DOI: https://doi.org/10.15407/pp2021.04.036

60 Years of Databases (part two)

V.A. Reznichenko

Abstract


The article provides an overview of research and development of databases since their appearance in the 60s of the last century to the present time. The following stages are distinguished: the emergence formation and rapid development, the era of relational databases, extended relational databases, post-relational databases and big data. At the stage of formation, the systems IDS, IMS, Total and Adabas are described. At the stage of rapid development, issues of ANSI/X3/SPARC database architecture, CODASYL proposals, concepts and languages of conceptual modeling are highlighted. At the stage of the era of relational databases, the results of E. Codd’s scientific activities, the theory of dependencies and normal forms, query languages, experimental research and development, optimization and standardization, and transaction management are revealed. The extended relational databases phase is devoted to describing temporal, spatial, deductive, active, object, distributed and statistical databases, array databases, and database machines and data warehouses. At the next stage, the problems of post-relational databases are disclosed, namely, NOSQL-, NewSQL- and ontological databases. The sixth stage is devoted to the disclosure of the causes of occurrence, characteristic properties, classification, principles of work, methods and technologies of big data. Finally, the last section provides a brief overview of database research and development in the Soviet Union.

Prombles in programming 2021; 4: 36-61


Keywords


Database types; hierarchical; network; relational; navigational; temporal; spatial; spatio-temporal; spatio-network; moving objects; deductive; active; object-oriented; object-relational; distributed; parallel; arrays; statistical; multidimensional

Full Text:

PDF (Ukrainian)

References


Snodgrass R.T., Ahn I. A taxonomy of time databases. ACM SIGMOD Record, 1985,Vo. 14, No 4, pp. 236-246

https://doi.org/10.1145/971699.318921

Bubenko J.A, Jr. The temporal dimension in information modeling. Technical Report RC 6187 #26479, IBM Thomal J. Watson Research Center, Nov. 1976

Bubenko J.A. Jr. The Temporal Dimension in Information Processing. In: Proceedings of IFIP WG 2.6 Working Conference on Architecture and Models in Data Base Management Systems, G M Nijssen, Ed, North Holland, 1977, pp. 93-118

Breutmann B., Falkenberg E., Mauer R. "CSL: a language for defining conceptual schemas". in Proceedings of the Database Architecture Conference, Venice, June 1979, pp. 237-256

Hammer M., McLeod D. Database Descitption with SDM A Semantic Database Model ACM Transactions on Database Systems, 6, No 3, Sep 1981, pp 351-386

https://doi.org/10.1145/319587.319588

Klopprogge M.R. TERM: An Approach to Include the Time Dimension in the Entity-Relationship Model. In: Proceedings of the Second International Conference on the Entity Relationship Approach, Washington, DC, pp. 477-512 (October 1981)

Anderson,T.L. Modeling Time at the Conceptual Level. In Improving Database Usability and Responsiveness, Ed. P. Scheuermann Jerusalem, Israel Academic Press, 1982, pp. 273-297

Codd, E.F. Extending the database relational model to capture more meaning. ACM Transactions on Database Systems, Vol. 4, No. 4, Dec 1979, pp 397-434.

https://doi.org/10.1145/320107.320109

Sernadas A Temporal aspects of logical procedure definition. Information Systems, 1980, vol. 5, No 3, pp. 167-187

https://doi.org/10.1016/0306-4379(80)90009-5

Clifford, J. and Warren D.S. Formal semantics for time in databases. ACM Transactions on Database Systems, vol. 8, No 2, June 1983, pp. 214-254.

https://doi.org/10.1145/319983.319986

Ariav G. A temporally oriented data model. ACM Transactions on Database Systems (TODS), 1986 vol. 11, No 4, pp. 499-527

https://doi.org/10.1145/7239.7350

Ariav G., Morgan H.L., Zisman M.D. MDM: Embedding the time dimension in information systems‏, Technical Report 82-03-01 Depart- ment of Decision Sciences, Wharton School, University of Pennsylvania, 1982

Ben-Zvi J. "The Time Relational Model", PhD thesis, Computer Science Dept., UCLA, 1982.

Gadia S. Ben-Zvi's Pioneering Work in Relational Temporal Databases. In: Tansel A. et al. Temporal Databases: Theory, Design, and Implementation (Redwood City, CA: The Benjamin/Cumming s Publishing Company, 1993). pp. 202-207.

Jones S., Mason P.J. Handling the Time Dimension in a Data Base. In Proceedings of the Inlernational Conference on Data Bases, Eds.

