IIporpamHui cucremu 3axucty ingopmanii

VJIK 004.056 https://doi.org/10.15407/pp2025.02.020

0.0. Jlemuuescoxuii, C.0O. €600Kumos

JIBIMHUKH B CUCTEMAX BUSIBJIEHHSI BTOPTHEHD
HA OCHOBI INIMBOKOT'O HABYAHHAA

Jana poboTa cipssMOBaHa Ha MiJBHIIEHHS TOYHOCTI BUSBIICHHS aTak y MPOTPaMHHX Ta alapaTHUX CHCTEMax
MUITXOM BHKOPUCTAaHHS TU(GPOBOTO JABIHHUKA Y (hopMi anreOpaiuHoi MOJeli B CUCTEMAax BUSBICHHs BTOPTHEHD
(IDS), 3acHoBaHMX Ha HEeHpoHHMX Mepekax riambokoro HaBuanHs (DNN). Ileli miaxim ycyBae HEIOJIKH
HAaBYaHHSA Ta HEIOCKOHAIICTh HAOOpYy AAHUX, SKi NPU3BOAATH O YMCICHHUX MOMMJIKOBHX CIIPallbOBYBaHb,
HEBUSBJICHUX BTOPTHEHb Ta CIIAOKOI CTIMKOCTI O aTak cynpoTtuBHHUKA. [IpomonyeThes apxitekrypa IDS, sxa
MOEAHY€E HEHPOHHI MepexXi IMMOOKOT0 HaBYaHHSA 3 alNredpaidHOr0 MOAEIUTIO Ha HeoOXiTHOMY piBHI abcTpakiii.
L1 xommo3uwis 3a0e3neyye BUCOKY TOYHICTH BUSIBIICHHS Ta MOCTiiHe camoHaBuaHHs [DS Ha ocHOBI poboTn
Mo/Iesi Ta 300py JaHUX, BKIIIOYAIOYH aTaky HyJIbOBOTO JIHsI. [IBa MPHUKIIay JEMOHCTPYIOTh 3aCTOCYBaHHS LIOTO
MIIX0/1y: BUSBIICHHS aTak y JBIIKOBOMY KOJIi IIPOrPaMHOi CHCTEMH Ta B IPOrpaMOBaHiil iHTErpalibHIi CXeMi.

KirowoBi cnoBa: rimboke HaBYaHHS, HEHPOHHA Mepe)ka, HeHpO-CHMBOJBHHUII MiAXin, UUGPOBI IBIHHHUKH,
anreOpa MOBEIIHKU

0.0. Letychevskyi, S.0. Yevdokymov

DIGITAL TWINS IN INTRUSION DETECTION SYSTEMS
BASED ON DEEP LEARNING

This work aims to improve the accuracy of attack detection in software and hardware systems by utilizing a
digital twin in the form of an algebraic model within intrusion detection systems (IDSs) based on deep learning
neural networks (DNNSs). This approach addresses the shortcomings of training and dataset imperfections that
lead to numerous false positives, undetected intrusions, and weak resistance against adversarial attacks. We
propose an IDS architecture that combines deep learning neural networks with an algebraic model at the required
level of abstraction. This composition provides high detection accuracy and enables continuous self-learning of
the IDS based on model operation and data acquisition, including zero-day attacks. Two examples demonstrate
the application of this approach: detecting attacks in the binary code of a software system and in a programmable
integrated circuit.

Keywords: deep learning, neural network, neurosymbolic approach, digital twins, behavior algebra

Introduction

The modern intrusion detection does not fall under this dataset is considered

systems (IDSs), which are based on deep
learning neural networks (DNNs), have
benefits and shortcomings. The detection of
attacks in real time is carried out by analyzing
incoming traffic, from which it is possible to
extract some traffic, statistical and time data.

The indisputable advantage of DNNs is
that they can work in real time, quickly
detecting intrusions. In general, IDSs can be
divided into two functional groups [1].

