Neurocontrol Methods: A Survey
Abstract
We consider methods of using neural networks to control dynamic objects. Schemes of neural networks training and connecting inside the control systems are presented in details. Analysis of benefits and disadvantages of described methods is presented.
Problems in programming 2011; 2: 79-94
Full Text:
PDF (Русский)References
Li Y., Sundararajan N., Saratchandran P. Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks // Automatica. – 2001. – Vol. 37, N 8. – P. 1293 – 1301.
Gundy-Burlet K., Krishnakumar K., Limes G., Bryant D. Augmentation of an Intelligent Flight Control System for a Simulated C-17 Aircraft // J. of Aerospace Computing, Information, and Communication. – 2004. – Vol. 1, N 12. – P. 526 – 542.
Prokhorov D. and Wunsch D. Adaptive Critic Designs // IEEE Transactions on Neural Networks. – 1997. – Vol. 8, N 5. – P. 997 – 1007.
Архангельский В.И., Богаенко И.Н., Грабовский Г.Г., Рюмшин Н.А. Нейронные сети в системах автоматизации. – К.: Техника, 1999. – 234 c.
Купін А.І. Інтеллектуальна ідентифікація та керування в умовах процесів збагачувальної технології. – Кривий Ріг: КТУ, 2008. – 204 с.
Терехов В.А., Ефимов Д.В., Тюкин И.Ю. Нейросетевые системы управления: Учеб. пособие для вузов. – М.: Высш. школа 2002. – 183 с.
Dias F.M., Mota A.M. Comparison between Different Control Strategies using Neural Networks // 9th Mediterranean Conference on Control and Automation. – Dubrovnik, Croatia, 2001.
Venayagamoorthy G.K., Harley R.G., Wunsch D.C. Implementation of Adaptive Critic-based Neurocontrollers for Turbogenerators in a Multimachine Power System”, IEEE Transactions on Neural Networks. – 2003. – Vol. 14, Issue 5. – P. 1047 – 1064.
D’Emilia G., Marrab A., Natalea E. Use of neural networks for quick and accurate auto-tuning of PID controller // Robotics and Computer-Integrated Manufacturing. – 2007. – Vol. 23. – P. 170 – 179.
Змеу К.В., Марков Н.А., Шипитько И.А., Ноткин Б.С. Безмодельное прогнозирующее инверсное нейроуправление с регенерируемым эталонным переходным процессом // Интеллектуальные системы. – 2009. – № 3. – С. 109 – 117.
Widrow B., Smith F.W. Pattern-recognizing control systems // Proceedings of Computer and Information Sciences. – Washington, USA – 1964. – Vol. 12. – P. 288 – 317.
Widrow B., Adaptive Inverse Control // Proceedings of the 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing – Lund, Sweden, July 1986. – P. 1 – 5.
Widrow B., Plett G.L. Adaptive Inverse Control based on Linear and Nonlinear Adaptive Filtering // Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing – 21–23 Aug 1996, Venice, Italy. – P. 30 – 38.
Zhang Y., Wang J. Recurrent neural networks for nonlinear output regulation // Automatica. – 2001. – Vol. 37, N 8. – P. 1161 – 1173.
Psaltis D., Sideris A., Yamamura A.A. A Multilayered Neural Network Controller // IEEE Control Systems Magazine. – 1988. – Vol. 8, Issue 2. – P. 17 – 21.
Редько В.Г., Прохоров Д.В. Нейросетевые адаптивные критики // VI Всероссийская научно-техническая конференция “Нейроинформатика-2004". Сборник научных трудов. Часть 2. М.: МИФИ, 2004. – C. 77 – 84.
Омату С., Халид М., Юсоф Р. Нейроуправление и его приложения: пер. с англ. – М.: ИПРЖР, 2000. – 272 с.
Пупков К.А., Егупов Н.Д. Методы робастного, нейро-нечеткого и адаптивного управления: Учебник. М. : Изд-во МГТУ им. Н.Э. Баумана, 2001. – 744 с.
Omidvar O., Elliott D.L. eds. Neural Systems for Control // Academic Press, New York, 1997. – 272 с.
Ronco E. Incremental Polynomial Controller Networks: Two Self-Organising Non-Linear Controllers // Ph.D. Disseration Thesis, Glasgow, 1997. – 207 с.
Hunt K.J., Sbarbaro D., Zbikowski R., Gawthrop P.J. Neural Networks for Control: A Survey // Automatica 28. – 1992. – N 6. – P. 1083 – 1112.
Zhang Y., Sen P., Hearn G.F. An on-line trained adaptive controller // IEEE Control Systems Magazine. – 1995. – Vol. 15, N 5. – P. 67 – 75.
Ronco E., Gawthrop P. J., Hill D. J. Gated modular neural networks for control oriented modeling // Technical Report EE-98009, Laboratory for Dynamic Systems and Control, Sydney, Australia, 1998.