S.M. Deen and P Hammersley British Computer Society University of Aberdeen, Heyden, July 1980, pp 65-83.

Snodgrass R. The temporal query language TQuel. In PODS '84: Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems.

Allen J.F. "Maintaining knowledge about temporal intervals". Communications of the ACM, Nov. 1983, 26(11. pp.832-843.

https://doi.org/10.1145/182.358434

Clifford J., Dyreson C.E., Isakowitz T., Jensen C.S., Snodgrass R.T. On the semantics of "now.". ACM Trans Database Syst. 1997; 22(2), pp.171-214.

https://doi.org/10.1145/249978.249980

Lorentzos N.A., Johnson R.G. TRA a model for a temporal relational algebra. In: Rolland C, Bodart F, Leonard M, editors. Temporal aspects in information systems. North-Holland; 1988. p. 203-215.

Lorentzos N.A., Johnson R.G. Extending relational algebra to manipulate temporal data. Inf Syst. 1988;13(3):289-296.

https://doi.org/10.1016/0306-4379(88)90040-3

Tansel A.U. Adding time dimension to relational model and extending relational algebra. Information Systems. 1986;11(4):343-355.

https://doi.org/10.1016/0306-4379(86)90014-1

Tansel A.U. Temporal relational data model. IEEE Transactions on Knowledge and Data Engineering, 1997, 9(3): 464-479

https://doi.org/10.1109/69.599934

Tansel A.U., Atay C.E. Nested bitemporal relational algebra. Conference: Computer and Information Sciences - ISCIS 2006, 21th International Symposium, Istanbul, Turkey, November 1-3, 2006, Proceedings, pp. 622-633.

https://doi.org/10.1007/11902140_66

Navathe S.B., Ahmed R. A temporal relational model and a query language. Information Sci- ences: an International Journal. 1989;49(1- 3):147-175.

https://doi.org/10.1016/0020-0255(89)90026-1

Gadia S.K. A homogeneous relational model and query languages for temporal databases. ACM Trans Database Syst. 1988;13(4):418- 448.

https://doi.org/10.1145/49346.50065

Clifford J, Croker A. The historical relational data model (HRDM. and algebra based on lifespans. In: Proceedings of the 3rd International Conference on Data Engineering; 1987. p. 528-537.

https://doi.org/10.1109/ICDE.1987.7272420

Gregersen H., Jense C.S. Temporal Entity-Relationship Models-a Survey. IEEE Transactions on Knowledge and Data Engineering, 1999, Vol. 11, No. 3, pp. 464 - 497.

https://doi.org/10.1109/69.774104

Arora S. A comparative study on temporal database models: A survey, 2015 International Symposium on Advanced Computing and Communication (ISACC), 2015, pp. 161-167.

https://doi.org/10.1109/ISACC.2015.7377335

Gandhi L. Literature survey of temporal data models. International Journal of Latest Trends in Engineering and Technology. 2017, Vol. 8 No. 4-1, pp.294-300.

Vianu V. Dynamic functional dependencies and database aging. J ACM. 1987;34(1):28- 59.

https://doi.org/10.1145/7531.7918

Wijsen J. Design of temporal relational databases based on dynamic and temporal functional dependencies. In: Clifford J, Tuzhilin A, editors. Temporal databases. Workshops in computing. Berlin/Heidelberg/New York: Springer; 1995. p. 61-76.

https://doi.org/10.1007/978-1-4471-3033-8_4

Wijsen J. Temporal FDs on complex objects. ACM Trans Database Syst. 1999;24(1):127- 176.

https://doi.org/10.1145/310701.310715

Wijsen J. Reasoning about qualitative trends in databases. IInformation Systems. 1998;23(7):463-487.

https://doi.org/10.1016/S0306-4379(98)00023-4

Wang X.S., Bettini C., Brodsky A., Jajodia S. Logical design for temporal databases with multiple granularities. ACM Trans Database Syst. 1997;22(2):115-170.

https://doi.org/10.1145/249978.249979

Baudinet M., Chomicki J., Wolper P. Constraint generating dependencies. J Comput Syst Sci. 1999;59(1):94-115.

https://doi.org/10.1006/jcss.1999.1632

Jensen C.S., Snodgrass R.T. Temporal specialization and generalization. IEEE Trans Knowl Data Eng. 1994;6(6):954-974.

https://doi.org/10.1109/69.334885

Sarda N.L. Algebra and query language for a historical data model. The Computer Journal. 1990;33(1):11-18.

https://doi.org/10.1093/comjnl/33.1.11

Lorentzos N.A., Johnson R.G. Extending relational algebra to manipulate temporal data. Information Systems. 1988;13(3):289-296.

https://doi.org/10.1016/0306-4379(88)90040-3

Tuzhilin A, Clifford J. A temporal relational algebra as basis for temporal relational completeness. In: Proceedings of the 16th International Conference on Very Large Data Bases; 1990. p. 13-23.

