in the 
code and make this remark instead. The OPR 10 
(WSUB, word subscript) in the third line of the 

code above is an address calculation which in-
deed does not check for overflow. Finding this 
bug is due to the mechanized compiling verifica-
tion by using incorruptible and inexhaustible 
theorem prover support. Since it is a relative ad-
dress calculation, it would hardly show up in any
practical test run. 



Теоретические и методологические основы программирования 

21 

OPR 16) 21 f0 
(LDL 3 LDNL 0 LDL 3 STNL 4 73 30 73 e4 
LDL 3 LDNL 1 LDL 3 STNL 5 73 31 73 e5 
LDL 3 LDNL 2 LDL 3 STNL 6 73 32 73 e6 
LDL 3 LDNL 3 LDL 3 STNL 7 73 33 73 e7 
LDC 4 LDL 0 LDNL 30 OPR 6 44 70 21 3e f6 
LDC 3 LDL 3 STNL 6 43 73 e6 
LDC 3 LDL 3 STNL 7 43 73 e7 
LDC 4 LDL 0 LDNL 28 OPR 6 44 70 21 3c f6 
LDL 3 LDNL 4 LDL 3 STNL 0 73 34 73 e0 
LDL 3 LDNL 5 LDL 3 STNL 1) 73 35 73 e1 
(LDL 5 LDNLP -2 STL 5 LDL 5 75 60 5e d5 75 
LDNL 1 STL 3 LDL 5 LDNL 0 31 d3 75 30 
OPR 6))) f6)

The involved compiling rules from 
TA to TL are: 

1. CAdef [[(DEFCODE f i b )]] ⊇def 

⊇def (i#x z |c|#x c)  
where c = CAbody [[b]] and i#x, |c|#x de-
note hexadecimal representations of 
i,|c| 

2. CAbody [[ op 1 e 1 ...( ...) ...( ... op n e n ) ]] ⊇def 

⊇def CAopr [[ op 1 e 1 ]] ... CAopr [[ op n e n ]]  
3. CAopr [[ op e ]] ⊇def prefix(assembleop(op, e) 

In the second rule, CAbody ignores 
the list (parentheses) structure, and in the 
third rule we apply two auxiliary func-
tions: assembleop translates the 16 basic 
transputer instruction mnemonics to 
hexadecimal digits '0' up to 'f' according 
to the table in Figure 16, and prefix gen-

erates the pfix/nfix-chains necessary 
to load the value of e, which is in particu-
lar very easy for small non-negative 
numbers between 0 and 15 (representable 
by a four bit nibble). 

That is to say: In order to check 
the final code generation step, we only 
need to know the 16 instruction mne-
monics, their mapping to instruction 
code nibbles, and the pfix/nfix-chains 
necessary to load large operands. So for 
instance LDC 4 is transformed to 44 
which loads the constant 4 into Areg, 
whereas LDNL 28 is compiled into the 
pfix-chain 21 3c, which will execute 
LDNL on 16 × 1 + 12 = 28. 

6.2.3. The Complete Proof Struc-
ture. This ends the more detailed look 
into the characteristics of our technique 

Fig 16. Transputer-architecture and direct function codes. The Transputer state consists of 
the registers Areg, Breg, and Creg, which form a mini stack with top Areg, the operand reg-
ister Oreg, the instruction pointer (program counter) Iptr, the workspace pointer Wptr, vari-
ous flags like the ErrorFlag, some more registers and the memory Mem. The registers con-

tain Word valued quantities. The memory is byte or word addressable 



Теоретические и методологические основы программирования  

22 
 

of a-posteriori code inspection by com-
paring corresponding code parts of the 
respective source and target programs 
and checking them to be in conformance 
with the compiling specification rules. 

In order to come back to the over-
all proof structure, note that program 
fragments like those of the previous sec-
tion have been generated for the entire 
compiler using four unsafe initial com-
piler implementations produced by τ0 on 
machine M0 for both front-end and both 
back-end phases. 

The following large diagram (Fig-
ure 17) shows all four sub-compiling 
specifications CLi-1

Li, all four hand-written 

sub-compiler implementations τ''i,SL = τ''i,L1 
and all 16 = 4 × 4 sub-compilers τ''i,Lj 
generated and printed out by bootstrap-
ping. The specifications are verified by 
compiling verification (step 1), the τ''i,SL 
by high level implementation verification 
(step 2) and the τ''i,Lj for j > 1 by low level 
implementation verification (step 3), ac-
tually by checking 

τ''i,Lj-1 CLj-1
Lj τ''i,Lj 

which is exactly what we sketched in the 
previous section and which we proved to 
be sufficient due to the semantics to syn-
tax reduction Theorem 4.4. 

