Metaheuristic methods for optimizing the quality of service of composite web services

H.B. Moroz

Abstract


With the advent of service-oriented architectures, it has become possible to register, invoke, and aggregate web services based on their identical quality of service attributes to create composite web services with added value that meet user needs. However, the rapid introduction of new web services into a dynamic business environment can negatively affect their quality of service. Therefore, the question of how to capture, aggregate, and use information about the quality of service of individual web services to obtain an optimal end-to-end quality of service of a composite web service is currently one of the priority research areas in software engineering and service-oriented computing. This paper presents the basic theoretical information necessary to understand the importance, multifacetedness, and complexity of the problem of web service composition taking into account their quality of service, as well as a representative overview of the use of methods global optimization metaheuristic, which have been the dominant methods for solving this problem over the past two decades. The purpose of the work is to draw the attention of students and the scientific community to the current problems of web service composition that arise in the Internet of Things, cloud computing, social networks, mobile computer and smartphone technologies, etc., and to involve them in active participation in solving these problems.

Problems in programming 2025; 3: 3-18



Keywords


service-oriented computing; quality of service; web service composition; composite web service; metaheuristics

References


Huhns M. N., Singh M. P., Service-oriented compu- ting: Key concepts and principles, IEEE Internet Comput., vol. 9, no. 1, pp. 75-81, Jan. 2005. CrossRef

Papazoglou M. P., Heuvel W.-J., Service oriented architectures: approaches, technologies and research issues, VLDB J. Vol.16 (3) (2007) 389-415. CrossRef

O'Sullivan J., Edmond D., Hofstede A.T., What's in a service?, Distrib. Parallel Databases, 2002, 12, (2-3), pp. 117-133. CrossRef

Bouguettaya A., Sheng Q.Z., Daniel F. (Eds.), Web Services Foundations, Springer, 2013, P. 739. CrossRef

Gabrel V., Manouvrier M., Murat C., Optimal and automatic transactional web service composition with dependency graph and 0-1 linear programming, in Proc. Int. Conf. Service-Oriented Comput. Berlin: Springer, Nov. 2014, pp. 108-122. CrossRef

Li J., Zhao Y., Liu M., et al.: An adaptive heuristic approach for distributed QoS-based service composition, in Proc. IEEE Symp. Comput. Commun., Jun. 2010, pp. 687-694. CrossRef

Dongre Y., Ingle R.: An investigation of QoS criteria for optimal services selection in composition, in Proc. 2nd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), Mar. 2020, pp. 705-710. CrossRef

Mili H., Tremblay G., et al.: Business Process Modeling Languages: Sorting Through the Alphabet Soup. ACM Computing Surveys, 11, 2010, P. 57. CrossRef

Pop C., Vlad M., Chifu V., et al.: A tabu search optimization approach for semantic web service composition, in Proc. 10th Int. Symp. Parallel Distrib. Comput., Jul. 2011, pp. 274-277. CrossRef

Liu Q., Zhang S.-L., Yang R., et al.: Web services composition with QoS bound based on simulated annealing algorithm, J. Southeast Univ., vol. 24, no. 3, 2008, pp. 308-311.

Canfora G., Penta M.D., Esposito R., et al.: A light- weight approach for QoS-aware service composition, Proc. 2nd Int. Conf. on Service Oriented Com- puting (ICSOC'04), NY, USA, 2004, pp. 36-47.

Zhang C.W., Su S., Chen J.L.: DiGA: population diversity handling genetic algorithm for QoS-aware web services selection, Comput. Commun., 2007, 30, pp. 1082-1090. CrossRef

Zhang C.W., Ma Y.: Dynamic genetic algorithm for search in web service compositions based on global QoS evaluations. IEEE Int. Conf. on Scalable Computing and Communications, 2009, pp. 644-649. CrossRef

Vanrompay Y., Rigole P., et al.: Genetic algorithm-based optimization of service composition and deployment. 3rd Int. workshop on Services integration in pervasive environments, 2008, pp. 13-17. CrossRef

Gong X.R., Zhu Q.S., Wu C.L., et al.: Web services composition supporting global optimal and dynamic replanningof QoS, Comput. Integr. Manuf. Syst.,2008, 14, (10), pp. 2068-2075.