Tansel A.U., Arkun M.E. HQUEL, a Query Language for Historical Relational Databases. SSDBM'86: Proceedings of the 3rd international workshop on Statistical and scientific database management,1986 pp. 135-142.

Tansel A.U., Arkun M.E, Ozsoyoglu G. Time-by-example query language for historical databases. IEEE Trans Softw Eng. 1989;15(4):464-478.

https://doi.org/10.1109/32.16597

Snodgrass S. The temporal query language TQUEL. ACM Trans Database Syst. 1987;12(2): 247-298.

https://doi.org/10.1145/22952.22956

Lorentzos N.A., Mitsopoulos Y.G. SQL extension for interval data. IEEE Trans Knowl Data Eng. 1997;9(3):480-99.

https://doi.org/10.1109/69.599935

Sarda N.L. Extensions to SQL for historical databases. IEEE Trans Knowl Data Eng. 1990;2(2):220-230.

https://doi.org/10.1109/69.54721

Navathe S.B., Ahmed R. TSQL: a language interface for history databases. In: Rolland C, Bodart F, Leonard M, editors. Temporal aspects in information systems. North-Holland; 1988. p. 109-122.

Toman D. Point-based temporal extensions of SQL and their efficient implementation. In: Etzion O, Jajodia S, Sripada S, editors. Temporal databases: research and practice. Springer,; 1997, p. 211-

https://doi.org/10.1007/BFb0053704

Böhlen M.H., Jensen C.S., Snodgrass R.T. Temporal statement modifiers. ACM Trans Database Syst. 2000;25(4):407-456.

https://doi.org/10.1145/377674.377665

Snodgrass R.T. editor. In: Proceedings of the ARPA/NSF International Workshop on an In- frastructure for Temporal Databases, 1993.

Snodgrass R.T., Ahn I., Ariav G., Batory D.S., Clifford J., Dyreson C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W., Kline N., Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F., Segev A., Soo M.D., Sripada S.M. TSQL2 language specification. ACM SIGMOD Rec. 1994;23(1):65-86.

https://doi.org/10.1145/181550.181562

Snodgrass R.T., Ahn I., Ariav G., Batory D.S., Clifford J., Dyreson C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W., Kline N., Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F., Segev A., Soo M.D., Sripada S.M. A TSQL2 tutorial. ACM SIGMOD Rec. 1994;23(3):27-33

https://doi.org/10.1145/187436.187449

Snodgrass R.T. Editor. The TSQL2 temporal query language. Kluwer Academic; 1995.

https://doi.org/10.1007/978-1-4615-2289-8

Snodgrass R.T., Böhlen M.H., Jensen C.S., Steiner A. Adding valid time to SQL/temporal. Change proposal, ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD- 146r2, Nov 1996.

Snodgrass R.T., Böhlen M.H., Jensen C.S., Steiner A. Adding transaction time to SQL/ temporal. Change proposal, ANSI X3H2- 96-502r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-147r2, Nov 1996.

Snodgrass R.T., Böhlen M.H., Jensen C.S., Steiner A. Transitioning temporal support in TSQL2 to SQL3. In: Ezion O, Jajodia S, Sripada SM, editors. Temporal databases: research and practice. Berlin: Springer; 1998. p. 150-194.

https://doi.org/10.1007/BFb0053702

Kulkarni K, Michels J-E. Temporal features in SQL:2011. ACM SIGMOD Rec. 2012;41(3):34-43.

https://doi.org/10.1145/2380776.2380786

Reznichenko V.A. Temporal SQL:2011 (Rus). Software Engineering, 2013, vol. 15, No 3-4, pp. 48-65.

Worboys MF, Duckham M. GIS: a computing perspective. Boca Raton: CRC press; 2004.

https://doi.org/10.4324/9780203481554

Shekar S, Chawla S. Spatial databases: a tour. Englewood Cliffs: Prentice-Hall; 2003.

The Open Geospatial Consortium Date: 2011- 12-19 OGC Reference Model. 44 p.

Open Geospatial Consortium Inc. Date: 2011- 05-28 Editor: John R. Herring OpenGIS® Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture. 93 p.