The first variety refers to classifiers
trained on data labeled with specific types of
attacks or multiclassifications. Everything that

20

benign traffic.

The second group is trained on
examples of normal system operation, and any
deviation is considered an intrusion. These
systems are called anomaly-based systems.

Because datasets are not able to cover
the full space of possible data, cases of false
positives can arise. Moreover, a hacker can
evade classification by manipulating sensitive
features fed to the DNN input.

Modern intrusion detection systems
work for both software and hardware systems,
including those based on programmable

© 0.0. Letychevskyi, S.O. Yevdokymov, 2025

ISSN 1727-4907. IIpo06:1emu nporpamyBanHs. 2025. Ne2

IIporpamHui cucremu 3axucrty ingopmamii

integrated circuits, namely field programmable
gate arrays (FPGAs) that are very popular in
the Internet of Things environment.

In software systems, IDSs are
implemented in the form of firewalls that
contain a neural component and block
malicious traffic. Often, systems are created
based on FPGA or application-specific
integrated circuit (ASIC), which directly
contain neural networks [2].

The internet protocols TCP/IP and
UDP, from which the traffic is considered, are
mostly encrypted data, so only available data
from traffic packets and statistical and time
data are generally used. It reduces the accuracy
of classification as well.

There are a certain number of methods
that attempt to eliminate such disadvantages,
particularly the use of sandbox technology.
However, running the application in an
isolated environment significantly slows down
traffic and cannot be used effectively in real
time.

The authors have developed
technology in which there is a digital twin [3]
of the system to be protected. This notion is
known as an established concept in various
subject domains to study and analyze the
original system. The digital twin is presented
in the form of an algebraic model created at the
appropriate level of abstraction for effective
intrusion detection. We consider the
architecture of the system, where both types of
DNNs are involved, which interact with the
digital twin.

The system also uses the augmentation
of the dataset using the generation of new
features via a digital twin. For this purpose, a
limited initial run is performed in the digital
twin environment to obtain the relevant data.

1. General scheme
of the approach

The main idea behind the IDS approach
proposed by the authors is to combine an
algebraic method, which provides accuracy in
detection, with a neural network of deep learning.
This approach is considered neurosymbolic. This
approach is used in practice and has already
produced serious results that have significantly

increased the accuracy of the DNN [4].
To implement the symbolic or algebraic
component, a digital twin of the system is created
in terms of algebraic specifications, and this twin
is stored with the system and interacts with the
DNN. One of the functions of the digital twin is to
create constraints for confirming or refuting the
classification result of the neural component.
The neural component extracts the
relevant features from the traffic and provides
classification. It interacts with a digital twin and
retrains according to this interaction.
The neural component is a composite of
two DNNs, one of which is trained for binary
classification—that is, determines normal
operation and intrusion. The other works in
parallel and classifies the type of attack.
The front-end component perceives the
traffic from which it extracts the relevant features
and, when interacting with the digital twin,
receives additional features from the model.
These data are also used to retrain the neural
components.

Constraint-matching component
computes the truth value of the constraints
according to the traffic data and then makes a final
verdict on the presence of an attack taking into
account the DNN classification.

System to be
protected

Traffic
reconstruction,
features <« | Constraint
extraction, matching
quarantine [*‘

\ DNN 2 Digital Twin

Algebraic model
- ¥ of system

Fig. 1. General scheme of the approach

The algorithm for such a configuration
is as follows:

1. A portion of the traffic is received,
which extracts the relevant features of the

21

IIporpamHui cucremu 3axucty ingopmanii

front-end component. Traffic is blocked in
quarantine.