However, it is not necessary to per-
form all those cumbersome checkings.  

In particular, unpleasant low level ma-
chine) code inspections below the diago-
nal are redundant: Since CTA

TL and τ''4,SL 
are correct (steps 1 and 2), and since 
τ''4,TL is checked to be correctly compiled 
to TL, τ''4,TL is a fully correct TA to TL-
compiler executable. We can use it to 
correctly compile τ''3,TA to a correct τ'''3,TL, 
which guarantees τ'''3,TL to be a fully cor-
rect Cint to TA-compiler executable, and 
so forth. 

That is to say: We load the correct 
compiler τ''4,TL (actually τ''4,TL´´) into ma-
chine M using the boot program. Cor-
rectness of that program means and 
hence guarantees that it follows the ex-
plicit and implicit loading prescriptions 
of τ''4,TL´´. Then we start the loaded com-
piler in M and let M read τ''3,TA´´. If M 
terminates successfully (regularly), then 
due to Bootstrapping Theorem 4.1 the 
output is a correct compiler τ'''3,TL (actu-
ally τ'''3,TL´´) as well, not necessarily iden-
tical to τ''3,TL, but according to CTA

TL. 
We can now concatenate τ'''3,TL ; 

τ''4,TL (actually τ'''3,TL´´ ; τ''4,TL´´) and obtain a 
correct compiler executable from Cint'' to 
TL'' due to composability of commutative 
diagrams (cf. [Goerigk/Langmaack01c]). 
If we proceed, this process will finally 
generate the desired correct compiler ex-
ecutable from SL'' to TL''. 

 

Fig 17. Special bootstrapping with four compiler phases. ϕ'' L =def (ϕ L
L´ ; ϕ L´

L´´) 



Теоретические и методологические основы программирования 

23 

τ'''3,TL´´ = τ'''1,TL´´ ; τ'''2,TL´´ ; τ'''3,TL´´ ; τ''4,TL´´ 

Here we exploit Verifix's hardware 
correctness assumption for verified low 
level compiler implementation (step 3). 
Note that we have implicitly introduced a 
(syntactical) concatenation operator '';'' 
for sequential programs, which corre-
sponds to particular sequential composi-
tion. Its semantics is obvious. Any of our 
languages allows for the syntactical con-
catenation of programs.  

The compilers τ''i,SL contain a 
parser for s-expression sequences, namely 
the implementation of read-sequence. It 
is part of the runtime system, and so far, 
it has to be checked down to the diago-
nal, in particular and unfortunately also 
as part of τ''4,TL resp. τ''3,TA in machine 
code. However, there is a remarkable 
chance to reduce the a-posteriori code 
inspection work load considerably: Since 
the print-routines are checked down to 
machine code TL as well, we may in 
principle check the (considerably larger) 
read-routines by (trusted) printing of 
their results, i.e. we may look at the 
parser read-sequence as an additional ini-
tial compiler phase τ''0,SL. Then we only 
need its correct implementation as a high 
level SL-program and no further low level 
implementation verification. In that case, 
however, unchecked code runs initially, 
and we need further precaution1, namely 
to validate the intermediate machine 
state after running the code of read-
sequence. We can exploit the processor's 
memory protection mechanism and add a 
few validations (runtime-checkings) to 
sufficiently guarantee the relevant part of 
the intermediate state not to be cor-
rupted. In later work we shall report on 
this and give the necessary proofs. 

7. Conclusions 

At the end of our exposй we would 
like to answer the question raised in the 
title of this essay: Will informatics be 
able to justify the construction of large 
computer based systems? We will trace 
                                                           
1 Unfortunately, it seems again not to be sufficient 
to compare the initially loaded and the generated 
code to be identical (cf. section 4). 

again the main lines of thought which 
finally lead us to a rather confident an-
swer: Yes. In fact, internal misbehaviors 
and intended external violations of com-
puter based systems need not last for-
ever, i.e. safety and security might re-
cover. However, this will not work out 
unless software production and informat-
ics science carefully enough solve the 
following problem: At the end it is the 
executable binary real world processor 
code, and not only high level specifica-
tions and programs, which has to be 
guaranteed to behave correctly as re-
quired.  