Open Geospatial Consortium Inc. Date: 2010- 08-04 Editor: John R. Herring OpenGIS® Implementation Standard for Geographic information - Simple feature access - Part 2: SQL option. 111 p.

Tomlin C.D. A map algebra. In: Proceedings of the Harvard Computer Graphic Conference; 1983.

Chan K.K.L., Tomlin C.D. Map Algebra as a Spatial Language. In D. M. Mark and A. U. Frank, editors, Cognitive and Linguistic Aspects ofGeographic Space, pp. 351-360.Kluwer Academic Publishers, Dordrecht, 1991.

https://doi.org/10.1007/978-94-011-2606-9_19

Scholl M., Voisard A. Thematic map modeling. In: Proceedings of the 1st International Symposium on Advances in Spatial Databases; 1989. p. 167-190.

https://doi.org/10.1007/3-540-52208-5_27

Güting R.H. Geo-relational algebra: a model and query language for geometric database systems. In: Advances in Database Technology, Proceedings of the 1st International Conference on Extending Database Technology; 1988. p. 506-527.

https://doi.org/10.1007/3-540-19074-0_70

Egenhofer M.J. Spatial SQL: a query and presentation language. IEEE Trans Knowl Data Eng. 1994;6(1): 86-95.

https://doi.org/10.1109/69.273029

Güting R.H, Schneider M. Realm-based spatial data types: the ROSE algebra. VLDB J. 1995;4(2):243-286.

https://doi.org/10.1007/BF01237921

Cui Z., A.G. Cohn & D.A. Randell, Qualitative and Topological Relationships in Spatial Databases. 3rd Int. Symp. on Advances in Spatial Databases (SSD'93), LNCS 692, 296- 315, 1993.

https://doi.org/10.1007/3-540-56869-7_17

Güting RH. An introduction to spatial data- base systems. VLDB J. 1994;3(4):357-99.

https://doi.org/10.1007/BF01231602

Rigaux P, Scholl M, Voisard A. Spatial databases - with applications to GIS. San Francisco: Morgan Kaufmann Publishers; 2002.

Clementini E., Di Felice P. A model for representing topological relationships between complex geometric features in spatial databases. Inf Sci. 1996; 90(1-4):121-136.

https://doi.org/10.1016/0020-0255(95)00289-8

Schneider M. Spatial data types for database systems - finite resolution geometry for geographic information systems, vol. LNCS 1288. Berlin/New York: Springer; 1997.

https://doi.org/10.1007/BFb0028319

Schneider M, Behr T. Topological relationships between complex spatial objects. ACM Trans Database Syst. 2006;31(1):39-81.

https://doi.org/10.1145/1132863.1132865

Worboys M.F, Bofakos P. A canonical model for a class of areal spatial objects. In: Proceedings of the 3rd International Symposium on Advances in Spatial Databases; 1993. p. 36-52.

https://doi.org/10.1007/3-540-56869-7_3

Egenhofer M.J. & R.D. Franzosa, Point-Set Topological Spatial Relations. Int. Journal of Geographical Information Systems, 5(2), 161- 174, 1991.

https://doi.org/10.1080/02693799108927841

Schneider M.,Weinrich B. An abstract model of three dimensional spatial data types. In: Proceedings of the 12th ACM International Symposium on Geographic Information Systems; 2004. p. 67-72.

https://doi.org/10.1145/1032222.1032234

Erwig M., Schneider M. Partition and conquer. In: Proceedings of the third international conference on spatial information theory; 1997. p. 389-408.

https://doi.org/10.1007/3-540-63623-4_63

Güting R.H., Schneider M. Realms: A Foundation for Spatial Data Types in Database Systems. 3rd Int. Symp. on Advances in Spatial Databases, LNCS 692, 14-35, 1993.

https://doi.org/10.1007/3-540-56869-7_2

Cicerone S., Di Felice P. Cardinal directions between spatial objects: the pairwise-consistency problem. Inf Sci. 2004;164(1- 4):165-88.

https://doi.org/10.1016/j.ins.2003.05.008

Clementini E., Billen R. Modeling and computing ternary projective relations be- tween regions. IEEE Trans Knowl Data Eng. 2006;18(6):799-814.

https://doi.org/10.1109/TKDE.2006.102

Freksa C. Using orientation information for qualitative spatial reasoning. In: Proceedings of the International Conference on Spatial In- formation Theory; 1992. p. 162-78.

https://doi.org/10.1007/3-540-55966-3_10

Goyal R. Similarity assessment for cardinal directions between extended spatial objects. PhD Thesis, Department of Spatial Informa- tion Science and Engineering, University of Maine; 2000.

