
86

Інструментальні засоби і середовища програмування

© B.I. Dobrianskyi, I.V. Stetsenko, 2024
ISSN 1727-4907. Проблеми програмування. 2024. №1

УДК 004.4`2 http://doi.org/10.15407/pp2024.01.86

B.I.Dobrianskyi, I.V. Stetsenko

ARCHITECTURAL FRAMEWORK FOR A UNIFIED
BLOCKCHAIN INTERACTION LIBRARY

This research addresses the challenges posed by the fragmented nature of blockchain development tools, pre-
senting a comprehensive exploration of the imperative need for a unified architecture. In response to the grow-
ing diversity of blockchain networks, a solution in the form of a unified library based on a versatile and in-
teroperable interface that streamlines interactions across various blockchains is proposed. The current state of
blockchain development tools, an overview of existing solutions, formulation of design principles, and func-
tions of proposed unified library are provided. By mitigating the complexities associated with disparate tools,
the research aims to enhance the accessibility and efficiency of blockchain development, encouraging collabo-
ration and innovation within the blockchain community.

Keywords: Blockchain development, Interoperability, Decentralized applications, Development tools, Block-
chain networks, Software development kits (SDKs), Software Architecture

Introduction
The recent explosion of blockchain

technology has created a captivating land-
scape teeming with innovation and brimming
with potential. As mentioned in the survey
[1], the use of blockchain has already been
extended far beyond “electronic cash”, as
initially described by Nakamoto S. [2]. The
rapid proliferation has birthed a multitude of
diverse blockchains, each boasting unique
features, consensus mechanisms, and smart
contract functionalities. While the abundance
presents developers with exciting opportuni-
ties to explore and create, it also presents a
significant challenge.

The tools currently available to devel-
opers for building upon and interacting with
these diverse platforms remain largely limited
to specific blockchains. This creates a frag-
mented development environment, forcing
developers to juggle a plethora of libraries,
frameworks, and SDKs just to navigate the
landscape. This fragmented ecosystem poses
a significant barrier to entry for newcomers
and seasoned developers alike, hindering effi-
ciency and collaboration within the block-
chain development community.

To address the pressing need for
standardization and interoperability, this re-
search proposes the development of a unified
library. The comprehensive library aims to act
as a cohesive interface, empowering develop-
ers to seamlessly interact with various block-

chains. By providing a standardized, adapta-
ble, and interoperable solution, this research
seeks to empower developers by streamlining
their workflow, fostering collaboration within
the community, and ultimately propelling
innovation within the realm of blockchain
development.

The following sections describe the
challenges presented by the fragmented state
of blockchain development tools. After that,
existing solutions are examined before articu-
lating the foundational principles and features
of the proposed unified library. The aim of the
above-mentioned exploration is to provide a
comprehensive understanding of the motiva-
tion behind and the potential impact of our
research on the broader blockchain develop-
ment community. Looking beyond the pro-
posed solution, the research acknowledges the
valuable contributions of existing solutions
that play a vital role in the ongoing process of
improving interoperability and enhancing
developer experience within the blockchain
landscape.

1. Essential Components of Unified
Blockchain Interface

The unified blockchain library devel-
opment requires a thorough understanding of
its core components, independent of the un-
derlying blockchain technology. From manag-
ing accounts to facilitating transactions, these

87

Інструментальні засоби і середовища програмування

components are the building blocks of the
innovative framework.

To ensure a well-designed architec-
ture, the requirements that govern its con-
struction should be carefully analyzed. The
analysis delves into the complexities involved
creating a unified interface that seamlessly
interacts with diverse blockchains, beginning
with the fundamental domain of account
management, the cornerstone of any block-
chain system.

