Mixed topic-entity ontology for enhanced topic vector-spaced model

A.S. Shabinskiy

Abstract


The paper considers to modelling ontologies in enhanced topic-based vector-space model of information retrieval. Proposed approach is oriented on ontology extraction automation. Methods of modelling topical structure of collections of documents with probabilistic topical models and named entity recognition, as well as possible interpretation are reviewed.

Prombles in programming 2014; 2-3: 182-187


References


Palagin A.V., Petrenko N.G. Towards designing ontology-driven information system with natural language processing // Mathematical machines and systems. – 2008. – № 2 – P. 14–23.

Palagin A. V., Petrenko N. G. Architecture-ontological principles of developing intelligent information systems // Mathematical machines and systems. – 2006. – № 4 – P. 15–20.

Qiu R. G. Towards ontology-driven knowledge synthesis for heterogeneous information systems // Journal of Intelligent Manufacturing. – 2006. – N 1, Vol. 17. – P. 99–109.

Kuropka D. Modelle zur Repräsentation natürlichsprachlicher Dokumente. – Berlin: Logos Verlag, 2003.

Becker J., Kuropka D.. Topic-based Vector Space Model // Proceedings of BIS. – Colorado Springs, USA: Business Information Systems, 2003.

Glibovets A.N., Glibovets N.N., Shabinskiy A.S. Application of Ontologies and Text Mining Methods to the Development of Intelligent

Information Retrieval Systems. // Journal of Automation and Information Sciences. – 2011. – N 6. – P. 95–102.

Polyvyanyy A. Evaluation of a Novel Information Retrieval Model: eTVSM. – Potsdam: HPI, 2007.

Vallet D., Fernández M., Castells P. An Ontology-Based Information Retrieval Model. – Madrid : Proc. Second European Semantic Web Conf.,

Shabinskiy A. Ontologies, probabilistic topical models, and topic maps // Scientific Notes of NaUKMA. – 2013. – Vol. 151. – P. 60–65.

Grishman R., Sundheim B. Message Understanding Conference – 6: A Brief History // Proceedings of the 16th International Conference on

Computational Linguistics. – Kopenhagen: [s.n.], 1996. – Vol. I.

Mikheev A., Moens M., Grover C. Named Entity Recognition without Gazetteers // Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics. – 1999.

Collins M., Yoram S. Unsupervised models for named entity classification // Proceedings of the joint SIGDAT conference on empirical methods in natural language processing and very large corpora. – 1999.

Brun C., Hagege C. Semantically-driven extraction of relations between named entities [Patent]: 8,370,128. – USA, 5 February 2013.

Brun C., Ehrmann M., Jacquet G. Hybrid system for named entity resolution [Patent]: 8,374,844. – USA, February 12, 2013.

Kanungo T., Rhodes J. System and method for extracting entities of interest from text using n-gram models [Patent]: 7,493,293. – USA,

February 17, 2009.

Caceres B. M. Entity resolution based on relationships to a common entity [Patent]: 13/217,027 (application). – USA, 28 February 2013.

Ahmed K., Moore G. An Introduction to Topic Maps // The Architecture Journal. – [s.l.]: Microsoft Corporation. – 2005. – N 5. – P. 3–9.

ISO/IEC JTC1/SC34/WG3, "Topic Maps — Part 1: Overview and Basic Concepts" [Online]: http://www.itscj.ipsj.or.jp/sc34/open/1045.htm.

Berners-Lee T. Notation3 (N3): A readable RDF syntax // World Wide Web Consortium. – http://www.w3.org/DesignIssues/Notation3.

Beckett D., McBride B. RDF/XML Syntax Specification // W3C. – Лютий 10, 2004. – http://www.w3.org/TR/REC-rdf-syntax/.

ISO/IEC JTC1/SC34/WG3, "Topic Maps — XML Syntax" [Online]:

http://www.isotopicmaps.org/sam/sam-xtm/.

"Common Topic Map Application Programming Interface" [Online]. Available: http://www.tmapi.org.

Kuropka D. A proposal for transformation of topic-maps into similarities of topics. – 2005.

Blei D. M. Probabilistic Topic Models // Communications of the ACM. – New York: ACM, 2012. – 4, Т. 55.

Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet Allocation // Journal of Machine Learning Research. – Cambridge, MA : MIT Press, 2003. – Vol. 3. – P. 993–1022.

Blei D., Lafferty J. A correlated topic model of SCIENCE // The Annals of Applied Statistics. – 2007. – N 1, Vol. 1. – P. 17–35.

Li W., McCallum A. Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations // Proceedings of the 23rd International

Conference on Machine Learning. – Pittsburg: [s.n.], 2006.International Conference on Machine Learning, Pittsburg, 2006.


Refbacks

  • There are currently no refbacks.