https://doi.org/10.1007/3-540-47724-1_3

Hernández D. Qualitative representation of spatial knowledge. LNCS, vol. 804. Berlin: Springer; 1994.

https://doi.org/10.1007/BFb0020328

Ligozat G. Reasoning about cardinal directions. J Visual Lang Comput. 1998;9(1):23-44.

https://doi.org/10.1006/jvlc.1997.9999

Liu W., Li S. Reasoning about cardinal directions between extended objects: the NP-hardness result. Artif Intell. 2011;175(18): 2155-2169.

https://doi.org/10.1016/j.artint.2011.07.005

Liu W., Zhang X, Li S., Ying M. Reasoning about cardinal directions between extended objects. Artif Intell. 2010;174(12-13):951- 983

https://doi.org/10.1016/j.artint.2010.05.006

Mukerjee A, Joe G. A qualitative model for space. In: Proceedings of 7th National Con- ference on AI; 1990. p. 721-727.

Papadias D. Relation-based representation of spatial knowledge. PhD Thesis, Department of Electrical and Computer Engineering, Na- tional Technical University of Athens; 1994.

Peuquet D.J., Ci-Xiang Z. An algorithm to de- termine the directional relationship between arbitrarilyshaped polygons in the plane. Pattern Recognit. 1987;20(1):65-74.

https://doi.org/10.1016/0031-3203(87)90018-5

Skiadopoulos S, Koubarakis M. Composing cardinal direction relations. Artif Intell. 2004;152(2):143-71.

https://doi.org/10.1016/S0004-3702(03)00137-1

Skiadopoulos S, Koubarakis M. On the consistency of cardinal directions constraints. Ar- tif Intell. 2005;163(1):91-135.

https://doi.org/10.1016/j.artint.2004.10.010

Skiadopoulos S, Giannoukos C, Sarkas N, Vassiliadis P, Sellis T, Koubarakis M. Computing and managing cardinal direction relations. IEEE Trans Knowl Data Eng. 2005;17(12):1610-23.

https://doi.org/10.1109/TKDE.2005.192

Skiadopoulos S, Sarkas N, Sellis T, Koubarakis M. A family of directional relation mod- els for extended objects. IEEE Transactions on Knowledge and Data Engineering, vol.17, No. 12, 2005, pp 1610-1623.

https://doi.org/10.1109/TKDE.2005.192

Shekhar S., Liu X. Direction as a Spatial Object: A Summary of Results. In R. Laurini, K. Makki, and N. Pissinou, editors, ACM-GIS '98, Proceedings of the 6th international symposium on Advances in Geographic Information Systems, November 6-7, 1998, Washington, DC, USA, pp. 69-75. ACM, 1998.

https://doi.org/10.1145/288692.288706

Thanasis Hadzilacos, Nectaria Tryfona. An Extended Entity-Relationship Model for Geo- graphic Applications. ACM SIGMOD Re- cord, Vol. 26, No. 3, 1997, pp. 24-29.

https://doi.org/10.1145/262762.262766

Shekhar S., Vatsavai R.R., Chawla S., Burke

T.E. Spatial pictogram enhanced conceptual data models and their translation to logical data models. In: ISD '99: Selected Papers from the International Workshop on Integrated Spatial Databases, Digital Inages and GIS, 1999 pp. 77-104.

https://doi.org/10.1007/3-540-46621-5_6

Gandhi V., Kang J., Shekhar S. Spatial Databases. Technical Report; 07-020, 2007. Retrieved from the University of Minnesota Digital Conservancy, https://hdl.handle. net/11299/215734

https://doi.org/10.21236/ADA473104

Frederico T. Fonseca, Max J. Egenhofer. Ontology-driven geographic information systems. In Claudia Bauzer Medeiros, editor, ACM-GIS '99, Proceedings of the 7th International Symposium on Advances in Geographic Informa- tion Systems, November 2-6, 1999, Kansas City, USA, pages 14-19. ACM, 1999.

https://doi.org/10.1145/320134.320137

Simon Jonathan David Cox, Chris Little. Time Ontology in OWL. Technical Report • July 2016. - https://www.researchgate.net/publica- tion/305810003_Time_Ontology_in_Owl

Bennacer N., Aufaure M.A., Cullot N., Sotnykova A., Vangenot C. (2004). Representing and reasoning for spatiotemporal ontology in- tegration. In R. Meersman, Z. Tari, & A. Corsaro (Eds.), OTM int. conf. on the move to meaningful internet systems (pp. 30-31). Springer.

