DOI: https://doi.org/10.15407/pp2022.01.075

The problem of developing the architecture of modern cognitive radar system

M. Коsovets, L. Tovstenko

Abstract


The problem of developing the architecture of modern cognitive radar systems using artificial intelligence technologies is considered. The main difference from traditional systems is the use of a trained neural network. The heterogeneous multiprocessor system is rebuilt in the process of solving the problem, providing reliability and solving various types of problems of one class and deep learning of the neural network in real time. This architecture promotes the introduction of cognitive technologies that take into account the requirements for the purpose, the influence of external and internal factors.

Problems in programming 2022; 4: 75-86


Keywords


Perception-Action Cycle;Artificial Intelligence; Signal to Noise Ratio; Active Electronically Scanned Array;Environmental Dynamic Database; Signal to Noise Ratio; Radar Resource Management; multiprocessor

Full Text:

PDF

References


S. Haykin, "Adaptive radar: Evolution to cognitive radar", in Proc. IEEE Int. Symp. Phased Array Syst. Technol., Boston, MA, USA, Oct. 2003, p. 613.

S. Haykin, Y. Xue, and P. Setoodeh, "Cognitive radar: Step toward bridging the gap between neuroscience and engineering", Proc. IEEE, vol. 100, no. 11, pp. 3102-3130, Nov. 2012. https://doi.org/10.1109/JPROC.2012.2203089

J. Rasmussen, "Skills, rules, and knowledge signals, signs, and symbols, and other and other distinctions in human performance models "; IEEE Trans. Syst., Man, Cybern., vol. SMC- 13, no. 3, pp. 257-266, May 1983. https://doi.org/10.1109/TSMC.1983.6313160

J. Rasmussen, Information Processing and Human Machine Interaction: An Approach to Cognitive Engineering. New York, NY, USA: Elsevier Science, 1983.

S. Bruggenwirth, "Design and implementation of a three-layer cognitive radar architecture", in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 929-933. https://doi.org/10.1109/ACSSC.2016.7869185

A. Balleri, H. Griffiths, and C. Baker, Biologically Inspired Radar and Sonar: Lessons from Nature. IET, 2017. https://doi.org/10.1049/SBRA514E

S. Middelhoek, J. B. Angell, and D. J. W. Noorlag, "Microprocessors get integrated sensors: Sensing devices and signal processing built into one silicon chip portend a new class of smart sensors", IEEE Spectr., vol. 17, no. 2, pp. 42-46, Feb. 1980. https://doi.org/10.1109/MSPEC.1980.6330262

L. Reznik, G. Von Pless, and T. Al Karim, "Distributed neural networks for signal change detection: On the way to cognition in sensor networks", IEEE Sensors J., vol. 11, no. 3, pp. 791-798, Mar. 2011. https://doi.org/10.1109/JSEN.2010.2070837

R. V. Kulkarni, A. Forster, and G. K. Venay- agamoorthy, "Computational intelligence in wireless sensor networks: A survey", IEEE Commun. Surv. Tut., vol. 13, no. 1, pp. 68- 96, Jan.-Mar. 2011. https://doi.org/10.1109/SURV.2011.040310.00002

W. D. Blair, G. A. Watson, and S. A. Hoffman, "Benchmark problem for beam pointing control of phased array radar against maneuvering targets", in Proc. Amer. Control Conf., vol. 2, pp. 2071-2075, Jun. 1994.

W. D. Blair, G. A. Watson, T. Kirubarajan, and Y. Bar-Shalom, "Benchmark for radar allocation and tracking in ECM", IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1097-1114, Oct. 1998. https://doi.org/10.1109/7.722694

G. van Keuk and S. S. Blackman, "On phased-array radar tracking and parameter control", IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 1, pp. 186-194, Jan. 1993 https://doi.org/10.1109/7.249124

S. S. Blackman, R. J. Dempster, M. T. Busch, and R. F. Popoli, "IMM/MHT solution to radar benchmark tracking problem", IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 2, pp. 730-738, Apr. 1999. https://doi.org/10.1109/7.766953

T. Kirubarajan, Y. Bar-Shalom, W. D. Blair, and G. A. Watson, "IMMPDAF for radar management and tracking benchmark with ECM", IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1115-1134, Oct. 1998. https://doi.org/10.1109/7.722696

J. Ward, Space-Time Adaptive Processing for Airborne Radar. Cambridge, MA: MIT Lincoln Laboratory, 1994.

W. K. Stafford, "Real time control of a multifunction electronically scanned adaptive radar (mesar)", in Proc. IEE Colloq. Real- Time Manage. Adaptive Radar Syst., Jun. 1990, pp. 7/1-7/5.