1.1. Account management
Regarding blockchain networks, one

common requirement is the solid management
of accounts, which emerges from the role of
accounts in the process of assuring secure and
authenticated connections. Blockchain securi-
ty heavily relies on private keys. Each user
has a unique digital identity formed by a key
pair: a public key (like a public address) and a
private key (kept secret). Creating an account
with a private key is the entry point for user
activity, smart contracts, and transactions on
the network. These cryptographic keys, which
play the role of digital signatures [3], form the
basis of the security architecture of the block-
chain networks. The algorithms used may
vary, for example, widely adopted cryptocur-
rencies like Bitcoin leverage the Elliptic
Curve Digital Signature Algorithm (ECDSA)
[4] for key generation and verification, ensur-
ing a robust foundation for secure transac-
tions. In contrast, Ethereum predominantly
utilizes ECDSA but also supports the RSA
algorithm in certain contexts [5], providing
flexibility in cryptographic operations across
its network. Additionally, emerging technolo-
gies explore more exotic algorithms, such as
the Lamport Signature Scheme [6], showcas-
ing the continuous evolution of cryptographic
approaches within diverse blockchain ecosys-
tems.

Creating a security key interweaves
the formation of a key pair comprised of a
public key visible to everyone and a private
key known only to the account owner. Thus,
creating an account serves as a starting point
for involvement in blockchain activity includ-
ing user activity and smart contract interac-
tions.

Amongst the diverse functionalities
encompassed by blockchain account man-
agement, two operations emerge as the most
generic and essential: account creation and
account retrieval. These operations prove crit-
ical in laying the groundwork for secure and
decentralized participation within blockchain
ecosystem, so they are included in the account
management.

Having established the significance of
account management, this analysis shifts its
focus toward the core entity that underpins
blockchain interaction: the account. While the
specifics of account implementation vary
across different blockchains, the library
should bridge this gap by presenting a unified
perspective. As per the accounts themselves,
their significance extends beyond mere place-
holders for cryptographic keys; they serve as
dynamic entities within the blockchain eco-
system. Within the unified library, the ac-
count encapsulates a suite of functionalities
tailored to these entities, fostering an envi-
ronment that not only ensures secure interac-
tions but also facilitates comprehensive ac-
count management.

The most basic functional requirement
of the account is the ability to retrieve its bal-
ance. This fundamental feature provides users
with a real-time snapshot of the account's
holdings, detailing the quantity of digital as-
sets or tokens it possesses.

Transaction signing equips developers
with the capability to sign transactions secure-
ly using the account's private key. This cryp-
tographic signature not only ensures the
transaction authenticity, but also safeguards
against unauthorized alterations, thereby forti-
fying the integrity of the blockchain network.

Beyond immediate financial insights,
the account encompasses the functionality to
query transaction history, which provides a
historical record of transactions associated
with the account. The comprehensive log of-
fers visibility into past interactions, empower-
ing developers to track and analyze the ac-
count activity over time.

To augment the versatility of account
interactions, one of the account features is the
ability to query metadata associated with it. It
includes information such as creation
timestamps, account types, custom tags, or

88

Інструментальні засоби і середовища програмування

any other pertinent details configured.
Metadata querying provides a flexible inter-
face for developers to retrieve contextual in-
formation, enhancing the richness of the ac-
count management experience.

Moreover, recognizing the dynamic
nature of blockchain ecosystems and the di-
versity among different networks, the account
is designed to be extensible. It ensures that the
account structure can accommodate additional
functionalities specific to particular block-
chains. Blockchain networks often introduce
unique features or token standards that may
require additional methods or attributes within
the account representation.

Consider the diversity across block-
chain networks such as Ethereum, Solana, and
Polkadot, each introducing unique function-
alities and adhering to specific standards. The
account structure within the unified library is
designed to be extensible, allowing develop-
ers to seamlessly integrate blockchain-
specific features. For instance, in Ethereum,
renowned for its extensive smart contract ca-
pabilities, the Account might extend function-
alities for interacting with sophisticated con-
tract deployment and execution processes.
Solana, with its high-performance blockchain,
might introduce account-related features per-
tinent to its unique consensus mechanism and
token standards. Similarly, Polkadot's multi-
chain architecture might necessitate account-
related features aligned with its parachain
model.