https://doi.org/10.1007/978-3-540-30470-8_14

Baglioni M., Masserotti M.V., Renso C., Spinsanti L. (2007). Building geospatial ontologies from geographical databases. In F. Fonseca, M. A. Rodríguez, & S. Levashkin (Eds.), International conference on geospatial semantics (pp. 195-209). Springer.

https://doi.org/10.1007/978-3-540-76876-0_13

Hogenboom F., Borgman B., Frasincar, F. & Kaymak U. (2010). Spatial knowledge representation on the semantic web. Proceedings of the IEEE 4th International Conference on Semantic Computing (ICSC 2010), pp. 252-259, September 2010.

https://doi.org/10.1109/ICSC.2010.31

Parent C., Spaccapietra S., Zimányi E. (2006). Conceptual modeling for traditional and spatio-temporal applications: The MADS approach. Springer.

Spaccapietra S., Cullot N., Parent C., Vangenot, C (2004). On spatial ontologies. Database Laboratory, Swiss Federal Institute of Technology. 9 p.

Egenhofer M.J. Toward the semantic geospatial web. Proceedings of the Tenth ACM International Symposium on Advances in Geographic Information Systems, 2002, pp. 1-4.

https://doi.org/10.1145/585147.585148

Fonseca F., Rodriguez M.A. From geopragmatics to derivation ontologies: New directions for the geospatial semantic web. Transactions in GIS, 2007, vol. 11, No. 3, pp. 313-316.

https://doi.org/10.1111/j.1467-9671.2007.01047.x

Subbiah G., Alam A., Khan L. Thuraisingham

B. An integrated platform for secure geospatial information exchange through the semantic web. Proceedings of ACM Workshop on Secure Web Services (SWS), 2006, George Mason University, Fairfax, VA, USA

Curtin K., Noronha V., Goodchild M., Grise

S. ARCGIS transportation model (UNE- TRANS), UNETRANS data model reference, 2003.

Guting R.H. GraphDB: modeling and querying graphs in databases. In: VLDB '94: Pro- ceedings of the 20th International Conference on Very Large Data Bases, 1994, pp.297-308

Shekhar S., Liu D.R. CCAM: a connectivity- clustered access method for networks and net- work computations. IEEE Trans Knowl Data Eng. 1997;9(1): 102-119.

https://doi.org/10.1109/69.567054

Jensen C.S., Kolar J., Pederson T.B., Timko I.Nearest neighbor queries in road networks. In: GIS '03: Proceedings of the 11th ACM In- ternational Symposium on Advances in Geographic Information System; 2003. pp. 1-8.

https://doi.org/10.1145/956676.956677

Papadias D, Zhang J, Mamoulis N, Tao Y. Query processing in spatial network data- bases. In: VLDB '03: Proceedings of the 29th international conference on Very large data bases - Vol. 29, 2003, pp. 802-813.

https://doi.org/10.1016/B978-012722442-8/50076-8

Miller H.J., Shaw S.L. GIS-T data models, geographic information systems for transportation: principles and applications. Oxford: Oxford University Press; 2001.

Anez J., de la Barra T., Perez B. Dual graph representation of transport networks. Transp Res. 1996;30(3):209-216.

https://doi.org/10.1016/0191-2615(95)00024-0

Winter S. Modeling costs of turns in route planning. GeoInformatica. 2002; 6(4):345- 361.

https://doi.org/10.1023/A:1020853410145

Hoel E.G., Heng W.L., Honeycutt D. High performance multimodal networks. In: Proceedings of the 9th International Symposium on Advances in Spatial and Temporal Data- bases; 2005, pp. 308-327.

https://doi.org/10.1007/11535331_18

Kohler E., Langtau K., Skutella M. Time-expanded graphs for flow-dependent transit times. In: Proceedings of the 10th Annual Eu- ropean Symposium on Algorithms; 2002, pp. 599-611.

https://doi.org/10.1007/3-540-45749-6_53

George B., Shekhar S. Spatio-temporal network databases and routing algorithms: a summary of results. In: Proceedings of the 10th International Symposium on Advances in Spatial and Temporal Databases; 2007. p. 460-477.

https://doi.org/10.1007/978-3-540-73540-3_26

George B., Shekhar S. Time-aggregated graphs for modeling spatio-temporal networks - an extended abstract. In: Proceedings of the 25th International Conference on Conceptual Modeling; 2006 p. 85-99.

https://doi.org/10.1007/11908883_12

Tansel A.U, Clifford J., Gadia S., Jajodia S., Segev A., Snodgrass R.T, editors. Temporal databases: theory, design, and implementation. Benjamin-Cummings Publishing Co., 1993, 633 p.

