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ДВІЙНИКИ В СИСТЕМАХ ВИЯВЛЕННЯ ВТОРГНЕНЬ 
НА ОСНОВІ ГЛИБОКОГО НАВЧАННЯ

Дана робота спрямована на підвищення точності виявлення атак у програмних та апаратних системах 
шляхом використання цифрового двійника у формі алгебраїчної моделі в системах виявлення вторгнень 
(IDS), заснованих на нейронних мережах глибокого навчання (DNN). Цей підхід усуває недоліки 
навчання та недосконалість набору даних, які призводять до численних помилкових спрацьовувань, 
невиявлених вторгнень та слабкої стійкості до атак супротивника. Пропонується архітектура IDS, яка 
поєднує нейронні мережі глибокого навчання з алгебраїчною моделлю на необхідному рівні абстракції. 
Ця композиція забезпечує високу точність виявлення та постійне самонавчання IDS на основі роботи 
моделі та збору даних, включаючи атаки нульового дня. Два приклади демонструють застосування цього 
підходу: виявлення атак у двійковому коді програмної системи та в програмованій інтегральній схемі.

Ключові слова: глибоке навчання, нейронна мережа, нейро-символьний підхід, цифрові двійники, 
алгебра поведінки
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DIGITAL TWINS IN INTRUSION DETECTION SYSTEMS 
BASED ON DEEP LEARNING

This work aims to improve the accuracy of attack detection in software and hardware systems by utilizing a 
digital twin in the form of an algebraic model within intrusion detection systems (IDSs) based on deep learning 
neural networks (DNNs). This approach addresses the shortcomings of training and dataset imperfections that 
lead to numerous false positives, undetected intrusions, and weak resistance against adversarial attacks. We 
propose an IDS architecture that combines deep learning neural networks with an algebraic model at the required 
level of abstraction. This composition provides high detection accuracy and enables continuous self-learning of 
the IDS based on model operation and data acquisition, including zero-day attacks. Two examples demonstrate 
the application of this approach: detecting attacks in the binary code of a software system and in a programmable 
integrated circuit.
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Introduction
The modern intrusion detection 

systems (IDSs), which are based on deep 
learning neural networks (DNNs), have 
benefits and shortcomings. The detection of 
attacks in real time is carried out by analyzing 
incoming traffic, from which it is possible to 
extract some traffic, statistical and time data.

The indisputable advantage of DNNs is 
that they can work in real time, quickly 
detecting intrusions. In general, IDSs can be 
divided into two functional groups [1].

The first variety refers to classifiers 
trained on data labeled with specific types of 
attacks or multiclassifications. Everything that 

does not fall under this dataset is considered 
benign traffic.

The second group is trained on 
examples of normal system operation, and any 
deviation is considered an intrusion. These 
systems are called anomaly-based systems.

Because datasets are not able to cover 
the full space of possible data, cases of false 
positives can arise. Moreover, a hacker can 
evade classification by manipulating sensitive 
features fed to the DNN input.

Modern intrusion detection systems 
work for both software and hardware systems, 
including those based on programmable 
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integrated circuits, namely field programmable 
gate arrays (FPGAs) that are very popular in 
the Internet of Things environment.

In software systems, IDSs are 
implemented in the form of firewalls that 
contain a neural component and block 
malicious traffic. Often, systems are created 
based on FPGA or application-specific 
integrated circuit (ASIC), which directly 
contain neural networks [2].

The internet protocols TCP/IP and 
UDP, from which the traffic is considered, are 
mostly encrypted data, so only available data 
from traffic packets and statistical and time 
data are generally used. It reduces the accuracy 
of classification as well.

There are a certain number of methods 
that attempt to eliminate such disadvantages, 
particularly the use of sandbox technology. 
However, running the application in an 
isolated environment significantly slows down 
traffic and cannot be used effectively in real 
time.

The authors have developed 
technology in which there is a digital twin [3] 
of the system to be protected. This notion is 
known as an established concept in various 
subject domains to study and analyze the
original system. The digital twin is presented 
in the form of an algebraic model created at the 
appropriate level of abstraction for effective 
intrusion detection. We consider the 
architecture of the system, where both types of 
DNNs are involved, which interact with the 
digital twin.