Jiang Z., Han J., Wang Z.: An optimization model for dynamic QoS-aware web services selection and composition, Chin. J. Comput., 2009, 32, (5), pp. 1014-1025. CrossRef

Ai L., Tang M., Fidge C.: Partitioning composite web services for decentralized execution using a genetic algorithm, Future Gener. Comput. Syst., 2011, 27, pp. 157-172. CrossRef

Cao J., Wang J., Zhao H., et al.: A service process optimization method based on model refinement, J. Supercomput., 2013, 63, pp. 72-88. CrossRef

Yu Q., Rege M., Bouguettaya A., et al.: A two-phase framework for quality-aware web service selection, Serv. Oriented Comput. Appl., 2010, 4, pp. 63-79. CrossRef

Klein A., Ishikawa F., Honiden S.: Towards network-aware service composition in the cloud. WWW 2012, Lyon, France, 2012, pp. 959-968. CrossRef

Ukor R.: Service selection and horizontal multi- sourcing in process-oriented capability outsourcing, J. Softw., Evol. Process, 2012, 24, pp. 259-283. CrossRef

Fanjiang Y.-Y., Syu Y.: Semantic-based automatic service composition with functional and non-functional requirements in design time: a GA approach, Inf. Softw. Technol., 2014, 56, (3), pp. 352-373. CrossRef

Li Y.Z., Hu J., et al.: Research on QoS service com- position based on coevolutionary genetic algorithm, Soft Comput., 2018, 22, pp. 7865-7874. CrossRef

Claro D.B., Albers P., Hao J.K.: Selecting web services for optimal composition. Int'l Conf. Web Services (ICWS'05), Orlando, FL, USA, 2005.

Yao Y.J., Chen H.P.: Qos-aware service composition using NSGA-II. 2nd Int. Conf. on Interaction Sciences, Seoul, Korea, 2009, pp. 358-363. CrossRef

Hashmi K., Alhosban A., Najmi E., et al.: Automated web service quality component negotiation using NSGA-2. ACS Int. Conf. on Computer Systems and Applications, Ifrane, 2013, pp. 1-6. CrossRef

Li J.Z., Luo W.L., Zeng J.T., et al.: Application of SPEA2 algorithm in web services selection. IEEE Youth Conf. on Information Computing and Telecommunications, Beijing, 2010, pp. 387-390. CrossRef

Liu S., Liu Y.: A dynamic web services selection algorithm with QoS global optimal in web services composition, J. Softw., 2007, 18, (3), pp. 646-656. CrossRef

Wang J.L. et al.: Optimal web service selection based on multi-objective GA. Int. Symp. on Comp. Intellig. and Design, 2008, pp. 553-556. CrossRef

Hu H., Dong W., et al.: Pareto optimality based genetic algorithm in web services composition, J. Xi'an Jiao Tong Univ., 2009, 43, (12), pp. 50-54.

Wagner F., Klopper B., et al.: Towards robust service compositions in the context of functionally diverse services. WWW, 2012, pp. 969-978. CrossRef

Ramĺłrez A., Parejo J., Romero J., et al.: Evolutionary composition of QoS-aware web services: A many-objective perspective, Expert Syst. Appl., 2017, 72, pp. 357-370. CrossRef

Ma X.N., Dong B.T.: Linear physical programming based approach for web service selection. 2008 Int. Conf. on Information Management, Innovation Management and Industrial Engineering, Xian, China, 2008, pp. 398-401. CrossRef

Liang W.Y., Huang C.C.: The generic genetic algorithm incorporates with rough set theory - An application of the web services composition, Expert Syst. Appl., 2009, 36, pp. 5549-5556. CrossRef