Worboys M.F. A unified model for spatial and temporal information. Comput J. 1994;37(1): 25-34.

https://doi.org/10.1093/comjnl/37.1.26

Erwig M., Güting R.H., Schneider M., Vazirgiannis M. Spatio-temporal data types: an approach to modeling and querying moving objects in databases. Geoinformatica. 1999;3(3):265-291.

https://doi.org/10.1023/A:1009805532638

Erwig M., Schneider M. Developments in spatiotemporal query languages. In: Proceed- ings of the IEEE International Workshop on Spatio-Temporal Data Models and Languages; 1999. p. 441-449.

https://doi.org/10.1109/DEXA.1999.795206

Güting R.H., Schneider M. Moving objects databases. San Francisco: Morgan Kaufmann; 2005.

Erwig M., Schneider M. Spatio-temporal predicates. IEEE Trans Knowl Data Eng. 2002; 14(4):1-42.

https://doi.org/10.1109/TKDE.2002.1019220

Jitkajornwanich K., Pant N., Fouladgar M., Elmasri R. A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using SQL ecosystem and deep learning, Journal of Information and Telecommunication, 2020, 4:4, 524-559.

https://doi.org/10.1080/24751839.2020.1774153

Sistla A. P., Wolfson O., Chamberlain S., Dao S. Modeling and Querying Moving Objects. ICDE '97: Proceedings of the Thirteenth In- ternational Conference on Data Engineering, 1997, pp. 422-432.

Wolfson O., Chamberlain S., Dao S., Jiang L., Mendez G. Cost and imprecision in modeling the position of moving objects. In: Proceed- ings of the 14th International Conference on Data Engineering; 1998. p. 588-596.

Frank A., Grumbach S., Güting R.H., Jensen C.S., Koubarakis M., Lorentzos N., Manolopoulos Y. Chorochronos: a research network for spatiotemporal database systems. ACM SIGMOD Record, Vol. 28I, No. 3,. 1999, pp 12-21.

https://doi.org/10.1145/333607.333609

Grumbach S., Rigaux Ph., Segoufin L. The DEDALE system for complex spatial queries SIGMOD '98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 1998 pp. 213-224.

https://doi.org/10.1145/276304.276324

Vazirgiannis M., Wolfson O. A Spatiotemporal Model and Language for Moving Objects on Road Networks. SSTD '01: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, 2001, pp. 20-35.

https://doi.org/10.1007/3-540-47724-1_2

Güting R.H., Victor Teixeira de Almeida, Zhiming Ding. Modeling and querying moving objects in networks The International Journal on Very Large Data Bases, 2006, vol. 15, No. 2, pp 165-190.

https://doi.org/10.1007/s00778-005-0152-x

Belussi A., E. Bertino & B. Catania, Manipulating Spatial Data in Constraint Databases. 5th Int. Symp. on Advances in Spatial Data- bases (SSD'97), LNCS 1262, 115-141, 1997.

https://doi.org/10.1007/3-540-63238-7_27

Rigaux P., Scholl M., Segoufin L., Grumbach

S. Building a constraint-based spatial database system: model, languages, and implementation. Inf Syst. 2003;28(6):563-595.

https://doi.org/10.1016/S0306-4379(02)00041-8

Erwig M., Güting R.H., Schneider M., Vazirgiannis M. Spatio-temporal data types: an approach to modeling and querying moving objects in databases. Geoinformatica. 1999;3(3):265-291.

https://doi.org/10.1023/A:1009805532638

Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Schneider M., Vazirgiannis M. A foundation for representing and querying moving objects. ACM Trans Database Syst. 2000;25(1): pp. 1-42.

https://doi.org/10.1145/352958.352963

Sistla A.P., Wolfson O., Chamberlain S., Dao

S. Querying the uncertain position of moving objects. In: Etzion O, Jajodia S, Sripada S, editors. Temporal databases: research and practice, LNCS, vol. 1399. Berlin: Springer; 1998. p. 310-37.

https://doi.org/10.1007/BFb0053708

Trajcevski G., Wolfson O., Hinrichs K., Chamberlain S. Managing uncertainty in moving objects databases. ACM Trans Data- base Syst. 2004;29(3): 463-507.

https://doi.org/10.1145/1016028.1016030

Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Schneider M., Vazirgiannis M. A foundation for representing and querying moving objects in databases. ACM Trans Database Syst. 2000;25(1):1-42.

https://doi.org/10.1145/352958.352963

Pelekis N, Theodoridis Y. Mobility data management and exploration. New York: Spring- er; 2014.