The system also uses the augmentation 
of the dataset using the generation of new 
features via a digital twin. For this purpose, a 
limited initial run is performed in the digital 
twin environment to obtain the relevant data.

1. General scheme 
of the approach

The main idea behind the IDS approach 
proposed by the authors is to combine an 
algebraic method, which provides accuracy in 
detection, with a neural network of deep learning. 
This approach is considered neurosymbolic. This 
approach is used in practice and has already 
produced serious results that have significantly 

increased the accuracy of the DNN [4].
To implement the symbolic or algebraic 

component, a digital twin of the system is created 
in terms of algebraic specifications, and this twin 
is stored with the system and interacts with the 
DNN. One of the functions of the digital twin is to 
create constraints for confirming or refuting the 
classification result of the neural component.

The neural component extracts the 
relevant features from the traffic and provides 
classification. It interacts with a digital twin and 
retrains according to this interaction.

The neural component is a composite of 
two DNNs, one of which is trained for binary 
classification—that is, determines normal 
operation and intrusion. The other works in 
parallel and classifies the type of attack.

The front-end component perceives the 
traffic from which it extracts the relevant features 
and, when interacting with the digital twin,
receives additional features from the model. 
These data are also used to retrain the neural 
components.

Constraint-matching component 
computes the truth value of the constraints 
according to the traffic data and then makes a final 
verdict on the presence of an attack taking into 
account the DNN classification.

Fig. 1. General scheme of the approach

The algorithm for such a configuration 
is as follows:

1. A portion of the traffic is received, 
which extracts the relevant features of the 
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front-end component. Traffic is blocked in 
quarantine.

2. The portion of traffic is classified by 
both DNNs.

3. If both DNN components do not 
detect malicious traffic, then the traffic data are 
passed.

4. If at least one of the components 
detects an intrusion, the necessary features are 
submitted to the matching component with 
constraints data base:

a. If the matching with the constraints 
reveals an attack, then the intrusion is 
confirmed. Moreover, if one of the DNNs does 
not detect an attack, the received data are used 
for retraining.

b. If the matching with the constraints 
does not reveal an attack detected by the DNN 
with binary classification, then such an attack 
is considered unknown, and the traffic data are 
modeled on the algebraic model (digital twin). 
If the data lead to a violation of security 
properties, then the corresponding constraints 
are added to the constraint matching 
component, and both DNNs are retrained on 
the new case. All known security properties—
such as unauthorized access, writing to 
forbidden memory, overflow, and others—are 
determined in advance and formalized as 
algebraic specifications.

2. The digital twin of the system 
as an algebraic model

The algebraic twin of the system is its 
model created via algebraic specifications. The 
basis of specifications is the algebra of behaviors 
[5], which is defined by operations and predicates 
on a set of actions and behaviors of different 
agents and environments. In turn, agents and 
environments are formal entities defined by a set 
of typified attributes. As such, we consider a 
system that is represented by its binary code, that 
is, a set of machine instructions for software 
systems or FPGA boot code for hardware.

The algebraic model is obtained 
automatically via appropriate translation.

Fig. 2. Example of translation of binary code 
into algebraic specifications in the form 

of behavioral equations

Algebraic specifications are 
represented by the algebra of behaviors, which 
defines operations on the actions and behaviors 
of interacting agents. The operation “.” is a 
prefixing operation that separates action from 
behavior. The “+” operation defines a 
nondeterministic choice of behaviors. Algebra 
is extended by operations of parallel and 
sequential compositions of behaviors. The 
behavior of the system is a set of equations in 
the right part of which there is an expression in 
terms of the algebra of behaviors. Action is a 
pair: a precondition that defines the state of the 
environment in which the action is possible 
and a postcondition that defines a change in the 
environment if the action is performed.

Thus, Figure 2 shows a set of machine 
instructions, which are translated into the 
equation of the algebra of behaviors and into 
the set of corresponding actions. In fact, the 
equations of the algebra of behaviors represent 
the control flow of the program, and the actions 
contain the semantics of the corresponding 
machine instruction.

For hardware, translation of the 
executable FPGA code is used, which is 
obtained after compiling the code from the 
hardware design language. In particular, this 
code is contained in the programming object 
file (pof).

