Application of ontological analysis for metadata processing in the interpretation of BIG DATA at the semantic level

J.V. Rogushina, A.Y. Gladun


The paper considers the main aspects of modern technologies applied for  knowledge analysis to obtain information from Big Data. The analysis of the current state of research in this area shows that background knowledge subject areas of user interest represented by domain ontologies can be used  both in order to effectively analysis of information acquried from certain sets of Big Data, and to make this acquisition more useful. With the help of such ontologies, users can formally describe the scope of their information needs, define the structure of the required information objects and explicitly highlight critical for current task domain aspects. Subject of rocessing  in the semantics analysis  of Big Data is their metadata usually represented by unstructured natural language text. We need to standardize the representation of meta-descriptions wit  use of appropriate ontologies that determine the structure and content of individual elements of metadata.

Problems in programming 2020; 4: 55-70


Big Data; ontology; metadata; semantic markup


Metadata. -Метадані

Dublin Core Metadata Initiative. DCMI TYPE Vocabulary.- (in Ukrainian)

Reznichenko V.A., Zakharova O.V., Zakharova E.G. Electronic libraries: information resources and services. Problems in programming. 2005. № 4. P.60-72. (in Ukrainian)

Berners-Lee T., Hendler J., Lassila O. The semantic web. Scientific american. 2001. 284(5). P. 34-43.

Dunsire G., Willer M. Standard library metadata models and structures for the Semantic Web. Library hi tech news. 2011. CrossRef

Kogalovsky M.R. Metadata, their properties, functions, classification and presentation means. Proc. of the 14th All-Russian Scientific Conference "Digital Libraries: Promising Methods and Technologies, Electronic Collections" - RCDL-2012, 2012. (in Russian)

Grotschel M., Lugger J. Scientific Informa¬tion System and Metadata. Konrad-Zuse-Zentrum fur Informationstechnik. Berlin. groetschel/pubnew/paper/groetschelluegger 1999.pdf

Halshofer B., Klas W. A Survey of Techni¬ques for Achieving Metadata Interoperability. ACM Computing Surveys. 2010. Vol. 42. No. 2. Article 7. CrossRef

Taylor C. An Introduction to Metadata. The University of Queensland, Australia.

Lagose C. Metadata for the Web. Cornell University. CS 431 - March 2. 2005.

Feng L., Brussee R., Blanken H., Veenstra M. Languages for Metadata. In: Multimedia Retrieval. Data-Centric Systems and Applications, Springer, 23-51. content/m276p88003533q86/. CrossRef

Jeusfeld M.A. Metadata. In: Encyclopedia of Database Systems, Springer. 2009. Р. 1723- 1724. http ://www. h241167167r35055/. CrossRef

Corcho O. Ontology based document annotation: trends and open research problems. Intern. Journal of Metadata, Semantics and Ontologies. 2006. Vol. 1. Is. 1. CrossRef

Gladun A., Rogushina J. Repositories of ontologies as a means of knowledge reuse for recognition of information objects. Ontology of design. 2013. N 1 (7). P. 35-50. (in Russian)

Overbeek J. F. Meta Object Facility (MOF): investigation of the state of the art. 2006.

OWL Web Ontology Language. Overview. W3C Recommendation: W3C, 2009. -

Kobelev A.E., Vyazilov E.D. Modern approaches to metadata creating. Modern problems of remote sensing of the Earth from space. 2010. 7 (4). P. 194-203. (in Ukrainian)

Unstructured_data. - wiki/Unstructured_data.

ROGUSHINA J. (2019) Means and methods of unstructured data analysis. // Problems in programming, N 1, P. 57-77. (in Ukrainian)

Andon P., Rogushina J., Grishanova I., Reznichenko V., Kyrydon A., Aristova A., Tyschenko A. (2020) Experience of the semantic technologies use for intelligent Web encyclopedia creation (on example of the Great Ukrainian Encyclopedia portal). Problems in programming, N 2-3. P. 246-258. (in Ukrainian) CrossRef

Rogushina J. Use of Semantic Similarity Estimates for Unstructured Data Analysis CEUR Vol-2577, Selected Papers of the XIX International Scientific and Practical Conference "Information Technologies and Security" (ITS 2019). Kyiv. 2019. P. 246-258. paper20.pdf.

Demchenko Y., De Laat C., Membrey P. Defining architecture components of the Big Data Ecosystem. In 2014 International Conference on Collaboration Technologies and Systems (CTS). 2014. P. 104-112. CrossRef

Smith K., Seligman L., Rosenthal A., Kurcz C., Greer M., Macheret C., Eckstein A. "Big Metadata" The Need for Principled Metadata Management in Big Data Ecosystems. Proceedings of Workshop on Data analytics in the Cloud. 2014. P. 1-4). CrossRef

Dey A., Chinchwadkar G., Fekete A., Ramachandran K. Metadata-as-a-service. 31st IEEE International Conference on Data Engineering Workshops. 2015. P. 6-9. CrossRef

Chen M., Mao S., Liu Y. Big data: A survey. Mobile networks and applications. 2014. 19(2). P. 171-209. CrossRef

Rogushina J., Gladun A., Pryima S. Use of Ontologies for Metadata Records Analysis in Big Data. Selected Papers of the XVIII International Scientific and Practical Conference "Information Technologies and Security" (ITS 2018). CEUR Vol-2318.

ISO 15489-1:2016 Information and documentation - Records management - Part 1: Concepts and principles.

ISO 15836-1:2017 Information and documentation - The Dublin Core metadata element set - Part 1: Core elements.

ISO 15836-2:2019 Information and documentation - The Dublin Core metadata element set - Part 2: DCMI Properties and classes.

DSTU ISO 15489-1: 2018 Information and documentation. Records management. Part 1. Concepts and principles (ISO 15489-1: 2016, IDT). (in Ukrainian)

DSTU ISO 15836-1: 2018 Information and documentation. Dublin Core Metadata Element Set. Part 1. Basic elements (ISO 15836-1: 2017, IDT). (in Ukrainian)

Weibel S.L., Koch T. The Dublin core metadata initiative. D-lib magazine. 2000. 6(12). P. 1082-9873. CrossRef

Rogushina J. The use of thesauri to search for complex Web information objects based on ontologies. Problems of programming. 2019. № 4, P. 11-27. (in Ukrainian) CrossRef

Gladun A., Rogushina J. Semantic technologies: principles and practices. 2016. Kyiv. ADEF-Ukraine. 308 p. (in Ukrainian)

Gladun A., Rogushina J. Data Mining: search for knowledge in data. 2016. Kyiv. ADEF-Ukraine. 452 p. (in Ukrainian)

Nigro H.O. ed. Data Mining with Ontologies: Implementations, Findings, and Frameworks: Implementations, Findings, and Frameworks. IGI Global. 2007. 289 p. CrossRef

Kosala R., Blockeel H. Web mining research: A survey. ACM Sigkdd Explorations Newsletter. 2000. 2(1). P. 1-15. CrossRef

Berry M. W., Castellanos M. Survey of text mining. Survey of Text Mining:Clustering, Classification, and Retrieval. Computing Reviews. 2007. 45(9). P. 548. CrossRef

Krötzsch M., Vrandečić D., Völkel M. Semantic MediaWiki. International Semantic Web Conference. 2006. Р. 935-942. CrossRef

MediaWiki. URL:

Rogushina J. Analysis of Automated Matching of the Semantic Wiki Resources with Elements of Domain Ontologies. International Journal of Mathematical Sciences and Computing (IJMSC). 2017. Vol. 3. N 3. P. 50-58. URL: CrossRef



  • There are currently no refbacks.