Realistic software production em-
ploys and relies on compilers for high 
level languages, like for instance C, 
C++, Ada, Java or Common Lisp. C is 
very close to machine level, but in our 
context it must be seen as a high level 
language with very critical and decisive 
compilation steps towards real processor 
code.  

Of course, many constructors of 
realistic commercial and industrial com-
pilers are doing a quite good job. They 
care about correct compiling specification 
and correct compiler implementation by 
high level systems programs or by so-
phisticated rule sets for term or graph 
rewrite systems. But there has been 
bluntly no industry oriented research nor 
development of techniques to implement 
high level written compilers such that 
their executable binary host machine ver-
sions are guaranteed to generate (at 
most) correct target machine code (sec-
tion 2).  

Again and again, the reason for 
trouble is the use of unverified auxiliary 
software like tools and in particular com-
pilers, the use of so-called software of un-
certain pedigree (SOUP, [HSE01]). There 
are many examples, for instance incorrect 
implementations of theorem provers or of 
cryptographic protocols. Actually, even if 
we (unrealistically would) assume that 
compiler constructors have been verifying 
their compiler programs perfectly on 
source level, compiler implementations 
have been and are still produced by a 
now over 40 years lasting unsafe boot-



Теоретические и методологические основы программирования  

24 
 

strapping process using unverified com-
piler implementations to generate unveri-
fied compiler implementations. 

In contrast to mathematicians, and 
also to hardware engineers, software en-
gineers are often not so much impressed 
by logical gaps, especially not by those 
evoked by unverified compilers which 
passed Wirth's strong compiler test. 
Software constructors like to transfer 
such logical gaps into Wittgenstein's do-
main of logical scepticism, arguing that 
no way of reasoning will ever lead to-
wards convincing solutions (section 2). 

But unverified compilers are well 
outside Wittgenstein's domain and they 
bear real risks (as shown by Ken Thomp-
son [Thompson84] and later by ourselves 
[Goerigk99a, Goerigk99b, Goerigk00b]). 
Meanwhile, since computers use to be 
connected to world wide networks, we 
can unfortunately not give any guarantee 
for any of our programs used (section 4). 
Actually, rumors say that a computer 
does not survive un-hacked for more than 
about eight hours continuous connection 
to the internet. The risk increases, and 
computer science will be accounted for 
providing solutions. 

The Verifix-project offers industry 
oriented methods to solve the founda-
tional problem of trusted program im-
plementation, namely to produce realistic 
initial compilers for diligently chosen but 
nevertheless realistic programming lan-
guages, compilers that run correctly and 
hence trustworthily on real host proces-
sors and generate correct and hence 
trustworthy binary code for real target 
processors (cf. [Goerigk/Langmaack01c] 
and sections 4 to 6). Our particular tech-
nique for low level compiler implementa-
tion verification is new. It is a sophisti-
cated diagonal method of so-called syn-
tactical a posteriori-code inspection, a 
variant of rigorous a-posteriori-result 
checking (section 6). 

Once we have got an initial cor-
rectly implemented compiler executable, 
we may safely (mechanically) bootstrap 
further correct compiler implementations 
for instance for more comfortable lan-
guages (Bootstrapping lemma and theo-

rem, section 4). Even if the bootstrapping 
compiler preserves partial correctness, it 
is perfectly able to generate correct com-
piler executables which preserve total 
correctness. In fact, this is a very impor-
tant point for software engineers and 
process programmers interested in 
trusted implementation of safety critical 
embedded real-time systems. 

It is by no means necessary, that 
the language SL we have chosen for 
trusted compiler bootstrapping is a per-
fect systems programming language. 
Compilers for languages with more 
elaborated data types, nested and even 
higher order procedures and/or func-
tions, object-orientation and inheritance 
etc. can safely be bootstrapped. SL and 
its initial correct compiler implementa-
tion are chosen both to be useful tools 
and to conscientiously provide a high 
level proof documentation for correct low 
level binary code generation. Informati-
cians can check their proof documenta-
tion rigorously even without deep 
mathematical education. Moreover, if we 
assume hardware to work as described in 
the instruction manuals, then a lot of un-
pleasant low level checking is even re-
dundant due to our diagonal technique 
(section 6). 