In essence, the Account class emerges
as a multifaceted entity within our unified
library, aligning with the diverse needs of
developers engaged in blockchain interac-
tions. By encompassing balance retrieval,
transaction signing, transaction history query-
ing, and metadata retrieval, the Account class
serves as a comprehensive toolkit, fostering
an environment where developers can seam-
lessly manage and leverage the full potential
of blockchain accounts within their decentral-
ized applications.

1.2. Block management
At the core of every blockchain lies

the foundational building block, quite literally
known as a "block." A block represents a unit
of data that contains a bundle of transactions,

a timestamp, and a reference to the preceding
block. This sequential chain of blocks forms
the bedrock of blockchain technology, ena-
bling the secure and transparent recording of
transactions across a decentralized network.

The significance of a block extends
beyond its definition; it serves as a crucial
mechanism for achieving consensus and im-
mutability within the blockchain. Each block
is intricately linked to its predecessor through
cryptographic hashes, creating an indelible
chain that resists tampering and ensures the
integrity of the entire transaction history.

What sets the concept of a block apart
is its universality across diverse blockchain
networks. While blockchains may differ in
their consensus mechanisms, transaction pro-
cessing speeds, and smart contract capabili-
ties, the fundamental structure of a block re-
mains remarkably consistent [7]. This uni-
formity provides an opportune avenue for
unification, as the shared characteristics of
blocks can be harnessed to create a standard-
ized approach to managing and retrieving
blockchain data.

This section delves into the universal
nature of blocks, investigating their constitu-
ent components and exploring the potential
for a unified strategy in managing these foun-
dational elements across diverse blockchain
networks. By analyzing the shared character-
istics and functionalities of blocks, the
groundwork can be laid for the development
of a standardized approach to their manage-
ment, potentially fostering greater interopera-
bility and efficiency within the blockchain
ecosystem.

First and foremost, a crucial capability
in the toolkit is the ability to fetch the latest
block from the blockchain. This feature holds
paramount importance because it allows users
to stay synchronized with the most recent data
on the blockchain by ensuring that the appli-
cations are always up-to-date and aligned
with the dynamic nature of the blockchain.

Equally vital is the capability to re-
trieve a specific block using its unique numer-
ical identifier, often referred to as the block
number. The significance of this features lies
in the ability to grants users precision in data
retrieval. Consider a scenario where user
wants some specific details from a particular

89

Інструментальні засоби і середовища програмування

point in the blockchain's history. By being
able to get a block by its number, user can
precisely pinpoint and extract the required
information. This functionality caters to ap-
plications that demand targeted insights into
specific blocks, contributing to a more refined
and efficient data retrieval process.

Regarding the block itself, it serves as
a central entity within our unified framework,
facilitating a nuanced exploration of block-
chain data.

The following sections investigate the
inherent features of blockchain blocks, equip-
ping developers with the capability to effort-
lessly retrieve crucial metadata associated
with each block. This metadata encompasses
fundamental details, including the block
number, a unique identifier within the block-
chain sequence, and the mining time, which
provides insights into the block's creation
timestamp. These metadata elements collec-
tively offer a comprehensive snapshot, eluci-
dating the block position and temporal rele-
vance within the broader blockchain land-
scape.

Delving further into the capabilities of
the block entity, it extends its functionality to
enable the extraction of transactions stored
within the block. This feature proves pivotal
for developers seeking a detailed understand-
ing of the activities recorded in a specific
block. By accessing the list of transactions,
developers can explore and leverage the intri-
cacies of each transaction within the block,
facilitating a more granular analysis of block-
chain data.

In essence, the block entity serves as a
versatile tool, offering not only a unique iden-
tifier and temporal context through metadata
retrieval but also providing access to the
transactional intricacies encapsulated within
individual blocks. These capabilities enrich
the developer's toolkit, fostering a more nu-
anced and detailed exploration of blockchain
data at the block level.

