Agent model of information retrieval on the basis of beehive metaphor
Abstract
A new approach to information retrieval that is based on a beehive metaphor is presented. A beehive model simulates several kinds of beehive typical behavior. It is a simple model that describes processes taking place in Web-search. The approach gives possibility of distributed PageRank calculation of Web pages.
Prombles in programming 2011; 1: 70-77
Full Text:
PDF (Українська)References
Андон П.І., Дерецкий В.О. Проблеми побудови сервіс-орієнтованих прикладних інформаційних систем в Semantic web середовищі на основі агентного підходу // Проблеми програмування. – 2006. – № 2-3. – С. 493–502.
Дерецкий В.О., Богданова М.М., Ремарович С.С. Підхід до організації пошуку інформації в різнорідних джерелах // Проблеми програмування. – 2008. – № 2-3. – С. 395–402.
R. Koval and P. Navrat. Intelligent support for information retrieval of web documents, Computing and Informatics. – 2002. – 21(5). – Р. 509–528.
S. Ye, T. Chua, and J. Kei. Clustering web pages about persons and organizations, Web Intelligence and Agent Systems. – 2005. – 3(4). – Р. 203–216.
H. Lei and V. Govindaraju. Matching and retrieving sequential patterns using regression, Web Intelligence and Agent Systems. – 2005. – 3(4). – Р. 261–270.
X. Zhang, V. Lesser, and T. Wagner. A Layered Approach to Complex Negotiations, Web Intelligence and Agent Systems. – 2004. – 2(2). – Р. 91–104.
L. Hluchy, M. Laclavik, Z. Balogh, and M. Babik. AgentOWL: Semantic knowledge model and agent architecture, Computing and Informatics. – 2006. – 25(5). – Р. 421– 439.
K. Matusikova and M. Bielikova. Social navigation for semantic web applications using space maps, Computing and Informatics. – 2007. – 26(3). – Р. 281–299.
Ремарович С.С. Агентний підхід до тематичного пошуку інформації з використанням онтологій // Проблеми програмування.–2008.–№ 2-3.– С. 411–416.
D. Gordon. The organization of work in social insect colonies, Nature 380.– 1996. – Р. 12 1–124.
S. Camazine and J. Sneyd. A model of collective nectar source selection by honey bees: Self organization through simple rules, Journal of Theoretical Biology. – 1991. – 149(4). – Р. 547–571.
H. de Vries and J.C. Biesmeijer. Modelling collective foraging by means of individual behaviour rules in honey-bees, Behav. Ecol. Sociobiol. – 1998. – Р. 109–124.
http://www.polarization.com/bees/bees.html
T.D. Seeley, S. Camazine, and J. Sneyd. Collective decision-making in honey bees: how colonies choose among nectar sources, Behav Ecol Sociobiol.–1991.–28.–Р.277–290.
C.A. Tovey. The honey bee algorithm. A biologically inspired approach to internet server optimization, Engineering Enterprise. – Spring 2004. – Р. 13–15.
F. Lorenzi, D. Scherer dos Santos, and A.L.C. Bazzan. Case-Based Recommender System-Inspired by Social Insects, in: Proc. XXV Congresso da Sociedade Braseilera de Computacao, Sao Leopoldo. – 2005. – Р. 752–760.
F. Lorenzi, D. Scherer dos Santos, and A.L.C. Bazzan. Negotiation for task allocation among agents in case/base recommender systems: a swarm intelligence approach, in: Proc. IJCAI 2005 Conference, Workshop. – 2005. – Р. 23–27.
H.E. Bullock, P. Dey, and K.D. Reill. A “Bee Hive” model for heterogeneous knowledge in expert systems, ACM. – 1986. – Р. 417– 417.
A. Dornhaus, F. Klugl, F. Puppe, and J. Tautz. Task selection in honeybees – experiments using multi-agent simulation, in: 3rd German Workshop on Artificial Life. – 1998. – Р. 171–183.
F. Kluegl, C. Oechslain, F. Puppe, and A. Dornhaus. Multi-agent modelling in comparison to standard modelling, in: Proc. AIS2002 Artificial Intelligence, Simpulation and Planning in High Autonomy Systems, F.J. Barros, N. Giambasi, eds, SCS Publ. House. – 2002. – Р. 105–110.
F. Klügl and F. Puppe. The multi-agent simulation environment SeSAm. In. Proceedings of the Workshop „Simulation and knowledge-based systems”, H. Kleine Büning (ed.). (= Report tr-ri-98-194, Reihe Informatik, University Paderborn). – 1998.
F. Klügl, F. Puppe, U. Raub and J. Tautz. Simulating Multiple Emergent Behaviors – exemplified in an Ant Colony. In Proc. of Artificial Life VI, Los Angeles, June 26-29, 1998.
S.J. Schultze. A collaborative foraging approach to web browsing enrichment, in: Proc. CHI 2002, ACM. – 2002. – P. 860–861.
S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine, Computer Science Department, Stanford University, Stanford, http://www- db.stanford.edu/˜backrub/google.html.
Refbacks
- There are currently no refbacks.