The usual procedure, i.e. to incre-
mentally step up in a hierarchy of ab-
stractions by constructing and/or imple-
menting higher level (programming or 
specification) languages safely (correctly) 
on the lower level, does not work for ini-
tial correct compiler executables. The 
reason is, that machines, their physics, 
net lists and even their machine lan-
guages are too low level in order to ade-
quately express and to conscientiously 
reason about their program behaviors 
semantically. Our procedure to drive cor-
rectness down towards the real physical 
machine is, and has to be, of a character-
istically different nature, namely to ex-
press and to verify realistic correct com-
pilation semantically on the upper level 
first, and then to bridge the gap towards 
the real machine ''in a big step''. Fortu-
nately, it turns out that our techniques 
still allow to exploit the modularization in 



Теоретические и методологические основы программирования 

25 

appropriate steps of concretization. In 
fact, our intermediate languages and the 
four compiler phases are carefully chosen 
exactly in order to make this possible.  

Theoretical basis of compiler cor-
rectness is the notion of correct relative 
implementation which Verifix has devel-
oped and which is much more flexible 
than classical correct implementation (cf. 
[Goerigk/Langmaack01c] and section 
1.1). Software engineering theory stresses 
preservation of total program correctness, 
but E. Börger is right in his remark (Bop-
pard, Germany, 1998): ''In the past, the 
role of regular termination has been ex-
aggerated in software engineering.'' Pro-
grams need not be proved never to fail in 
order to be useful. They might end in ac-
ceptable errors, and we are ''sensible 
enough'' to give a guarantee that such 
errors will be signaled and hence detec-
ted while programs are executed. On the 
other hand, if errors cannot be detected, 
for instance for undecidability reasons, 
they are unacceptable and thus the user 
has to avoid (circumvent) them by choos-
ing appropriate inputs. We want to admit 
that this is kind of sophisticated. How-
ever, realistic software engineering requi-
rements are sophisticated trade-offs be-
tween a lot of inherently different wishes 
including for instance efficiency as well. 
The important point is that our results 
allow, for the first time in this critical 
area, to mathematically rigorously formu-
late and to formalize and prove such real-
istic requirements to be guaranteed. 

It is this line of thoughts that 
closes a 40 years old gap of low level 
compiler implementation verification and 
that makes us confident that informatics 
eventually will enable to justify the con-
struction of large computer based sys-
tems. In particular, Verifix also demon-
strates techniques to incrementally trans-
fer other so far unverified software into 
verified software.  

Acknowledgments We would like 
to thank our colleagues in the Verifix 
project for many fruitful discussions, in 
particular Axel Dold, Thilo Gaul, Gerhard 
Goos, Andreas Heberle, Friedrich von 
Henke, Ulrich Hoffmann, Vincent Via-

lard, Wolf Zimmermann. Special thanks 
to Markus Müller-Olm and Andreas Wolf 
for their contributions to the notion of 
relative program correctness and its pre-
servation.  

 
[Bartsch/Goerigk00d] R. Bartsch and W. Goerigk. 
Mechanical a-posteriori Verification of Results:  
A Case Study for a Safety Critical AI System.  
In AAAI Workshop on Model Based Validation of 
Intelligence MBVI'2001, Stanford, CA, U.S.A., 2001. 
 
[Blum+89] M. Blum, M. Luby, and R. Rubinfeld. 
Program result checking against adaptive pro-
grams and in cryptographic settings. In DIMACS 
Workshop on Distributed Computing and Cryp-
thography, 1989. 
 
[Cimatti+97] A. Cimatti, F. Giunchiglia, P. Pec-
chiari, B. Pietra, J. Profeta, D. Romano, and  
P. Traverso. A Provably Correct Embedded Verifier 
for the Certification of Safety Critical Software. In 
Proceedings of CAV '97 Conference on Computer 
Aided Verification, Haifa, Israel, June 1997. 
 
[Chirica/Martin86] L. M. Chirica and D. F. Mar-
tin. Toward Compiler Implementation Correctness 
Proofs. ACM Transactions on Programming Lan-
guages and Systems, 8(2):185-214, April 1986. 
 
[Dold+02] A. Dold, W. Goerigk, F. W. von Henke, 
and V. Vialard. A Mechanically Verified Compiling 
Specification for a Realistic Compiler. Technical 
Report UIB 2002-03, University of Ulm, 2002. 
 
[GccBugList] Gcc Project. The Gcc Bugs Archive. 
http://gcc.gnu.org/ml/gcc-bugs/. 
 
[Goerigk96b] W. Goerigk. An Exercise in Pro-
gram Verification: The ACL2 Correctness Proof of 
a Simple Theorem Prover Executable. Technical 
Report Verifix/CAU/2.4, CAU Kiel, 1996. 
 