1.3. Transaction management
Navigating the intricacies of block-

chain transactions, transaction management
takes center stage as a crucial orchestrator. Its
role is to simplify the complexities associated
with transactions, offering developers a set of

powerful functionalities for efficient interac-
tion with the blockchain network.

In terms of transaction retrieval, the
transaction manager empowers developers to
pinpoint and extract specific transactions.
Utilizing identifiers such as transaction hash-
es, transaction indices, or block references,
developers gain flexibility in accessing trans-
actions tailored to their needs. This capability
is particularly exemplified in networks like
Ethereum, where transaction hashes serve as
unique identifiers.

Moving beyond retrieval, the Transac-
tion Manager offers a real-time status check
for individual transactions. This feature
proves invaluable for developers seeking im-
mediate updates on a transaction's processing
status - whether it is pending, successfully
executed, or encountering issues. This real-
time insight into the transaction lifecycle en-
hances developers' ability to respond effec-
tively to changing conditions on the block-
chain.

Additionally, the transaction manager
facilitates historical exploration by enabling
developers to query the blockchain for a de-
tailed transaction history associated with a
specific account. This functionality is instru-
mental for applications requiring a compre-
hensive overview of an account's past transac-
tions. For instance, in decentralized finance
applications, users can leverage this capability
to review their transaction history seamlessly.

In summary, the Transaction Manager
emerges as a versatile guide through the
blockchain transactions. Its functionalities,
ranging from precise retrieval to real-time
status checks and historical exploration, equip
developers with the tools needed to navigate
the dynamic landscape of decentralized data
transactions efficiently.

1.4. Smart contract management
In the realm of blockchain develop-

ment, smart contracts shine as unique entities
injecting programmable capabilities into the
decentralized landscape. Unlike blocks, which
vary but retain some uniformity, smart con-
tracts stand out distinctly. It's worth noting
that not all blockchains, such as Bitcoin and
Ripple, natively support smart contracts.

90

Інструментальні засоби і середовища програмування

Despite this, smart contracts play a
crucial role in blockchain development. They
act as architects for self-executing agree-
ments, allowing developers to encode rules
directly into the blockchain. This capability,
though not universally supported, remains a
fundamental tool for developers crafting de-
centralized applications, which is why smart
contract management is included in the li-
brary.

The smart contract manager, a pivotal
component within the proposed architectural
framework, plays a crucial role in facilitating
seamless smart contract interactions across
diverse blockchain networks. This manager
offers two fundamental operations, catering to
various blockchain environments.

First of all, it provides a unified
interface for retrieving existing smart
contracts from the underlying blockchain.
This functionality enables developers to
interact with deployed smart contracts,
including tasks such as reading data, verifying
states, and executing predefined operations.
By abstracting the complexities of smart
contract retrieval, the manager enhances
developer efficiency and ensures a consistent
experience across different blockchain
networks.

In addition to retrieving existing smart
contracts, the manager empowers developers
to deploy new contracts onto the blockchain.
This essential feature facilitates the initiation
of decentralized applications and the
implementation of custom smart contract
logic. The manager abstracts the intricacies of
the deployment process, offering developers a
streamlined mechanism to bring their smart
contract creations to life on the blockchain,
regardless of the underlying blockchain's
specifications.

Building upon the foundation laid by
the smart contract manager, the smart contract
entity inherits the ability to read data directly
from the smart contract it represents. This
continuity ensures that developers maintain
real-time access to crucial information stored
within the decentralized ledger. The entity
becomes a conduit for understanding the
evolving state and conditions of the contract,
fostering an environment of informed deci-
sion-making.

As an evolution of transactional capa-
bilities, the smart contract entity empowers
developers to submit smart contract transac-
tions to the blockchain. This functionality
signifies an active engagement in the execu-
tion of predefined functions within the smart
contract. Developers navigate the decentral-
ized landscape with a refined ability to partic-
ipate in the decision-making process encoded
within the blockchain.