Bishop C.M. Pattern Recognition and Machine Learning // Springer, 2006. – 738 с.
Хайкин С. Нейронные сети: полный курс / Хайкин С.; пер. с англ. – [2-е изд., испр.]. – М.: Вильямс, 2006. – 1102 с.
Narendra K.S., Parthasarathy K.K. Identification and control of dynamical systems using neural networks // IEEE Transactions on Neural Networks. – 1990. – N 1. – P. 4 – 27.
Werbos P. Backpropagation through time: what it does and how to do it // Proceedings of the IEEE. – October 1990. – Vol. 78, N. 10. – P. 1550 – 1560.
Jordan M.I. and Rumelhart D.E. Forwardmodels: Supervised learning with a distal teacher // Cognitive Science – 1990. – Vol. 16. – P. 313 – 355.
Hagan M.T., Demuth H.B. Neural networks for control // Proceedings of the American Control Conference. – San Diego, USA, 1999. – Vol. 3. – P. 1642 – 1656.
Rossiter J.A. Model-based Predictive Control: a Practical Approach // CRC Press, 2003. – 318 c.
Takahashi Y. Adaptive Predictive Control of Nonlinear Time-Varying System using Neural Network // Proceedings of the IEEE International Conference on Neural Networks – Nagoya, Japan, 25 – 29 October, 1993. – Vol. 3. – P. 1464 – 1468.
Soloway D., Haley P.J. Neural Generalized Predictive Control // Proceedings of the IEEE International Symposium on Intelligent Control. – 15 – 18 September 1996. – P. 277 – 281.
Lendaris G.G. A Retrospective on Adaptive Dynamic Programming for Control // Proceedings of International Joint Conference on Neural Networks, Atlanta, USA, June 14-19, 2009. – P. 1750 – 1757.
Barto A.G. Reinforcement learning and adaptive critic methods. // Handbook of Intelligent Control. – New York: Van Nostrand Reinhold, 1992. – P. 469 – 491.
Ferrari S., Stengel R.F. Model-Based Adaptive Critic Designs // Learning and Approximated Dynamic Programming, J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley, 2004, Chapter. 3.
Wolpert D.M., Kawato M. Multiple Paired Forward and Inverse Models for Motor Control // Neural Networks. – 1998. – Vol. 11. – Issue 7 – 8. – P. 1317 – 1329.
Oyama E., Agah A., MacDorman K.F., Maeda T., Tachi S. A Modular Neural Network Architecture for Inverse Kinematics Model Learning // Neurocomputing. – 2001. – N 38 – 40. – P. 797 – 805.
Haruno M., Wolpert D.M., Kawato M. Multiple Paired Forward-Inverse Models for Human Motor Learning and Control // Advances in Neural Information Processing Systems. MIT Press, Cambridge, Massachusetts. – 1999. – Vol. 11. – P. 31 – 37.
Narendra K.S., Kumpati S., Balakrishnan J., Ciliz K.M. Adaptation and LearningUsing Multiple Models, Switching and Tuning // IEEE Control Systems Magazine. – 1996. – Vol. 15, Issue 3. – P. 37 – 51.
Kumpati S., Narendra K.S., Balakrishnan J. Adaptive Control Using Multiple Models // IEEE Transactions on Automatic Control. – 1997. – Vol. 42, N 2. – P. 171 – 187.
Saiful A., Omatu S. Neuromorphic self-tuning PID controller // Proceedings of IEEE International Conference on Neural Networks, San Francisco, USA, 1993. – P. 552 – 557.
Chang W.D., Hwang R.C., Hsiehc J.G. A multivariable on-line adaptive PID controller using auto-tuning neurons // Engineering Applications of Artificial Intelligence. – 2003. – Vol. 16, Issue 1. – P. 57 – 63.
Tan Y., De Keyser R. Auto-tuning PID control using neural predictor to compensate large time-delay // Proceedings of the Third IEEE Conference on Control Applications. – 1994. – Vol. 2. – P. 1429 – 1434.
Krishnakumar K., Limes G., Gundy-Burlet K., Bryant D. An Adaptive Critic Approach to Reference Model Adaptation // Proceedings of 2003 AIAA Guidance, Navigation, and Control Conference, August 11 – 14, Austin, USA. – P. 5790 – 5801.
Siegelmann H.T., Horne B.G., Giles C.L. Computational capabilities of recurrent NARX neural networks // IEEE Transactions on Systems, MAN and Cybernetics, Part B:Cybernetics. – 1997. – N 27. – Vol. 2. – P. 208 – 215.
De Jesus O., Hagan M.T. Backpropagation: Algorithms for a Broad Class of Dynamic Networks // IEEE Transactions on Neural Networks. – 2007. – N 1, Vol. 18. – P. 14 – 27.
Refbacks
- There are currently no refbacks.