Liu Z., Xue X., Shen J., et al.: Web service dynamic composition based on decomposition of global QoS constraints, Int. J. Adv. Manuf. Technol., 2013, 69, pp. 2247-2260. CrossRef

Que Y., Zhong W., Chen H., et al.: Improved adaptive immune genetic algorithm for optimal QoS- aware service composition selection in cloud manufacturing, Int. J. Adv. Manuf. Technol., vol. 96, nos. 9-12, pp. 4455-4465, Jun. 2018. CrossRef

Sadeghiram S., Ma H., Chen G.: Cluster-guided genetic algorithm for distributed data-intensive web service composition, in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2018, pp. 1-7. CrossRef

Jatoth C., Gangadharan G.: Optimal fitness aware cloud service composition using an adaptive genotypes evolution based genetic algorithm, Future Gener. Comput. Syst., vol. 94, pp. 185-198, 2019.

https://doi.org/10.1016/j.future.2018.11.022">CrossRef

Rodriguez-Mier P., Mucientes M., Lama M., et al.: Composition of web services through genetic programming, Evol. Intell., 2010, 3, pp. 171-186. CrossRef

Yu Y., Ma H., Zhang M.: An adaptive genetic programming approach to QoS-aware web services composition. IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 1740-1747. CrossRef

Yu Y., Ma H., Zhang M.: A Genetic Programming approach to distributed QoS-aware web service composition. IEEE Congress on Evolutionary Computation 2014: 1840-1846. CrossRef

Ma H., Wang A., Zhang M.: A hybrid approach using genetic programming and greedy search for QoS-aware web service composition, in Transactions on Large-Scale Data-and Knowledge-Cen-tered Systems XVIII. Springer, 2015, pp. 180-205. CrossRef

Yu Y., Ma H., Zhang M.: A hybrid GP-tabu approach to QoSaware data intensive web service composition, in Proc. Asia-Pacific Conf. Simulated Evol. Learn.: Springer, Dec. 2014, pp. 106-118. CrossRef

Wang A., Ma H., Zhang M.: Genetic programming with greedy search for web service composition, in Database and Expert Systems Applications, vol. 8056, pp. 9-17. CrossRef

Yang F.C., et al.: An improved particle swarm optimization algorithm for QoS-aware web service selection in service oriented communication, Int. J. Comput. Intell. Syst., 2010, 4, (s), pp. 18-30. CrossRef

Wang S.G., Sun Q.B., Zou H., et al.: Particle swarm optimization with skyline operator for fast cloud-based web service composition, Mobile Netw. Appl., 2013, 18, pp. 116-121. CrossRef

Fan X.Q., Jiang C.J., Fang X.W., et al.: Dynamic web service selection based on discrete PSO, J. Comput. Res. Dev., 2010, 47, (1), pp. 147-156.

Wang L., He Y.X.: Web service composition based on QoS with chaos particle swarm optimization. 6th Int. Conf. on Wireless Communications Network- ing and Mobile Computing, 2010, pp. 1-4. CrossRef

Li W.F., Zhong Y., Wang X., et al.: Resource virtualization and service selection in cloud logistics, J. Netw. Comput. Appl., 2013, 36, pp. 1696-1704. CrossRef

Li S.Z., Shen P., Yang S.X.: A grouping particle swarm optimization algorithm for web service selection based on user preference. 2011 IEEE Int. Conf. on Computer Science and Automation Engineering, Shanghai, China, 2011, v3, pp. 427-431. CrossRef

Ludwig S.A.: Applying particle swarm optimization to quality-of-service driven web service composition. IEEE 26th Int. Conf. on Advanced Infor- mation Networking and Applications (AINA), Fu- kuoka, Japan, 2012, pp. 613-620. CrossRef

Cao J.X., Sun X.S., Zheng X., et al.: Efficient multi-objective services selection algorithm based on particle swarm optimization. IEEE Asia-Pacific Services Computing Conf., 2010, pp. 603-608. CrossRef