[Goerigk97d] W. Goerigk. Towards Rigorous 
Compiler Implementation Verification. In R. 
Berghammer and F. Simon, editors, Proc. of the 
1997 Workshop on Programming Languages and 
Fundamentals of Programming, pages 118 — 126, 
Avendorf, Germany, November 1997. 
 
[Goerigk+98] W. Goerigk, Th. Gaul, and W. 
Zimmermann. Correct Programs without Proof? 
On Checker-Based Program Verification. In  
R. Berghammer and Y. Lakhnech, editors, Tool 
Support for System Specification, Development, 
and Verification, Advances in Computing Science, 
pages 108 — 122, Springer Verlag Wien, New 
York, 1998. 
 
[Goerigk/Hoffmann96] W. Goerigk and U. Hoff-
mann. The Compiler Implementation Language 
ComLisp. Technical Report Verifix/CAU/1.7, 
CAU Kiel, June 1996. 



Теоретические и методологические основы программирования  

26 
 

[Goerigk/Hoffmann97] W. Goerigk and U. Hoff-
mann. The Compiling Specification from ComLisp 
to Executable Machine Code. Technical Report 
Nr. 9713, Institut für Informatik, CAU, Kiel, De-
cember 1998. 
  
[Goerigk/Hoffmann98b] W. Goerigk and U. Hoff-
mann. Compiling ComLisp to Executable Ma-
chine Code: Compiler Construction. Technical 
Report Nr. 9812, Institut für Informatik, CAU Kiel, 
October 1998. 
 
[Goerigk/Hoffmann98] W. Goerigk and U. Hoff-
mann. Rigorous Compiler Implementation Cor-
rectness: How to Prove the Real Thing Correct. In 
D. Hutter, W. Stephan, P. Traverso, and M. Ull-
mann, editors, Applied Formal Methods - FM-
Trends 98, volume 1641 of LNCS, pages 122 — 
136, Springer Verlag, 1998. 
 
[Goerigk/Langmaack01c] W. Goerigk and  
H. Langmaack. Will Informatics be able to Justify 
the Construction of Large Computer Based Sys-
tems? Part I: Realistic Correct Systems Implemen-
tation. International Journal on Problems of Pro-
gramming, 2003. Forthcoming. 
 
[Goerigk99a] W. Goerigk. On Trojan Horses in 
Compiler Implementations. In F. Saglietti and  
W. Goerigk, editors, Proc. des Workshops Sicher-
heit und Zuverlдssigkeit softwarebasierter Systeme, 
ISTec Report ISTec-A-367, ISBN 3-00-004872-3, 
Garching, August 1999. 
 
[Goerigk99b] W. Goerigk. Compiler Verification 
Revisited. In M. Kaufmann, P. Manolios, and  
J S. Moore, editors, Computer Aided Reasoning: 
ACL2 Case Studies. Kluwer Academic Publishers, 
2000. 
 
[Goerigk00a] W. Goerigk. Trusted Program Exe-
cution. Habilitation thesis. Techn. Faculty, Chris-
tian-Albrechts-Universität zu Kiel, May 2000.  
To be published. 
 
[Goerigk00b] W. Goerigk. Proving Preservation of 
Partial Correctness with ACL2: A Mechanical 
Compiler Source Level Correctness Proof. In M. 
Kaufmann and J S. Moore, editors, Proceeding of 
the ACL2'2000 Workshop, University of Texas, 
Austin, Texas, U.S.A., October 2000. 
 
[Goos/Zimmermann99] G. Goos and W. Zimmer-
mann. Verification of Compilers. In E.-R. Olderog 
and B. Steffen, editors, Correct System Design, 
volume 1710 of LNCS, pages 201 — 230. Springer 
Verlag, 1999. 
 
[Gaul+99] Th. Gaul, W. Zimmermann, and W. Go-
erigk. Construction of Verified Software Systems 
with Program-Checking: An Application To Com-
piler Back-Ends. In A. Pnueli and P. Traverso, edi-
tors, Proc. FLoC'99 International Workshop on Run-
time Result Verification, Trento, Italy, 1999. 

[Heberle+98]A. Heberle, Th. Gaul, W. Goerigk, 
G. Goos, and W. Zimmermann. Construction of 
Verified Compiler Front-Ends with Program-
Checking. In Proceedings of PSI '99: Andrei Er-
shov Third International Conference on Perspec-
tives Of System Informatics, volume 1755 of Lec-
ture Notes in Computer Science, Novosibirsk, Rus-
sia, 1999. Springer Verlag. 
 
