Approach qualitative analisys of dynamic systems wood based solutions
Abstract
Full Text:
PDF (Українська)References
Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. – М.: Мир, 1990. – 512 с.
Aho A., Hopcroft J., Ullman J. Construction and analysis of computational algorithms. – M.: World. – 1979. – 536 p.
Gvozdetska I.S. Mathematical models of tumor growth based on the dynamics Gomperz // Dis. for the degree of Candidate of Sc. sciences. – Ternopol. – 2012. – 130 p.
Clemens Kühn, Christoph Wierling, Alexan-der Kuhn, Edda Klipp, Georgia Panopoulou, Hans Lehrach and Albert J Poustka. Monte Carlo analysis of ODE Model of the Sea Urchin Endomesoderm Network // BMC Systems Biology. – 2009. – 3:83.
Essex B., Healy M. Evaluation of a rule base for decision making in general practice // British Journal of General Practice. – 1994. – 44. – P. 211–213.
Hayrer E., Nersett S., Wanner G. Solutions of ordinary differential equations. Non-rigid task. – M .: Peace, 1990. – 512 p.
Laupacis A., Secar N., Stiell I.G. Clinical prediction rules: A review and suggested modifications of methodological standards. JAMA 1997. – 277. P. 488–494.
Lea A. Segel. Mathematical Models in Molecular and Cellular Biology. CUP Archive, 1980. – 757 p.
Stiell I.G., Wells G.A. Methodologic Standards for the Development of Clinical Decision Rules in Emergency Medicine. Annals of Emergency Medicine. – 1999. – 33:4. – P. 437–447.
Yvonne Koch, Thomas Wolf, Peter K. Sorger, Roland Eils, Benedikt Brars. Decision-Tree Based Model Analysis for Efficient Identification of Parameter Relations Leading to Different Signaling States // PLOS ONE | www.plosone.org, December 2013, Vol. 8, Is-sue 12, e82593.
Refbacks
- There are currently no refbacks.