Research specialties’ kinship level identification based on data from Dimensions

S.D. Shtovba, M.V. Petrychko


Knowledge about research specialties’ kinship level is needed for solving such problems as: improving current research classification system; detecting similar scientific and educational institutions to set up cooperative relations or perform their reorganization; automatic reviewer assignment for peer reviewing PhD-thesis, papers, grant proposals etc. In this paper research specialties’ kinship level is identified according to Australian and New Zealand standard research classification ANZC-RC-2020. The identification is done using information system Dimensions by analyzing 33.8 million publications for 2019-2023. The level of kinship is assessed by Jaccard index as the ratio of two specialties common publications’ number to the total number of publications in these specialties. It is found, that from 14535 possible pairs of specialties only 131 pairs have significant kinship with Jaccard index greater than 0.05. For 20 pairs among them the kinship level is high, and for 61 pairs – average.

Prombles in programming 2024; 1: 77-85


identification, research classification, specialties’ kinship, data analysis, Jaccard index, research publications, reviewer assignment, scientometrics, Dimensions, ANZS-RC-2020


Porter, S. J., Hawizy, L., & Hook, D. W. (2023). Recategorising research: Mapping from FoR 2008 to FoR 2020 in Dimensions. Quantitative Science Studies, 4(1), 127–143.

Frascati Manual 2015. Frascati Manual 2015. OECD.

Legendre, A. (2019). The development of the Canadian research and development classification. Knowledge Organization. International Society for Knowledge Organization.

Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., Rafols I., Börner, K. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.

Dias, L., Gerlach, M., Scharloth, J., & Altmann, E. G. (2018). Using text analysis to quantify the similarity and evolution of scientific disciplines. Royal Society Open Science, 5(1).

Porter, A. L., Cohen, A. S., David Roessner, J., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.

Van Noorden, R. (2015, September 16). Interdisciplinary research by the numbers. Nature. Nature Publishing Group.

Braam, R. R., Moed, H. F., & van Raan, A. F. J. (1991). Mapping of science by combined co‐citation and word analysis. II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252–266.<252::AID-ASI2>3.0.CO;2-G.

Silva, F. N., Amancio, D. R., Bardosova, M., Costa, L. da F., & Oliveira, O. N. (2016). Using network science and text analytics to produce surveys in a scientific topic. Journal of Informetrics, 10(2), 487–502.

Karlovčec, M., & Mladenić, D. (2015). Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring. Scientometrics, 102(1), 433–454.

Shtovba, S., & Petrychko, M. (2019). Jaccard index-based assessing the similarity of research fields in dimensions. In CEUR Workshop Proceedings (Vol. 2533, pp. 117–128). CEUR-WS.

Dimensions API request. Електронний ресурс. Режим доступу: (20.02.2024).

Dimensions DSL. Електронний ресурс. Режим доступу: (20.02.2024).

Shtovba S., Petrychko M., Shtovba O. Similarity metric оf categorical distributions for topic modeling problems with akin categories // CEUR Workshop Proceedings, Vol. 3392 “Proc. of the Sixth International Workshop on Computer Modeling and Intelligent Systems”. – 2023. – P. 76-85. DOI:


  • There are currently no refbacks.