Extending the narrative of event-
driven architecture, the smart contract entity
allows developers to seamlessly subscribe to
events emitted by the represented smart con-
tract. This continuity in observability enhanc-
es transparency, ensuring external entities, for
example other smart contracts or off-chain
systems, can monitor and react to changes
within the contract. The smart contract entity
becomes a vital component in fostering a col-
laborative and responsive blockchain ecosys-
tem.

1.5. Plugin system
A key component of the architecture is

a robust plugin system. Recognizing the dy-
namic and evolving nature of blockchain eco-
systems, the plugin system allows for adapta-
bility and extensibility. It enables:

 Streamlined integration of new fea-
tures: plugins can be added without modify-
ing the core library, keeping development
efficient.

 Empowerment for the developer
community: developers can contribute and
enhance the library's capabilities, fostering
collaboration and innovation.

However, achieving true unification
requires acknowledging the inherent diversity
of blockchain networks. The proposed solu-
tion addresses this by emphasizing the use of
blockchain-specific plugins. These plugins
cater to the unique characteristics and func-
tionalities of each blockchain, ensuring:

 Preservation of individual block-
chain design: developers can leverage the full
potential of each network without compromis-
ing its integrity.

 Optimal performance: plugins al-
low fine-tuning the library's functionality for
specific blockchains, maximizing efficiency.

91

Інструментальні засоби і середовища програмування

Balancing standardization and custom-
ization are crucial within this framework.
Blockchain-specific plugins acknowledge the
value of individual network characteristics
while maintaining a unified approach through
the core library interface. This embrace of
diversity reflects the richness and innovation
present in the blockchain landscape.

Moving forward, the proposed archi-
tecture provides a flexible and adaptable
foundation for blockchain development. It
empowers developers with a unified interface

while acknowledging the unique needs of
individual blockchain networks, paving the
way for a more collaborative and future-proof
development landscape.

2. Results
Continuing upon the established con-

ceptual foundations, this section unveils the
architectural design of the proposed unified
library. Figure 1 presents a structure diagram
of this architecture.

Fig.1. Structure Diagram of the library

The architecture encapsulates key
components, allowing for seamless interac-
tions with various blockchain networks. A
brief overview of the major components is
provided below.

The blockchain manager serves as an
entry point to the library. It can include one or
more blockchain facades, that are implement-
ed as separate libraries (plugins) for each
blockchain.

Transaction Manager stands as a cen-
tral hub for retrieving, monitoring, and ex-
ploring transactions within the blockchain.

Transaction represents individual
transactions, this entity encapsulates details,
signing mechanisms, verification, and any
additional metadata associated with a transac-
tion.

Block Manager serves as a linchpin
for managing blocks, the Block Manager of-

92

Інструментальні засоби і середовища програмування

fers functionalities such as retrieving specific
blocks by number, obtaining the latest block,
and navigating through blocks with pagina-
tion and filtering. It also emits related events,
for example mining of a new block.

The Block entity encapsulates metada-
ta retrieval, facilitating the extraction of trans-
actions, and ensuring extensibility for block-
chain-specific features.

Account Manager is responsible for
simplifying account-related interactions, the
Account manager provides methods for creat-
ing and retrieving accounts, signing transac-
tions, and managing account-specific func-
tionalities.

The Account entity represents individ-
ual accounts within the blockchain, offering
functionalities like balance retrieval, transac-
tion signing, checking transaction history, and
querying metadata.

Smart contract manager is responsible
for deployment and retrieval of smart con-
tracts. The Smart Contract entity itself is re-
sponsible for reading data from the smart con-
tract, calling methods on smart contracts and
listening to the events emitted by the smart
contract.