2. The portion of traffic is classified by
both DNNs.

3. If both DNN components do not
detect malicious traffic, then the traffic data are
passed.

4. If at least one of the components
detects an intrusion, the necessary features are
submitted to the matching component with
constraints data base:

a. If the matching with the constraints
reveals an attack, then the intrusion is
confirmed. Moreover, if one of the DNNs does
not detect an attack, the received data are used
for retraining.

b. If the matching with the constraints
does not reveal an attack detected by the DNN
with binary classification, then such an attack
is considered unknown, and the traffic data are
modeled on the algebraic model (digital twin).
If the data lead to a violation of security
properties, then the corresponding constraints
are added to the constraint matching
component, and both DNNs are retrained on
the new case. All known security properties—
such as unauthorized access, writing to
forbidden memory, overflow, and others—are
determined in advance and formalized as
algebraic specifications.

2. The digital twin of the system
as an algebraic model

The algebraic twin of the system is its
model created via algebraic specifications. The
basis of specifications is the algebra of behaviors
[5], which is defined by operations and predicates
on a set of actions and behaviors of different
agents and environments. In turn, agents and
environments are formal entities defined by a set
of typified attributes. As such, we consider a
system that is represented by its binary code, that
1s, a set of machine instructions for software
systems or FPGA boot code for hardware.

The algebraic model is obtained
automatically via appropriate translation.

22

BINIT = B401770,

8401000 = endbr64(0).8401004,
B401004 = sub(1,rsp,0x8).8401008,
8401008 = mov(2,rax,0x0).B40100f,
B40100f = test(3,rax,rax).8401012,
8401012 = je(4,0x401016).8401016 +
je(4,0x401016) 8401014,

8401014 = _call(5,rax).incrsP.call
UNDEFINEDO.B401016,

8401016 = add(6,rsp,0x8).840101a,
B40101a = ret(7).decrSP,

endbr64(0): ((1)-> (rip = 0x401004)),

sub(1,rsp,0x8): Exist ((Summa == 8),)0000) *

b 8),0 rsp(0,8),0x: -1*0x8)->
(rsp(0,8) = Summa; rip = 0x401008; ZF = (Summa == 0); SF = (Summa < 0); AF = 0;
PF = (Summa%2 == 0); OF = (Summa < -Ox7fffffffffffffff) | | (Summa > OX7fffffffifff))),
mov(2,rax,0x0): ((1)-> (rax(0,8) = 0x00; rip = 0x40100f}),
test(3,rax,rax): ((1)->(ZF = IFTHE(BAND({rax(0,8), rax(0,8))==0, 1, 0); PF =
BNOT(BOR(rax(0,8), rax(0,8))); CF = 0; OF = 0; rip = 0x401012)),
je(4,0x401016): ((ZF == 1)-> (rip = 0x401016)),
_call(S,rax): ((1)-> (MemS(rsp(0,8),8) = 0x401016; rip = rax(0, 8))),
add(6,rsp,0x8): Exist ((summa == Si 8)

8), rsp(0,8),0x 1*0x8)->

(rsp(0,8) = Summa; rip = 0x40101a; ZF = (Summa == 0); SF = (Summa < 0); AF = 0; PF =
(Summag2 == 0); OF = (Summa < -0 |1 (Summa >0x).
ret(7): ((1)-> (rip = MemS(rbp(0,8) + 8, 8))),

Fig. 2. Example of translation of binary code
into algebraic specifications in the form
of behavioral equations

Algebraic specifications are
represented by the algebra of behaviors, which
defines operations on the actions and behaviors
of interacting agents. The operation “.” is a
prefixing operation that separates action from
behavior. The “+” operation defines a
nondeterministic choice of behaviors. Algebra
is extended by operations of parallel and
sequential compositions of behaviors. The
behavior of the system is a set of equations in
the right part of which there is an expression in
terms of the algebra of behaviors. Action is a
pair: a precondition that defines the state of the
environment in which the action is possible
and a postcondition that defines a change in the
environment if the action is performed.

Thus, Figure 2 shows a set of machine
instructions, which are translated into the
equation of the algebra of behaviors and into
the set of corresponding actions. In fact, the
equations of the algebra of behaviors represent
the control flow of the program, and the actions
contain the semantics of the corresponding
machine instruction.