Yu W., Li S., Tang X., et al.: An efficient top-k ranking method for service selection based on ɛ-ADMOPSO algorithm, Neural Comput. Appl., 2018, 31, pp. 77-92. CrossRef

Guha T., Ludwig S.A.: Comparison of service selection algorithms for grid services: multiple objective PSO and constraint satisfaction based service selection. 20th IEEE Int. Conf. on Tools with Arti- ficial Intelligence, 2008, pp. 172-179. CrossRef

Fan X.Q. A decision-making method for personalized composite service, Expert Syst. Appl., 2013, 40, pp. 5804-5810. CrossRef

Tao F., Zhao D.M., Hu Y.F., et al.: Correlation-aware resource service composition and optimal-selection in manufacturing grid, Eur. J. Oper. Res., 2010, v. 201, pp. 129-143. CrossRef

Xu X., Rong H., et al.: Predatory search-based chaos turbo particle swarm optimisation (PS-CTPSO): A new PSO algorithm for web service combination probems, Future Gener. Comput. Syst., v. 89, pp. 375-386, 2018. CrossRef

Liu Y., Miao H., Li Z., et al.: QoS-aware web services composition based on HQPSO algorithm, in Proc. 1st ACIS/JNU Int. Conf.Comput., Netw., Syst. Ind. Eng., May 2011, pp. 400-405. CrossRef

Yin H., Zhang C., et al.: A hybrid multiobjective discrete PSO algorithm for a SLA-aware service composition problem, Math. Problems Eng., vol. 4, 2014, pp.1-14. CrossRef

Wang S., Sun Q., Zou H., et al.: Particle swarm optimization with skyline operator for fast cloud-based web service composition, Mobile Netw. Appl., vol. 18, no. 1, pp. 116-121, 2013. CrossRef

Hossain M. S., Moniruzzaman M, et al.: Big datadriven service composition using parallel clustered PSO in mobile environment, IEEE Trans. Services Comput., vol. 9, no. 5, pp. 806-817, Sep. 2016. CrossRef

Chifu V. R., Pop C. B., et al.: Web service composition technique based on a service graph and PSO, in Proc. IEEE 6th Int. Conf. Intell.Comput. Commun. Process., 2010, pp. 265-272. CrossRef

Gharbi M., Mezni H.: Towards big services composition, Int. J.Web Grid Services, vol. 16, no. 4, pp. 393-421, 2020. CrossRef

Zhao X., Huang P., et al.: A hybrid clonal selection algorithm for quality of service-aware web service selection problem, Int. J. Innov. Comput. Inf. Control, vol. 8, no. 12, pp. 8527-8544, 2012.

Fekih H., Mtibaa S., Bouamama S.: An efficient user-centric web service composition based on harmony particle swarm optimization, Int. J. Web Services Res., vol. 16, no. 1, pp. 1-21, Jan. 2019. CrossRef

da Silva A. S., Mei Y., Ma H., et al.: Particle swarm optimization with sequence-like indirect representation for web service composition, in Evolutionary Computation in Combinatorial Optimization, vol. 9595, Chicano F., Hu B., García-Sánchez P., Eds. Cham, Switzerland: Springer, 2016, 8-14.

Zhao X., Song B., et al.: An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition, Appl. Soft Comput., vol. 12, no. 8, pp. 2208-2216, 2012. CrossRef

Haytamy S., Omara F.: A deep learning based framework for optimizing cloud consumer QoS-based service composition, Computing, vol. 102, no. 5, pp. 1117-1137, May 2020. CrossRef

Hosseinzadeh M., Tho Q., Ali S., et al.: A hybrid service selection and composition model for cloudedge computing in the Internet of Things, IEEE Access, vol. 8, pp. 85939-85949, 2020. CrossRef