This architecture is designed with ver-
satility and extensibility in mind. Its strength
lies in providing developers with a unified
interface for blockchain interactions, reducing
the complexities associated with navigating
diverse blockchain networks. The modular
structure allows for easy integration and adap-
tation to specific blockchain characteristics,
ensuring a robust foundation for blockchain
development. With a foundational under-
standing of the architecture now established,
the following analysis covers the advantages
and potential applications that make this de-
sign a compelling choice for blockchain de-
velopment.

2.1. Implementation
The unified blockchain interaction

library has been successfully implemented
using JavaScript and TypeScript to support
the diverse needs of developers engaged in
blockchain interactions. The decision to
employ these languages is rooted in their
widespread adoption within the blockchain
development community, serving as the go-to

choices for both backend and frontend
development. This approach ensures a
seamless integration of the library into
various projects, maintaining compatibility
across different layers of the software stack.

The Ethereum and Solana plugins
were also crafted in TypeScript using web3.js
and @solana/web3.js libraries corresponding-
ly, ensuring consistency and ease of use
across the entire ecosystem. The language
choice aligns with the prevalent practices in
blockchain development, where JavaScript
and TypeScript stand out as the primary
languages for facilitating comprehensive
blockchain interactions across different
platforms.

2.2. Pros and potential use cases
Versatility across blockchains. One of

the notable strengths of this architecture lies
in its adaptability to a variety of blockchain
networks. The modular design allows devel-
opers to seamlessly integrate the library into
diverse blockchain ecosystems, mitigating the
challenges posed by the heterogeneity of
blockchain technologies.

Reduced development complexity. By
providing a unified interface for blockchain
interactions, our architecture significantly
reduces the development complexity associat-
ed with navigating different blockchain net-
works. Developers can leverage consistent
methods and entities across various block-
chains, streamlining the development process
and fostering code reusability.

Facilitated cross-blockchain develop-
ment. The modular structure and unified inter-
face empower developers to engage in cross-
blockchain development more efficiently.
Whether working with Ethereum, Solana,
Polkadot, or other blockchains, the proposed
design simplifies the development of applica-
tions that seamlessly interact with multiple
blockchain networks.

Extensibility for blockchain-specific
features. The architecture's extensibility en-
sures that it can accommodate blockchain-
specific features seamlessly. For instance, if a
blockchain introduces new metadata or
unique transaction types, the library's extensi-
ble entities, for example the Transaction and

93

Інструментальні засоби і середовища програмування

Account, can readily adapt without requiring
a major overhaul of the existing codebase.

2.3. Challenges and considerations
While our architecture presents nu-

merous advantages, it is essential to
acknowledge potential challenges and consid-
erations.

Blockchain-specific limitations. Cer-
tain blockchain networks may have unique
limitations or characteristics that might not
align perfectly with the unified interface. De-
velopers should be aware of such nuances and
handle them appropriately when working with
specific blockchains.

Performance considerations. The ar-
chitecture's adaptability across various block-
chains may introduce slight performance
trade-offs. Developers should carefully assess
performance requirements and optimize im-
plementations accordingly. However, this also
heavily depends on the implementation itself.

3. Related works
From specialized libraries tailored for

specific blockchain networks to comprehen-
sive frameworks designed for cross-chain
compatibility, the variety in the approaches
mirrors the continuous evolution of block-
chain technology. The research through these
related works unveils the multifaceted efforts
that shape the current and future landscapes of
blockchain development.

In the following exploration of related
works, 3 distinctive solutions that have made
significant strides in simplifying and unifying
blockchain interactions are spotlighted. These
solutions, each with their unique approach,
contribute to the broader narrative of enhanc-
ing developer experiences within the block-
chain landscape.

3.1. Web3.js
Web3.js stands as a JavaScript library

specifically tailored for EVM blockchains,
providing developers with a streamlined inter-
face for interacting with the Ethereum block-
chain. It abstracts away the complexities of
Ethereum's native RPC (Remote Procedure
Call) and JSON-RPC protocols, offering a
simplified programming model.