S. Haykin, "Radar vision", in Proc. IEEE Int. Conf. Radar, May 1990, pp. 585-588.

S. J. Anderson, "Adaptive remote sensing with HF skywave radar", IEE Proc. F-Radar Signal Process., vol. 139, no. 2, pp. 182-192, Apr. 1992.

https://doi.org/10.1049/ip-f-2.1992.0022

D. J. Kershaw and R. J. Evans, 'Optimal waveform selection for tracking systems", IEEE Trans. Inf. Theory, vol. 40, no. 5, pp. 1536-1550, Sep. 1994. https://doi.org/10.1109/18.333866

D. J. Kershaw and R. J. Evans, "Waveform selective probabilistic data association", IEEE Trans. Aerosp. Elect. Syst., vol. 33, no. 4, pp. 1180-1188, Oct. 1997. https://doi.org/10.1109/7.625110

B. F. La Scala, W. Moran, and R. J. Evans, "Optimal adaptive waveform selection for target detection", in Proc. IEEE. Int. Conf. Radar (Cat. 03EX695), Sep. 2003, pp. 492-496.

J. Fuster, Cortex and Mind: Unifying Cognition. New York, NY, USA: Oxford Univ. Press, 2010

P. Stinco, M. S. Greco, and F. Gini, "Spectrum sensing and sharing for cognitive radars", IET Radar, Sonar Navigation, vol. 10, no. 3, pp. 595-602, 2016. https://doi.org/10.1049/iet-rsn.2015.0372

A. Aubry, V. Carotenuto, A. D. Maio, and S. Iommelli, "Cognitive radar wave- form design for spectral compatibility", in Proc. Sensor Signal Process. Defense, 2016, pp. 1-5. https://doi.org/10.1109/SSPD.2016.7590590

N. A. Goodman, "Closed-loop radar with adaptively matched waveforms", in Proc. Int. Conf. Electromagn. Adv. Appl., 2007, pp. 468-471. https://doi.org/10.1109/ICEAA.2007.4387338

K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, and M. Rangaswamy, "Fully adaptive radar for target tracking part I: Single target tracking", in Proc. IEEE Radar Conf., 2014, pp. 0303-0308.

https://doi.org/10.1109/RADAR.2014.6875604

J. M. Christiansen, K. E. Olsen, and G. E. Smith, "Fully adaptive radar for track update control", in Proc. IEEE Radar Conf., 2018, pp. 0400-0404. https://doi.org/10.1109/RADAR.2018.8378592

L. Ubeda-Medina and J. Grajal, "Multiple target tracking in the fully adaptive radar framework", in Proc. IEEE Statist. Signal Process. Workshop, 2016, pp. 1-5. https://doi.org/10.1109/SSP.2016.7551758

R. Romero and N. Goodman, "Cognitive radar network: Cooperative adaptive beams teering for integrated search and track application", IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 915-931, Apr. 2013. https://doi.org/10.1109/TAES.2013.6494389

R. Oechslin, P. Wellig, S. Hinrichsen, S. Wieland, U. Aulenbacher, and K. Rech, "Cognitive radar parameter optimization in a congested spectrum environment", in Proc. IEEE Radar Conf., 2018, pp. 0218-0223. https://doi.org/10.1109/RADAR.2018.8378560

F. Smits, A. Huizing, W. van Rossum, andP. Hiemstra, "A cognitive radar network: Architecture and application to multiplatform radar management" in Proc. 5th Eur. Radar Conf., 2008, pp. 312-315.

A. Charlish and F. Hoffmann, "Cognitive radar management", in Novel Radar Techniques and Applications: Waveform Diversi- ty and Cognitive Radar and Target Tracking and Data Fusion 2, London U.K.: Institution of Engineering and Technology, 2017.

L. Ubeda-Medina, A F. Garca-Fernndez, and J. Grajal, "Robust sensor parameter selection in fully adaptive radar using a sigma-point gaussian approximation", in Proc. IEEE Radar Conf., Apr. 2018, pp. 0263-0268. https://doi.org/10.1109/RADAR.2018.8378568

R. Turyn, "On barker codes of even length", Proc. IEEE, vol. 51, no. 1, pp. 230-231, Sep. 1963. https://doi.org/10.1109/PROC.1963.1701

D. DeLong and E. Hofstetter, "On the design of optimum radar waveforms for clutter rejection", IEEE Trans. Inf. Theory, vol. 13, no. 3, pp. 454-463, Jul. 1967. https://doi.org/10.1109/TIT.1967.1054038

K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, and M. Rangaswamy, "Fully adaptive radar for target tracking part I: Single target tracking" in Proc. IEEE Radar Conf., 2014, pp. 0303-0308. https://doi.org/10.1109/RADAR.2014.6875604

J. M. Christiansen, K. E. Olsen, and G. E. Smith, "Fully adaptive radar for track update control", in Proc. IEEE Radar Conf., 2018, pp. 0400-0404. https://doi.org/10.1109/RADAR.2018.8378592

L. Ubeda-Medina and J. Grajal, "Multiple target tracking in the fully adaptive radar framework", in Proc. IEEE Statist. Signal Process. Workshop, 2016, pp. 1-5. https://doi.org/10.1109/SSP.2016.7551758




DOI: https://doi.org/10.15407/pp2022.01.075

Refbacks

  • There are currently no refbacks.