For hardware, translation of the
executable FPGA code is used, which is
obtained after compiling the code from the
hardware design language. In particular, this
code is contained in the programming object
file (pof).

The corresponding semantics of the
commands of this file can be presented in the
form of equations of the algebra of behaviors.

IIporpamHui cucremu 3axucrty ingopmamii

With an algebraic model, it is possible
to apply formal methods, particularly algebraic
modeling, to find vulnerabilities or possible
attack scenarios.

Algebraic modeling is wused to
determine the reachability of some property. If
the initial state of system S is determined as a
set of constraints F or specific values of system
attributes x4, x5, ...

So = F(xq1,x5,...) (1)

Then, when choosing a possible action
from the equations of the algebra of behaviors,
we check the satisfiability of its precondition
and environment formula, and if there are such
values of attributes for which the formula is
true, then we change the state according to the
postcondition. Thus, during algebraic
modeling, we obtain a set of symbolic states
So» S1, ..., namely set of formulas where the
values of the attributes are not concrete; that is,
each symbolic state covers a set of concrete
states.

If the sought-after property R(xq,x,,
...) 1s achievable, then there is a sequence of
symbolic states that leads to the Sy state that
the conjunction of the state and property is a
satisfiable formula; that is, there are values
X1, X3,... such that S A R(x1,x2,...) is true.

In addition to algebraic modeling, other
formal methods can be applied, such as the
search for state invariants or proving the
completeness of the system (absence of
deadlocks) and other useful procedures.

In the context of cybersecurity, we
consider the conditions for the possibility of an
attack detection or the search for
vulnerabilities, which are specified by
formulas over the attributes of the system, as
the sought-after properties.

The algebraic twin of the system works
in parallel with the neural component and
performs the following functions:

1. Generates a set of constraints for
classifying attacks. The generation method is
described in the next section.

2. An augmented training dataset is
generated based on a digital twin initial state to
obtain the additional features.

3. A set of cases is generated for
training a binary neural network. Generation is
performed via algebraic modeling, here with

the help of which possible scenarios of benign
behavior of the system are built and from
which appropriate features for training are
extracted.

4. System behavior modeling is
performed to identify an unknown attack.

5. The possible use of a digital twin is
the implementation of a deceptive strategy. If
the intrusion is for the purpose of
reconnaissance or data theft, the digital twin
can generate responses with fake data to give
to the intruder. This property is not considered
in the present work but is the subject of future
research.

3. Attack patterns and generation
of constraints

Using the algebra of behaviors, it is
possible to describe the semantics of the attack.
We call this pattern an algebraic attack signature.

This signature is determined by the
equations of the algebra of behaviors, in which
unknown or arbitrary behavior is involved. In the
actions, additional constraints for triggering the
attack may be present in the precondition.

The formal definition of an algebraic
signature is as follows.

Algebraic signature B; (x1,%;..., Y1, Y,,...)
is a behavioral equation over the attributes of the
system X, X5,... and arbitrary behaviors Y3, Y5...,
which determines the behavior of the intruder in
the environment of the model, which is specified
by the system of behavioral equations.

An attack is achievable in the model
environment if there is a sequence of states that
corresponds to a given algebraic signature of the
attack. This correspondence is verified via
algebraic modeling, particularly its variant, that is,
the algebraic matching algorithm [6].

This sequence of states is used to generate
constraints that are used in the intrusion detection
system. If there is a sequence of states that leads
to the triggering of a vulnerability or an intrusion
So, S1, S, ..., then we can to specify a constraint
from the formula Sythat corresponds to a given
attack.

In this case, it is necessary to strengthen
the formula S, such that any set of attributes
corresponding to this formula triggers the attack.

23

IIporpamHui cucremu 3axucty ingopmanii

This is accomplished via backward algebraic
modeling, where the initial state is defined as the
state at which the attack is triggered and through
the actions are performed for the given sequence
of states leading to the initial state. The obtained
formula of the initial state at which the attack is
triggered is used as a constraint of the intrusion
detection system corresponding to this attack.

