On application of machine-learning for designing adaptive sorting programs in algebra of algorithms

O.A. Yatsenko

Abstract


The experiment on development of adaptive sorting program on the basis of usage of algorithm selection method, machine learning system and algebra-algorithmic approach is conducted. Machine learning facilities allow to automatize constructing of adaptive algorithm on the basis of analysis of experimental data, related to execution of initial algorithms. Designing of algorithms is based on usage of systems of algorithmic algebras.

Prombles in programming 2011; 2: 23-33


References


Андон Ф.И., Дорошенко А.Е., Цейтлин Г.Е., Яценко Е.А. Алгеброалгоритмические модели и методы параллельного программирования. – Киев: Академпериодика, 2007. – 631 с.

Дорошенко А.Е., Жереб К.А., Яценко Е.А. Об оценке сложности и координации вычислений в многопоточных программах // Проблеми програмування. – 2007. – № 2. – С. 41–55.

Дорошенко А.Е., Яценко Е.А. Средства сервисно-ориентированного программирования параллельных программ // Проблеми програмування. – 2009. – № 2. – С. 12–21.

Дорошенко А.Е., Шевченко Р.С. Система символьных вычислений для программирования динамических приложений // Проблемы программирования. – 2005. – № 4. – С. 718–727.

Степанов Р.Г. Технология Data Mining: Интеллектуальный анализ данных. – 2008. – http://m8.ksu.ru/EOS/dm.pdf

Smith-Miles K.A. Cross-Disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv., 41, 1, Article 6 (December 2008). – 2008. – 25 p.

Wang X., Smith K.A., Hyndman R. Characteristic-Based clustering for time series data. Data Mining Knowl. Discov. 13. – 2006. – P. 335–364.

Samulowitz H., Memisevic R. Learning to solve QBF. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence. – 2007. – P. 255–260.

Smith-Miles K.A. Towards insightful algorithm selection for optimisation using meta-learning concepts. In Proceedings of the IEEE Joint Conference on Neural Networks. – 2008. – P. 4118–4124.

Lagoudakis M., Littman M., Parr R. Selecting the right algorithm. In Proceedings of the AAAI Fall Symposium Series: Using Uncertainty within Computation. – 2001.

Guo H. Algorithm selection for sorting and probabilistic inference: A machine learning-based approach. Ph.D. dissertation, Kansas State University. – 2003.

Weka Project home page. – http://www.cs. waikato.ac.nz/ml/weka/

Деревья решений – общие принципы работы. – http://www.basegroup.ru/library/analy­sis/tree/description/

Кнут Д. Искусство программирования для ЭВМ. – М.: Мир, 1978. – Т. 3. – 843 с.

Durstenfeld R. Algorithm 235: Random permutation. Communications of the Association for Computing Machinery, 7:420. – 1964.

Slightly Skeptical View on Sorting Algorithms. – http://www.softpanorama.org/Algo­rithms/sorting.shtml


Refbacks

  • There are currently no refbacks.