The corresponding semantics of the 
commands of this file can be presented in the 
form of equations of the algebra of behaviors.
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With an algebraic model, it is possible 
to apply formal methods, particularly algebraic 
modeling, to find vulnerabilities or possible 
attack scenarios.

Algebraic modeling is used to 
determine the reachability of some property. If 
the initial state of system 𝑆𝑆0 is determined as a 
set of constraints 𝐹𝐹 or specific values of system 
attributes 𝑥𝑥1, 𝑥𝑥2, ...

𝑆𝑆0  =  𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … )    (1)
Then, when choosing a possible action 

from the equations of the algebra of behaviors, 
we check the satisfiability of its precondition 
and environment formula, and if there are such 
values of attributes for which the formula is 
true, then we change the state according to the 
postcondition. Thus, during algebraic 
modeling, we obtain a set of symbolic states 
𝑆𝑆0, 𝑆𝑆1, ..., namely set of formulas where the 
values of the attributes are not concrete; that is, 
each symbolic state covers a set of concrete 
states.

If the sought-after property 𝑅𝑅(𝑥𝑥1, 𝑥𝑥2,
...) is achievable, then there is a sequence of 
symbolic states that leads to the 𝑆𝑆𝑅𝑅 state that 
the conjunction of the state and property is a 
satisfiable formula; that is, there are values 
𝑥𝑥1, 𝑥𝑥2,... such that 𝑆𝑆𝑅𝑅  R(x1,x2,…) is true.

In addition to algebraic modeling, other 
formal methods can be applied, such as the 
search for state invariants or proving the 
completeness of the system (absence of 
deadlocks) and other useful procedures.

In the context of cybersecurity, we 
consider the conditions for the possibility of an 
attack detection or the search for 
vulnerabilities, which are specified by 
formulas over the attributes of the system, as 
the sought-after properties.

The algebraic twin of the system works 
in parallel with the neural component and 
performs the following functions:

1. Generates a set of constraints for 
classifying attacks. The generation method is 
described in the next section.

2. An augmented training dataset is 
generated based on a digital twin initial state to 
obtain the additional features.

3. A set of cases is generated for 
training a binary neural network. Generation is 
performed via algebraic modeling, here with 

the help of which possible scenarios of benign 
behavior of the system are built and from 
which appropriate features for training are 
extracted.

4. System behavior modeling is 
performed to identify an unknown attack.

5. The possible use of a digital twin is 
the implementation of a deceptive strategy. If 
the intrusion is for the purpose of 
reconnaissance or data theft, the digital twin 
can generate responses with fake data to give 
to the intruder. This property is not considered 
in the present work but is the subject of future 
research.

3. Attack patterns and generation 
of constraints

Using the algebra of behaviors, it is 
possible to describe the semantics of the attack. 
We call this pattern an algebraic attack signature.

This signature is determined by the 
equations of the algebra of behaviors, in which 
unknown or arbitrary behavior is involved. In the 
actions, additional constraints for triggering the 
attack may be present in the preсondition.

The formal definition of an algebraic 
signature is as follows.

Algebraic signature 𝐵𝐵𝑖𝑖 (𝑥𝑥1, 𝑥𝑥2..., 𝑌𝑌1, 𝑌𝑌2,...) 
is a behavioral equation over the attributes of the 
system 𝑥𝑥1, 𝑥𝑥2,... and arbitrary behaviors 𝑌𝑌1, 𝑌𝑌2..., 
which determines the behavior of the intruder in 
the environment of the model, which is specified 
by the system of behavioral equations.

An attack is achievable in the model 
environment if there is a sequence of states that 
corresponds to a given algebraic signature of the 
attack. This correspondence is verified via 
algebraic modeling, particularly its variant, that is, 
the algebraic matching algorithm [6].

This sequence of states is used to generate 
constraints that are used in the intrusion detection 
system. If there is a sequence of states that leads 
to the triggering of a vulnerability or an intrusion 
𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, …, then we can to specify a constraint 
from the formula 𝑆𝑆0that corresponds to a given 
attack. 

In this case, it is necessary to strengthen 
the formula 𝑆𝑆0 such that any set of attributes 
corresponding to this formula triggers the attack. 
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This is accomplished via backward algebraic 
modeling, where the initial state is defined as the 
state at which the attack is triggered and through 
the actions are performed for the given sequence 
of states leading to the initial state. The obtained 
formula of the initial state at which the attack is 
triggered is used as a constraint of the intrusion 
detection system corresponding to this attack.