When an attack is detected, it checks
whether the constraint is true on a set of features
that have been extracted from the traffic.

Note that this technology is possible when
features that correspond to system attributes are
used. We use a digital twin to identify such
features and augment the training dataset.

Below, we consider specific examples of
constraint generation and dataset augmentation.

4. Case Study

4.1 Stack Corruption Attack in a
Software System

Consider the algebraic signature of the
“stack corruption” vulnerability. This is a simple
example of a vulnerability that can be exploited
by an intruder by inputting specific data. The
signature 1s considered as reduced only to
illustrate the method.

We can describe this vulnerability via a
behavioral equation:

StackDamage = syscall(0). Z; mov(ss, y, z, regn)

This StackDamage equation represents
behavior that begins with the syscall action,
continues with the arbitrary Z behavior, and ends
with the mov action. Each action corresponds to
an Intel x86 machine instruction.

The semantics of the system action with
the specified parameters indicate an interruption
when it comes to inputting information from a
file. This defines the processor register rax, and
the memory address to which the information will
be written is in the rsi register. This memory is
additionally labeled in the postcondition as Dirty
or possibly harmful information. This will be
taken into account during algebraic modeling.

syscall(0) : (rax(0,8) == 0)-> (Dirty(rsi(0,8)) = 1)

The final mov action contains the
vulnerability itself, that is, a write outside the
stack boundary in the stack memory. Additional
action semantics are defined as follows:

mov(x, y, z, r) : (y+z >=top(0,8)) -> 1

24

The action parameters recognize x —
memory type, in this case stack memory, y —
stack address, z — memory size, and r — general
purpose register from which the memory is
written. The notation top (0,8) indicates the
current top of the stack or the address of the stack
pointer.

This signature is used in the algebraic
matching algorithm, where the system model and
this signature are input. Using the method of
algebraic modeling, it is proven that this behavior
is reachable. As a result, we obtain the final state
in which the vulnerability is triggered.

This state contains constraints on system
attributes such as register values and memory.
Registers can be both stack and general purpose.

Mem(x) >= Oxfifffiif » Regl > Oxf001 A SP ==
MEM_LIMIT — 0x00ff A ...

Next, it is necessary to determine the
initial values of system attributes in the form of
constraints under which the vulnerability is
triggered.

We use backward modeling from the final
state to the point where the input occurs via a
syscall instruction.

As a result of backward modeling, we
obtain a state that determines the constraints on
the attributes under which the vulnerability can be
triggered. For example, with the selected
modeling, we determine the constraint for the
initial memory, which is located at the address
recorded in the rsi register. For example:

Memory(rsi) > Oxfffififiiif001 1

Thus, when such data are entered from a
file, a vulnerability is triggered, and if such data
are present in the traffic, the program stack will be
damaged and the system will stop working. Thus,
we can determine the exploit of this vulnerability
by defining one of the memory values that will be

specific, for example, Oxfffiffiififf00ff

The memory and register values may be
given as the features that can be obtained from a
partial initial run of the digital twin. The
constraints related to such features are
subsequently entered into a special database and
matched with the appropriate classification of the
neural component.

IIporpamHui cucremu 3axucrty ingopmamii

4.2 Violation of the Security Properties
of Hardware

For hardware, the architecture that will
make the digital twin effective has not yet been
finalized. The model that exists in computer
resources with access to traffic data in hardware is
considered.

When hardware systems are designed, the
design languages use local constraints or
assertions, the violation of which is considered a
security violation. Proving the impossibility of
violating such a constraint, that is, invariant, is
quite difficult because parts of the hardware
design work mainly in parallel; therefore, the
search can be endless or take considerable time.