Sun Q., Wang S., Yang F.: Quick service selection approach based on particle swarm optimization. IEEE Fifth Int. Conf. on Bio-Inspired Computing: Theories and Applications, 2010, pp. 278-284. CrossRef

Zhao X.C., Song B.Q., et al.: An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition, Appl. Soft Comput., 2012, 12, (8), pp. 2208-2216. CrossRef

Fan X.Q., Fang X.W., Jiang C.J.: Research on web service selection based on cooperative evolution, Expert Syst. Appl., 2011, 38, pp. 9736-9743. CrossRef

Yu C.X., Wang G.: A multi-agent based architecture for web service selection in E-business. Eighth IEEE Int. Conf. on e-Business Engineering, Beijing, China, 2011, pp. 245-250. CrossRef

Fethallah H., Chikh M.A., Mohammed M., et al.: Qos-aware service selection based on swarm particle optimization. Int. Conf. on Information Technology and e-Services, Sousse, 2012, pp. 1-6. CrossRef

Zheng X.: Ant colony intelligence based solution for grid services selection. 7th World Congress on Intelligent Control and Automation, 2008, pp. 2512-2517. CrossRef

Wang L.J., Shen J., et al.: Towards minimizing cost for composite data-intensive services. Proc. of the 2013 IEEE 17th Int. Conf. on Computer Supported Cooperative Work in Design, 2013, pp. 293-298. CrossRef

Hossain M.S., Hossain S.K.A., Alamri A., et al.: Ant-based services election framework for a smart home monitoring environment, Multimed. Tools. Appl., 2013, 67, pp. 433-453. CrossRef

Pop C.B., Chifu V.R., Salomie I., et al.: Ant-inspired technique for automatic web service composition and selection. 12th Int. Symp. on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2010, pp. 449-455. CrossRef

Wang R., Ma L., Chen Y.P.: The application of ant colony algorithm in web service selection. 2010 Int. Conf. on Computational Intelligence and Software Engineering (CiSE), Wuhan, China, 2010, pp. 1-4. CrossRef

Yu Q., Chen L., Li B. Ant colony optimization applied to web service compositions in cloud computing, Computers & Electrical Engineering Vol. 41, 2015, pp. 18-27. CrossRef

Fang Q., Peng X., Liu Q., et al.: A global QoS optimizing web service selection algorithm based on MOACO for dynamic web service composition. Int. Forum on Information Technology and Application, Chengdu, China, 2009, v.1, pp. 37-42. CrossRef

Zhang W., Chang C.K., Feng T.M., et al.: Qos- based dynamic web service composition with ant colony optimization. IEEE 34th Annual Computer Software and Applications Conf., Seoul, Korea, 2010, pp. 493-502. CrossRef

Dahan F., Hindi K., Ghoneim A., et al.: An Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition, IEEE Access ,Vol.9, pp. 34098-4111, 2021. CrossRef

Yang Z., Shang C., Liu Q., et al.: A dynamic web services composition algorithm based on the combination of ant colony algorithm and genetic algorithm, J. Comput. Inf. Syst., vol. 6, no. 8, pp. 2617-2622, 2010.

Yang Y., Yang B., Wang S., et al.: A dynamic antcolony genetic algorithm for cloud service composition optimization, Int. J. Adv. Manuf. Technol., vol. 102, (1-4), pp. 355-368, 2019. CrossRef

Liu Z.-Z., Wang Z.-J., Zhou X.-F, et al.: A new algorithm for QoS-aware composite web services selection, in Proc. 2nd Int. Workshop Intell. Syst. Appl., May 2010, pp. 1-4. CrossRef

Alayed H., Dahan F., Alfakih T., et al.: Enhancement of ant colony optimization for QoS-aware web service selection, IEEE Access, vol. 7, pp. 97041- 97051, 2019. CrossRef

Yang Z.K., Shang C.W., Liu Q.T., et al.: A dynamic web services composition algorithm based on the combination of ant colony algorithm and genetic algorithm, J. Comput. Inf. Syst., 2010, 6, (8), pp. 2617-2622.