When an attack is detected, it checks 
whether the constraint is true on a set of features 
that have been extracted from the traffic.

Note that this technology is possible when 
features that correspond to system attributes are 
used. We use a digital twin to identify such 
features and augment the training dataset.

Below, we consider specific examples of 
constraint generation and dataset augmentation.

4. Case Study

4.1 Stack Corruption Attack in a 
Software System

Consider the algebraic signature of the 
“stack corruption” vulnerability. This is a simple 
example of a vulnerability that can be exploited 
by an intruder by inputting specific data. The 
signature is considered as reduced only to 
illustrate the method.

We can describe this vulnerability via a 
behavioral equation:

StackDamage = syscall(0). Z; mov(ss, y, z, regn)
This StackDamage equation represents 

behavior that begins with the syscall action, 
continues with the arbitrary Z behavior, and ends 
with the mov action. Each action corresponds to 
an Intel x86 machine instruction.

The semantics of the system action with 
the specified parameters indicate an interruption 
when it comes to inputting information from a 
file. This defines the processor register rax, and 
the memory address to which the information will 
be written is in the rsi register. This memory is 
additionally labeled in the postcondition as Dirty
or possibly harmful information. This will be 
taken into account during algebraic modeling.

syscall(0) : (rax(0,8) == 0)-> (Dirty(rsi(0,8)) = 1)
The final mov action contains the 

vulnerability itself, that is, a write outside the 
stack boundary in the stack memory. Additional 
action semantics are defined as follows:

mov(x, y, z, r) : (y+z >= top(0,8)) -> 1

The action parameters recognize 𝑥𝑥 –
memory type, in this case stack memory, 𝑦𝑦 –
stack address, 𝑧𝑧 – memory size, and 𝑟𝑟 – general 
purpose register from which the memory is 
written. The notation top (0,8) indicates the 
current top of the stack or the address of the stack 
pointer.

This signature is used in the algebraic 
matching algorithm, where the system model and 
this signature are input. Using the method of 
algebraic modeling, it is proven that this behavior 
is reachable. As a result, we obtain the final state 
in which the vulnerability is triggered.

This state contains constraints on system 
attributes such as register values and memory. 
Registers can be both stack and general purpose.

Mem(x) >= 0xffffffff  Reg1 > 0xf001  SP == 
MEM_LIMIT – 0x00ff  …

Next, it is necessary to determine the 
initial values of system attributes in the form of 
constraints under which the vulnerability is 
triggered.

We use backward modeling from the final 
state to the point where the input occurs via a 
syscall instruction.

As a result of backward modeling, we 
obtain a state that determines the constraints on 
the attributes under which the vulnerability can be 
triggered. For example, with the selected 
modeling, we determine the constraint for the 
initial memory, which is located at the address 
recorded in the rsi register. For example:

Memory(rsi) > 0xffffffffffff0011

Thus, when such data are entered from a 
file, a vulnerability is triggered, and if such data 
are present in the traffic, the program stack will be 
damaged and the system will stop working. Thus, 
we can determine the exploit of this vulnerability 
by defining one of the memory values that will be 
specific, for example, 0xffffffffffffff00ff.

The memory and register values may be 
given as the features that can be obtained from a 
partial initial run of the digital twin. The 
constraints related to such features are 
subsequently entered into a special database and 
matched with the appropriate classification of the 
neural component.
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4.2 Violation of the Security Properties 
of Hardware

For hardware, the architecture that will 
make the digital twin effective has not yet been 
finalized. The model that exists in computer 
resources with access to traffic data in hardware is 
considered.

When hardware systems are designed, the 
design languages use local constraints or 
assertions, the violation of which is considered a 
security violation. Proving the impossibility of 
violating such a constraint, that is, invariant, is 
quite difficult because parts of the hardware 
design work mainly in parallel; therefore, the 
search can be endless or take considerable time.

Let us have a security property 
𝑅𝑅(𝑥𝑥1, 𝑥𝑥2, … ) at a certain location of the hardware 
system, which can be obtained already in the code 
that is loaded. It can be either password cracking
or data overflow. We have a model of the system 
in terms of the algebra of behaviors. It is a 
translated from set of commands contained in .pof 
files for loading onto the FPGA.