Let us have a security property
R(x4, x5, ...) atacertain location of the hardware
system, which can be obtained already in the code
that is loaded. It can be either password cracking
or data overflow. We have a model of the system
in terms of the algebra of behaviors. It is a
translated from set of commands contained in .pof
files for loading onto the FPGA.

We believe that we have a DNN that is
trained to classify violations of security properties
in the hardware system.

In this case, the generation of constraints
can occur not according to the algebraic signature
but as a result of modeling from the point of
security violation =R (x4, x5, ...) before the start
of receiving FPGA data from the external
environment.

We obtain a set of scenarios from the
modelling for values of the input signals. Also we
obtain a set of constraints according to the
behavior scenarios. The resulting constraint that is
used will be the union of all the constraints at the
data entry point.

In general, detecting attacks in hardware
will be performed as in a software system. In
addition to specific attacks, constraints for well-
known attacks, such as side channel attacks, can
be added.

Discussion and conclusions

We used a neurosymbolic approach in
intrusion detection systems. In accordance
with this architecture, several experiments
were conducted using two DNNs and an

algebraic component. DNNs were trained on
available datasets [7] and augmented with
features extracted from the limited initial
launch of the digital twin. Data from registers
and memory, which receive data from traffic,
were used. For this purpose, an experimental
prototype was developed, which uses standard
traffic reconstruction frameworks and provides
a limited initial launch of a digital twin that
works with the DNN composition.

To evaluate the accuracy, a test dataset
labeled with different types of attacks was
selected. The first classification results were
obtained in which there were no false positive
detections, which confirmed the proof of
concept.

The experiment was conducted on the
separate use of components, which are planned
to be integrated in the future into a single
platform to create a software product.

In this architecture, the digital twin
performs the function of generating
constraints, which are used to confirm the
classification of the DNN. Here, constraints
are used as possible exploits in software or
hardware systems to exploit a particular
vulnerability. It can be assumed that the
programmer wrote a program without
vulnerabilities or wused tools to verify
vulnerabilities. On the other hand, compilers
and operating systems have protection against
classic vulnerabilities, such as writing to
unauthorized memory. The program author
cannot be certain that the compiled code that
uses the interaction of different libraries does
not contain vulnerabilities because
vulnerabilities can be caused by the incorrect
use of libraries, incompatibility of resources,
and unknown paths that lead to violations. This
especially applies to hardware, where there is
a high degree of parallelism of various system
components, which makes exhaustive
verification impossible. When verifying the
vulnerabilities of large systems, even at the
level of binary code, different sequences of
actions encounter a combinatorial explosion in
the search space. Therefore, even before
launching the system into permanent
operation, it is impossible to exhaustively
verify everything, and one of the functions of
a digital twin is the permanent search for

25

IIporpamHui cucremu 3axucty ingopmanii

vulnerabilities in the system and generation of
appropriate constraints.

Although this architecture has a serious
advantage in accuracy, several shortcomings
must be considered.

We assume that a binary neural
component that determines deviations from the
normal operation, here trained on a certain
amount of benign data, will always correctly
determine the normal operation, but because it
i1s impossible to cover the entire space of
benign scenarios, false positive detections are
possible. This is not an indisputable fact
because a hacker can adapt to a normal
scenario, even though this is quite a difficult
task and requires studying the work of the
classifier system that the hacker is likely to use
and may be a case of not detecting the
intrusion.

In this configuration, the result of
detecting an attack by a binary neural
component and not confirmed in the database
of constraints must be verified by modeling,
which determines the possibility of the
reachability of the security property violation.
This can cause traffic delays and system
disruptions.

Thus, the presented architecture is an
indisputable step in increasing the accuracy of
intrusion detection systems based on the
neurosymbolic approach, where the synergy of
the speed of classification by the neural
component and the accuracy of the algebraic
approach is used. A certain number of
vulnerabilities and attacks have been
investigated, but a longer formalization and
extension of the database of constraints and
training of the system is appropriate for large
critical systems that need to be protected. The
optimal architecture of a digital twin for
hardware has not yet been determined, so
further experiments and more experience in
finding vulnerabilities in hardware are
required.

