A simulator of mechanisms of long-term control of human hemodynamics

R.D. Grygoryan, A.G. Degoda, E.A. Dzhurinsky


A computer simulator (CS) of the physiological mechanisms of long-term control of the state of human cardiovascular system (CVS) is developed. The bases of CS are quantitative mathematical models (MM) describing: a) the effects of the central renin-angiotensin system on the characteristics of the CVS; b) the dynamics of the total blood volume. Test studies of MM in offline mode showed the adequacy of the models. It is planned to combine this model with the previously created model simulating the urgent regulation of CVS. Based on the integrated model, specialized software technology will be developed to support computer simulations on various aspects of the physiology of the healthy person’s blood circulation. A special simulation study should identify the causes of different scenarios for the development of hypertension. The program is written in C ++17.

Problems in programming 2019; 4: 111-120


mathematical model; physiology; blood circulation; blood pressure; regulation; information technology


Brands M.W. Chronic Blood Pressure Con-trol. Compr. Physiol., 2012, V.2, P. 2481-2494. CrossRef

Grygoryan R.D. The optimal circulation: cells' contribution to arterial pressure. 2017, Nova Science, N.Y., 298 p.

Grygoryan R.D., Sagach V.F. The concept of physiological super-systems: New stage of integrative physiology. Int. J. Physiol. and Pathophysiology, 2018: 9,2,169-180. CrossRef

Grygoryan R.D. The unknown aspects of arterial pressure. Znanstvena misel journal, 2019, 33:19-23.

Sparks M.A., Crowley S.D., Gurley S.B., Mirotsou M., Coffman T.M. Classical Ren-in-Angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201-1228. doi:10.1002/cphy.c130040. CrossRef

Grygoryan R.D., Lissov P.N. A software-simulator of human cardiovascular system based on its mathematical model. Problems in programming. 2004, №4. С.100-111 (Rus).

Grygoryan R.D., Lissov P.N., Aksenova T.V., Moroz A.G. The specialized soft-ware-modeling complex "PhysiolResp". Problems of programming, 2009, 2:140-150 (Rus).

Larrabide I., Blanco P.J., Urquiza S.A., Dari E.A., Ve'nere M.J., de Souza e Silva N.A., Feijo' R.A. HeMoLab - Hemody-namics Modelling Laboratory: An applica-tion for modelling the human cardiovascular system. Computers in Biology and Med-icine. 2012, V. 42, P. 993-1004. CrossRef

Ježe F., Kulhánek T.,Kalecký K., Kofránek J. Lumped models of the cardiovascular system of various complexity. Biocybernet-ics and Biomedical Engineering. 2017, V. 37, Issue 4, P. 666-678. CrossRef

Kulhánek T., Kofránek J. , Mateják M. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: Object-oriented and acausal approach. Computers in Biology and Medi-cine, V. 54, 2014, P. 137-144. CrossRef

Mahdi A., Sturdy J., Ottesen J.T., Olufsen M.S. Modeling the Afferent Dynamics of the Baroreflex Control System. PLoS Comput Biol. 2013 Dec; 9(12): e1003384. CrossRef

Raphan T., Cohen B., Xiang Y., Yakushin S. B. A Model of Blood Pressure, Heart Rate, and Vaso-Vagal Re-sponses Produced by Vestibulo-Sympathetic Activation. Front Neurosci. 2016, V.10, P. 96-104. CrossRef

Fernandez de Canete J., Luque J., Barbancho J., Munoz V. Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: an object-oriented approach. Comput Biol Med. 2014;47:104-12. doi:10.1016/j.compbiomed.2014.01.006. CrossRef

Grygoryan R.D., Degoda A.G., Dzhurinsky Y.A., Kharsun V.S. A simulator of pulsatile heart. Cимулятор пульсирующего сердца. Problems of programming. 2017, №4. С.98-108 (Rus.).

Grygoryan R.D., Degoda A.G., Kharsun V.S., Dzhurinsky Y.A. A simulator of mechanisms of acute control of human hemodynamics. Problems of programming,2019;1:90-98. doi: CrossRef

Stewart J.M. Update on the theory and management of orthostatic intolerance and related syndromes in adolescents and chil-dren. Expert Rev. Cardiovasc. Ther. 2012, V. 10(11), P. 1387-1399. CrossRef

Kawada T., Yamamoto K., Kamiya A., Ariumi H., Michikami D., Shishido T., Sunagawa K., Sugimachi M. A derivative-sigmoidal model reproduces operating point-dependent baroreflex neural arc transfer characteristics. Jpn. J. Physiol. 2005; V.55(3). P. 157-163.

Fung P., Kong R. The Integrative Five-Fluid Circulation System in the Human Body. Open J. of Mol. Integr. Phys-iol, 2016; 6, 45-97. doi: 10.4236/ojmip.2016.64005. CrossRef

Grygoryan R.D. Comprehension of indi-vidual adaptation mechanisms: endogenous tuning of constants determining optimal physiological states. Slovak int. scientific J., 2019, 32:67-72.

De Mello W.C, Frohlich E.D. On the local cardiac renin angiotensin system. Basic and clinical implications. Pep-tides. 2011;32:1774-1779 CrossRef

DOI: https://doi.org/10.15407/pp2019.04.111


  • There are currently no refbacks.