[Hoffmann98b] U. Hoffmann. Compiler Implemen-
tation Verification through Rigorous Syntactical 
Code Inspection. PhD thesis, Technische Fakultät 
der Christian-Albrechts-Universität zu Kiel, Tech-
nical Report 9814, 1998. 
 
[HSE01] C. Jones, R.E. Bloomfield, P.K.D. Froo-
me, and P.G. Bishop. Methods for assessing the 
safety integrity of safety-related software of un-
certain pedigree (SOUP). Contract Research Re-
port 337/2001, Health and Safety Executive, Ade-
lard, London, UK, 2001. 
 
[Kaufmann/Moore94] M. Kaufmann and  
J S. Moore. Design Goals of ACL2. Technical Re-
port 101, Computational Logic, Inc., August 1994. 
 
[Langmaack97a] H. Langmaack. Softwareengi-
neering zur Zertifizierung von Systemen: Spezifi-
kations-, Implementierungs-, Übersetzerkorrek-
theit. Informationstechnik und Technische Infor-
matik it+ti, 39(3):41—47, 1997. 
 
[Langmaack97b] H. Langmaack. The ProCoS Ap-
proach to Correct Systems. Real Time Systems, 
13:251—273, Kluwer Academic Publishers, 1997. 
 
[Langmaack97c] H. Langmaack. Contribution to 
Goodenough's and Gerhart's Theory of Software 
Testing and Verification: Relation between Strong 
Compiler Test and Compiler Implementation 
Verification. Foundations of Computer Science: 
Potential-Theory-Cognition. LNCS 1337, pages 
321—335, Springer Verlag, 1997. 
 
[Loeckx/Sieber87] Jacques Loeckx and Kurt 
Sieber. The Foundations of Program Verification 
(Second edition). John Wiley and Sons, New 
York, N.Y., 1987. 
 
[Moore88] J S. Moore. Piton: A verified assembly 
level language. Techn. Report 22, Comp. Logic 
Inc, Austin, Texas, 1988. 
 
[Moore96] J S. Moore. Piton: A Mechanically 
Verified Assembly-Level Language. Kluwer Aca-
demic Press, Dordrecht, The Netherlands, 1996. 
 
[Mueller-Olm/Wolf99] M. Müller-Olm and  
A. Wolf. On Excusable and Inexcusable Failures: 
Towards an Adequate Notion of Translation Cor-
rectness. In J. M. Wing, J. Woodcock, and 
J.Davies, editors, Proceedings of Formal Methods 
FM'99, volume 1709 of LNCS, pages 1107—1127, 
Toulouse, France, 1999. Springer Verlag. 



Теоретические и методологические основы программирования 

27 

[Nielson/Nielson92] H. R. Nielson and F. Nielson. 
Semantics with Applications: A Formal Introduc-
tion. John Wiley & Sons, Chichester, 1992. 
 
[Pnueli+98] A. Pnueli, M. Siegel, and E. Singer-
man. Translation Validation. In Proc. 4th Interna-
tional Conference on Tools and Algorithms for the 
Construction and Analysis of Systems, Lisbon, Por-
tugal, March 1998. 
 
[Thompson84] K. Thompson. Reflections on 
Trusting Trust. Communications of the ACM, 
27(8):761—763, 1984. Also in ACM Turing Award 
Lectures: The First Twenty Years 1965-1985, ACM 
Press, 1987, and in Computers Under Attack: In-
truders, Worms, and Viruses, ACM Press, 1990. 
 
[Wirth77] N. Wirth. Compilerbau, eine Ein-
führung. B.G. Teubner, Stuttgart, 1977. 
 

[Wolf00] A. Wolf. Weakest Relative Precondition 
Semantics - Balancing Approved Theory and Real-
istic Translation Verification. PhD thesis, Tech-
nische Fakultät der Christian-Albrechts-
Universität, Report No. 2013, Kiel, February 2001. 

Date received 20.03.03 
About authors 
Prof. Dr. Wolfgang Goerigk  

Professor of Institute of Informatics and 
Applied Mathematics  

Prof. Dr. Hans Langmaack 
Professor of Institute of Informatics and 
Applied Mathematics  

Institut für Informatik und Praktische Mathematik 
Christian-Albrechts-Universität zu Kiel, Kiel, 
Germany 

Email: wg@informatik.uni-kiel.de,  
hl@informatik.uni-kiel.de

 