Designed with a focus on Ethereum,
Web3.js provides comprehensive functionali-
ties for smart contract interactions, transaction
management, and blockchain data retrieval
specific to the Ethereum network.

Being a widely adopted library,
Web3.js benefits from an active and vibrant
community, ensuring continuous updates, bug
fixes, and the availability of extensive docu-
mentation.

It is important to note, however, that
Web3.js is primarily applicable for EVM-
compatible networks, and its features are op-
timized for the Ethereum ecosystem.

3.2. Cosmos SDK
The Cosmos SDK takes a broader ap-

proach by offering a framework for building
multi-blockchain applications. It allows de-
velopers to create their customized block-
chains (Zones) with specific functionalities,
while the Cosmos Hub acts as a secure and
interoperable hub connecting different Zones
[9].

Cosmos SDK focuses on enabling in-
teroperability between blockchains. The Hub-
and-Zone architecture allows for secure
communication between different block-
chains, fostering a vision of an interconnected
blockchain ecosystem.

Developers using Cosmos SDK have
the flexibility to design and launch their
blockchains with tailored features, ensuring
versatility in addressing specific use cases.

3.3. Polkadot and Parachains
Polkadot introduces a novel concept of

parachains, offering a framework for building
customized blockchains that connect to the
Polkadot relay chain. Parachains run in paral-
lel, fostering scalability and interoperability
across the Polkadot network [10].

The use of parachains in Polkadot en-
ables horizontal scalability, allowing multiple
blockchains to run concurrently. This ap-
proach addresses scalability concerns and
promotes efficient resource utilization.

By connecting to the Polkadot relay
chain, parachains benefit from enhanced secu-
rity and interoperability, creating a cohesive
ecosystem where different blockchains can
seamlessly interact.

94

Інструментальні засоби і середовища програмування

3.4. Challenges
This survey reveals a common thread

– interoperability is often confined to specific
blockchain ecosystems, lacking a universal
solution that spans the entirety of the block-
chain landscape. While these existing libraries
and frameworks excel within their designated
environments, the quest for a unified architec-
ture for blockchain interaction persists.

A constantly developing landscape of
blockchain innovation necessitates a compre-
hensive solution. Analyzing the process of
designing a unified library for blockchain
interaction revealed both challenges and op-
portunities. By envisioning an architecture
that transcends individual blockchain ecosys-
tems, the goal is to foster an interoperable
development landscape, empowering devel-
opers across diverse networks. With wider
adoption and expansion of blockchain usage,
the need for a universal framework becomes
increasingly evident, paving the way for a
more interconnected and collaborative future
in decentralized development.

Conclusions
This research addresses the challenge

of fragmented blockchain development tools
by proposing a novel unified library architec-
ture. This architecture aims to bridge the gap
by providing developers with a standardized
and interoperable interface, facilitating seam-
less interactions across diverse blockchain
networks.

The proposed solution presents a step
forward in blockchain development, offering
the following advantages:

̶ Enhanced developer efficiency. By
providing a unified interface, the architecture
significantly reduces the complexity caused
by navigating and interacting with various
blockchain ecosystems.

̶ Promoted cross-chain collaboration.
Whether building applications that interact
with Ethereum, Solana, Polkadot, or other
emerging networks, the architecture simplifies
communication and data exchange, fostering
collaboration and innovation across the
broader blockchain landscape.

̶ Future-proof design. Blockchain-
specific features can be seamlessly integrated

through adaptable entities within the library,
ensuring it remains relevant and adaptable as
new protocols and functionalities emerge.

Potential challenges requiring further in-
vestigation include:

̶ Addressing blockchain-specific nu-
ances. While the unified interface offers sig-
nificant advantages, particular blockchain
networks may possess unique limitations or
characteristics that it does not cover. Devel-
opers should know these nuances and imple-
ment appropriate workarounds interacting
with specific blockchains.

̶ Balancing performance and versatility.
The architecture adaptability across various
blockchains might necessitate slight perfor-
mance trade-offs.