We believe that we have a DNN that is 
trained to classify violations of security properties 
in the hardware system.

In this case, the generation of constraints 
can occur not according to the algebraic signature 
but as a result of modeling from the point of 
security violation ¬𝑅𝑅(𝑥𝑥1, 𝑥𝑥2, . . . ) before the start 
of receiving FPGA data from the external 
environment.

We obtain a set of scenarios from the 
modelling for values of the input signals. Also we 
obtain a set of constraints according to the 
behavior scenarios. The resulting constraint that is 
used will be the union of all the constraints at the 
data entry point.

In general, detecting attacks in hardware 
will be performed as in a software system. In 
addition to specific attacks, constraints for well-
known attacks, such as side channel attacks, can 
be added.

Discussion and conclusions

We used a neurosymbolic approach in 
intrusion detection systems. In accordance 
with this architecture, several experiments 
were conducted using two DNNs and an 

algebraic component. DNNs were trained on 
available datasets [7] and augmented with 
features extracted from the limited initial 
launch of the digital twin. Data from registers 
and memory, which receive data from traffic, 
were used. For this purpose, an experimental 
prototype was developed, which uses standard 
traffic reconstruction frameworks and provides 
a limited initial launch of a digital twin that 
works with the DNN composition.

To evaluate the accuracy, a test dataset 
labeled with different types of attacks was 
selected. The first classification results were 
obtained in which there were no false positive 
detections, which confirmed the proof of 
concept.

The experiment was conducted on the 
separate use of components, which are planned 
to be integrated in the future into a single 
platform to create a software product.

In this architecture, the digital twin 
performs the function of generating 
constraints, which are used to confirm the 
classification of the DNN. Here, constraints 
are used as possible exploits in software or 
hardware systems to exploit a particular 
vulnerability. It can be assumed that the 
programmer wrote a program without 
vulnerabilities or used tools to verify 
vulnerabilities. On the other hand, compilers 
and operating systems have protection against 
classic vulnerabilities, such as writing to 
unauthorized memory. The program author 
cannot be certain that the compiled code that 
uses the interaction of different libraries does 
not contain vulnerabilities because 
vulnerabilities can be caused by the incorrect 
use of libraries, incompatibility of resources, 
and unknown paths that lead to violations. This 
especially applies to hardware, where there is 
a high degree of parallelism of various system 
components, which makes exhaustive 
verification impossible. When verifying the 
vulnerabilities of large systems, even at the 
level of binary code, different sequences of 
actions encounter a combinatorial explosion in 
the search space. Therefore, even before 
launching the system into permanent 
operation, it is impossible to exhaustively 
verify everything, and one of the functions of 
a digital twin is the permanent search for 
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vulnerabilities in the system and generation of 
appropriate constraints.

Although this architecture has a serious 
advantage in accuracy, several shortcomings 
must be considered.

We assume that a binary neural 
component that determines deviations from the 
normal operation, here trained on a certain 
amount of benign data, will always correctly 
determine the normal operation, but because it 
is impossible to cover the entire space of 
benign scenarios, false positive detections are 
possible. This is not an indisputable fact 
because a hacker can adapt to a normal 
scenario, even though this is quite a difficult 
task and requires studying the work of the 
classifier system that the hacker is likely to use 
and may be a case of not detecting the 
intrusion.

In this configuration, the result of 
detecting an attack by a binary neural 
component and not confirmed in the database 
of constraints must be verified by modeling, 
which determines the possibility of the 
reachability of the security property violation. 
This can cause traffic delays and system 
disruptions.

Thus, the presented architecture is an 
indisputable step in increasing the accuracy of 
intrusion detection systems based on the 
neurosymbolic approach, where the synergy of 
the speed of classification by the neural 
component and the accuracy of the algebraic 
approach is used. A certain number of 
vulnerabilities and attacks have been 
investigated, but a longer formalization and 
extension of the database of constraints and 
training of the system is appropriate for large 
critical systems that need to be protected. The 
optimal architecture of a digital twin for 
hardware has not yet been determined, so 
further experiments and more experience in 
finding vulnerabilities in hardware are 
required.
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