Approach qualitative analisys of dynamic systems wood based solutions

I.Ye. Andrushchak


The paper presents an approach to qualitative analysis of dynamic systems based on functional differential equations. Thus we get the output decision tree to predict the trajectory forms system. The approach proved to software implementation in the package Java-classes.


Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. – М.: Мир, 1990. – 512 с.

Aho A., Hopcroft J., Ullman J. Construction and analysis of computational algorithms. – M.: World. – 1979. – 536 p.

Gvozdetska I.S. Mathematical models of tumor growth based on the dynamics Gomperz // Dis. for the degree of Candidate of Sc. sciences. – Ternopol. – 2012. – 130 p.

Clemens Kühn, Christoph Wierling, Alexan-der Kuhn, Edda Klipp, Georgia Panopoulou, Hans Lehrach and Albert J Poustka. Monte Carlo analysis of ODE Model of the Sea Urchin Endomesoderm Network // BMC Systems Biology. – 2009. – 3:83.

Essex B., Healy M. Evaluation of a rule base for decision making in general practice // British Journal of General Practice. – 1994. – 44. – P. 211–213.

Hayrer E., Nersett S., Wanner G. Solutions of ordinary differential equations. Non-rigid task. – M .: Peace, 1990. – 512 p.

Laupacis A., Secar N., Stiell I.G. Clinical prediction rules: A review and suggested modifications of methodological standards. JAMA 1997. – 277. P. 488–494.

Lea A. Segel. Mathematical Models in Molecular and Cellular Biology. CUP Archive, 1980. – 757 p.

Stiell I.G., Wells G.A. Methodologic Standards for the Development of Clinical Decision Rules in Emergency Medicine. Annals of Emergency Medicine. – 1999. – 33:4. – P. 437–447.

Yvonne Koch, Thomas Wolf, Peter K. Sorger, Roland Eils, Benedikt Brars. Decision-Tree Based Model Analysis for Efficient Identification of Parameter Relations Leading to Different Signaling States // PLOS ONE |, December 2013, Vol. 8, Is-sue 12, e82593.


  • There are currently no refbacks.