Based on the proposed architectural
framework, the future improvements are the
following:

− conducting rigorous testing and per-
formance evaluations across diverse block-
chain networks to identify and address poten-
tial limitations;

− expanding the library's capabilities by
developing and integrating plugins for a wider
range of blockchain networks;

− investigating and integrating emerging
interoperability protocols and solutions to
further enhance seamless communication
across blockchain ecosystems;

− conducting in-depth research on opti-
mizing the library's internal data structures
and algorithms to ensure efficient and scala-
ble interactions across diverse blockchain
networks.

By taking these steps, the proposed
unified library architecture can evolve into a
robust and versatile solution, empowering
developers to navigate the ever-evolving
landscape of blockchain development with
greater efficiency and fostering a more col-
laborative and innovative future for decentral-
ized technologies.

References
1. Al-Jaroodi J., Mohamed N. (2019), 'Block-

chain in Industries: A Survey', IEEE Access,
vol. 7, pp. 36500-36515.

2. Nakamoto S. 'Bitcoin: A Peer-to-Peer Elec-
tronic Cash System', available at
https://bitcoin.org/bitcoin.pdf

95

Інструментальні засоби і середовища програмування

3. Zhang, R., Xue, R., Liu, L. (2019), 'Security
and Privacy on Blockchain', ACM Computing
Surveys, 52, 3, Article 51.

4. Johnson, D., Menezes, A., Vanstone, S.
(2001), 'The Elliptic Curve Digital Signature
Algorithm (ECDSA) ', International Journal
of Information Security, 1, 36–63,
https://doi.org/10.1007/s102070100002

5. Shamir A., Rivest, R., Adleman L. (1978), 'A
method for obtaining digital signatures and
public-key cryptosystems', Communications
of the ACM, 21 (2), 120–126.

6. Pandey, S., Behl, R. & Sinha, A. (2023), 'De-
centralized blockchain-based security en-
hancement with lamport merkle digital signa-
ture generation and optimized encryption in
cloud environment', Multimedia Tools and
Applications, doi: 10.1007/s11042-023-
17365-8.

7. Clincy, V., Shahriar, H. (2019), 'Blockchain
Development Platform Comparison', 2019
IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), doi:
10.1109/COMPSAC.2019.00142.

8. Web3.js framework. Available at
https://github.com/web3/web3.js (Accessed
28 February 2024).

9. Kwon, J., Buchman, E. (2016). Cosmos: a
network of distributed ledgers. Available at
https://github.com/cosmos/cosmos/blob/maste
r/WHITEPAPER.md (Accessed 28 February
2024).

10. Wood, G. (2016). Polkadot: Vision for a het-
erogenous multi-chain framework. Available
at https://assets.polkadot.network/Polkadot-
whitepaper.pdf (Accessed 28 February 2024).

Received: 01.03.2024

Про авторів:

Добрянський Богдан Ігорович,
магістрант другого року навчання
Національного Технічного Університету
України «КПІ імені Ігоря Сікорського».
Кількість наукових публікацій
в українських виданнях – 1.
Кількість наукових публікацій
в зарубіжних виданнях – 0.
Індекс Гірша – 0.
https://orcid.org/0009-0003-4797-1947

Стеценко Інна Вячеславівна,
доктор технічних наук, професор,
професор кафедри інформатики
та програмної інженерії НТУУ
“КПІ імені Ігоря Сікорського”.
Кількість наукових публікацій
в українських виданнях – понад 140.
Кількість наукових публікацій
в зарубіжних виданнях – 16.
Індекс Гірша – 11.
http://orcid.org/ 0000-0002-4601-0058

Місце роботи авторів:

Національний технічний університет
України «Київський політехнічний
інститут імені Ігоря Сікорського»,
03056, м. Київ,
проспект Берестейський 37.
Тел.: (044) 236-9651
e-mail: bogdan.dobryanskiy@jcloud.com,
stiv.inna@gmail.com