Yang Y., Yang B., Wang S., et al.: A dynamic antcolony genetic algorithm for cloud service composition optimization, Int. J. Adv. Manuf. Technol., 2019,102, (1-4), pp. 355-368. CrossRef

Liu Z., Wang Z., Zhou X., et al.: A new algorithm for QoS-aware composite web services selection. 2nd Int. Workshop on Intelligent Systems and Applications (ISA), Kyiv, 2010, pp. 1-4. CrossRef

Bei L., Wenlin L., Xin S., et al.: An improved ACO based service composition algorithm in multi‑cloud networks. Journal of Cloud Computing (2024) Vol.13, №1, pp. 1-12. CrossRef

Jiang B., Qin Y., Yang Y., et al.: Web Service Composition Optimization with the Improved Fireworks Algorithm. Mobile Information Systems. Volume 2022, pp. 1-13. CrossRef

Peng S., Guo T.: Multi-Objective Service Composition Using Enhanced Multi-Objective Differential Evolution Algorithm. Computational Intelli- gence and Neuroscience. 2023(1), pp. 1-10. CrossRef

Jafarpour N., Khayyambashi M.: A new approach for QoS-aware web service composition based on harmony search algorithm. 11th IEEE Int. Symp. on Web Systems Evolution, 2009, pp. 75-78. CrossRef

Ghobaei-Arani M., Rahmanian A., et al.: CSA-WSC: cuckoo search algorithm for web service composition in cloud environments, Soft Comput., 2018, 22, (24), pp. 8353-8378. CrossRef

Dahan F. An Improved Whale Optimization Algorithm for Web Service Composition: Axioms 2022, 11, 725. pp. 1-14. CrossRef

Gavvala S., Jatoth C., et al.: Qos-aware cloud service composition using eagle strategy, Future Gener. Comput. Syst., 2019, 90, pp. 273-290. CrossRef

Dahan F. Neighborhood Search Based Improved Bat Algorithm for Web Service Composition. Computer Systems Science & Engineering CSSE, 2023, vol.45, no.2 pp.1343-1356. CrossRef

Dahan F., Hindi K.E.: Enhanced artificial bee colony algorithm for QoS-aware web service selection problem, Computing, 2017, 99, (5), pp. 507-517. CrossRef

Pop C. B., Chifu V. R., Salomie I., et al.: Cuckoo-inspired hybrid algorithm for selecting the optimal web service composition, in Proc. IEEE 7th Int. Conf. Intell. Comput. Commun. Process., Aug. 2011, pp. 33-40. CrossRef

Chifu V. R, Pop C. B., Salomie I., et al.: Hybrid honey bees mating optimization algorithm for identifying the near-optimal solution in web service composition, Comput. Informat., vol. 36, no. 5, pp. 1143-1172, 2017. CrossRef

Yang H., Xue F., Zhu H., et al.: Web service composition optimization based on adaptive mutant beetle swarm, J. Phys., Conf. Ser., vol. 1651, no. 1, Nov. 2020, pp. 347-501. CrossRef

Dahan F., Alwabel A.: Artificial Bee Colony with Cuckoo Search for Solving Service Composition. Intelligent Automation & Soft Computing IASC, 2023, vol.35, no.3 pp. 3385-3402. CrossRef

Ahanger T. A., Dahan F.: Hybridizing Artificial Bee Colony with Bat Algorithm for Web Service Composition. Computer Systems Science and En- gineering CSSE, 2023, vol.46, no.2, pp. 2429-2445. CrossRef

Peng S., Wang H., Yu Q.: Multi-clusters adaptive brain storm optimization algorithm for QoS-aware service composition, IEEE Access, vol. 8, pp. 48822-48835, 2020. CrossRef




DOI: https://doi.org/10.15407/pp2025.03.003

Refbacks

  • There are currently no refbacks.