Acknowledgment

This work was carried out with the
support of the project “Application of Algebraic

26

Approach and Enhanced Artificial Intelligence
Methods in Cybersecurity Tasks” within the
NATO program “Science for Peace and Security
Program.”

References

1 A. Pinto, L.-C. Herrera, Y. Donoso, and J. A.
Gutiérrez, “Survey on intrusion detection
systems based on machine learning techniques
for the protection of critical infrastructure,”
Sensors, vol. 23, no. 5, p. 2415, Mar. 2023, doi:
10.3390/s23052415.

2 D.-M. Ngo, A. Temko, C. C. Murphy, and E.
Popovici, “FPGA hardware acceleration
framework for anomaly-based intrusion
detection system in IoT,” in Proc. 31st Int.
Conf. Field-Programmable Logic Appl. (FPL),
Dresden, Germany, 2021, pp. 69-75, doi:
10.1109/FPL53798.2021.00020.

3 S.Haagand R. Anderl, “Digital twin—proof of
concept,” Manufacturing Letters, vol. 15, pp.
6466, Jan. 2018.

4 P. Hitzler, A. Eberhart, M. Ebrahimi, M. K.
Sarker, and L. Zhou, “Neuro-symbolic
approaches in artificial intelligence,” National
Science Review, vol. 9, no. 6, Jun. 2022, doi:
10.1093/nsr/nwac035.

5 A. Letichevsky, “Algebra of behavior
transformations and its applications,” in
Structural Theory of Automata, Semigroups,
and Universal Algebra, V. B. Kudryavtsev and
I. G. Rosenberg, Eds. Dordrecht, The
Netherlands: Springer, 2005, pp. 241-272.

6 O. Letychevskyi and V. Peschanenko,
“Applying algebraic virtual machine to
cybersecurity tasks,” in Proc. 2022 IEEE 9th
Int. Conf. Sci. Electron., Technol. Inf.
Telecommun. (SETIT), Hammamet, Tunisia,
2022, pp- 161-169, doi:
10.1109/SETIT54465.2022.9875895.

7 Y. Mirsky, “Kitsune network attack dataset,”
Kaggle. [Online]. Available:
https://www.kaggle.com/datasets/ymirsky/net
work-attack-dataset-kitsune. [Accessed:
14.09.2024].

Opnepxano: 18.03.2025
BuyTpimns peuensis orpumana: 27.03.2025
30BHiIIHSA penenHsis orpuMana: 28.03.2025

IIporpamHui cucremu 3axucrty ingopmamii

Ilpo aemopis: Micue pooomu agmopie:
! Tlemuuescoxuii Onexcandp Onexcanoposuy, MucturyT kiGepueTnky iveni B. M.
JOKTOP (hi3MKO-MaTeMaTHYHUX HAYK, I'nymkoa HAH Ykpainu,
3aBiayBayv BIAAUTY 03187, m. Kuis,
https://orcid.org/0000-0003-0856-9771 npoci. Akanemika [nymkosa, 40.

Ten. (+38) (044) 526-20-08
2€s00kumos Cepeiii Onexcanopoeuy, Email: office@icyb.kiev.ua,
acmipaHT Kadenpu KOMIT'IOTEPHUX HAyK Ta www.incyb.kiev.ua
IIpOrpaMHo1 iHXKeHepii
https://Orcid.org/OOOO—OOO1 -7213-0259 2XGpCOHCBKI/II\/’I lIep)KaBHI/Iﬁ YHiBepCI/ITeT

73003, m. Xepcon (FOpuauuna anpeca),
BYJ. YHIBEpPCUTETChKA, 27.

76018, m. IBano-®PpankiBcbk (PakTHuHA
aapeca), By llleBuenka, 14.

Ten. +38 (0552) 226263

Email: office@ksu.ks.ua

27