https://doi.org/10.1007/978-1-4939-0392-4

Renso C, Spaccapietra S, Zimányi E. Mobility data: modeling, management, and understanding. Cambridge, UK: Cambridge University Press; 2013.

https://doi.org/10.1017/CBO9781139128926

Chandra A.K., Harel D. Horn clauses and the fixpoint hierarchy Proc. ACM Symp. on the Principles of Database Systems (PODS) (1982), pp. 158-163.

https://doi.org/10.1145/588111.588137

Porter H.H., Oct. 1985. Optimizations to Earley deduction for DATALOG programs. Available at: http://www.cs.pdx.edu/~harry/ earley/datalog.pdf

Afrati C.H. Papadimitriou Ch. Papageorgiou

G. Roussou A. Sagiv Y, Ullman J.D. 1986. Convergence of sideways query evaluation. In ACM Symposium on Principles of Database Systems, pp. 24-30.

Bancilhon, R. Ramakrishnan. 1986. An ama- teur's introduction to recursive query processing strategies. In Proc. of the 1986 ACM SIG- MOD International Conference on Management of Data, SIGMOD '86, pp. 16-52.

https://doi.org/10.1145/16894.16859

Hafner C.D., Godden K. Portability of syntax and semantics in DATALOG. ACM Trans. on Information Systems, 1985, 3(2):141-164.

https://doi.org/10.1145/3914.3982

Zaniolo, C. [1986]. "Safety and compilation of nonrecursive Horn clauses", Proc. First Intl. Conf. on Expert Database Systems, pp. 167- 178, Benjamin-Cummings, Menlo Park, CA.

Ramakrishnan R., Bancilhon F., Silberschatz

A. [1987]. "Safety of recur sive Horn claus- es with infinite relations," Proc. 5ixth ACM Symp. on Principles of Database Systems, pp. 328-339.

Bancilhon F., Ramakrishnan R. An amateur's introduction to recursive query processing strategies. SIGMOD Record, v. 15, no.2, 1986, pp. 16-52.

https://doi.org/10.1145/16856.16859

Apt K.R., Blair H., Walker A., Towards a Theory of Declarative Knowledge, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, San Mateo, CA, 1988, pp. 89-148.

https://doi.org/10.1016/B978-0-934613-40-8.50006-3

Chandra A.K., Harel D. Horn Clause Queries and Generalizations, J. Logic Programming 2(1):1-15 (Apr. 1985).

https://doi.org/10.1016/0743-1066(85)90002-0

Gelfond M., Lifschitz V. The Stable Model Semantics for Logic Programming, in: Proceedings of the Fifth International Conference and Symposium on Logic Programming, 1988.

Przymusinska H., Przymusinski T.C. Weakly Perfect Model Semantics for Logic Programs, in: Proceedings of the Fifth International Con- ference/Symposium on Logic Programming, 1988.

Przymusinski, T.C. On the Declarative Semantics of Stratified Deductive Databases in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, 1988, pp. 193-216.

https://doi.org/10.1016/B978-0-934613-40-8.50009-9

Przymusinski T.C. Extended Stable-Semantics for Normal and Disjunctive Programs, in: Seventh International Conference on Logic Programming, 1990, pp. 459-477.

Ross K. Modular Stratification and Magic Sets for DATALOG Programs with Negation, in: Proceedings of the ACM Symposium on Principles of Database Systerns, 1990, pp. 161-171.

https://doi.org/10.1145/298514.298558

Van Gelder A., Ross K., Schlipf J.S. The Well-Founded Semantics for General Logic Programs, Journal of he ACM 38(3):620- 650 (1991)

https://doi.org/10.1145/116825.116838

Naqvi S. A Logic for Negation in Database Systems, in: J. Minker (ed.), Proceedings of the Workshop on Foundations of Deductive Databases and Logic Programming, 1986, pp. 378-387.

Van Gelder A. Negation as Failure Using Tight Derivations for General Logic Programs, Journal of Logic Programming 6(1):109-133 (1989).

https://doi.org/10.1016/0743-1066(89)90032-0

Balbin I., Port G.S., Ramamohanarao K., Meenakshi K. Efficient Bottom-Up Computation of Queries of Stratified Databases, Journal of Logic Programming 11:295-345 (1991).

https://doi.org/10.1016/0743-1066(91)90030-S

Bayer R. Query Evaluation and Recursion in Deductive Database Systems, Technical Report 18503, Teehnisehe Universitaet Muenchen, Feb. 1985.

Beeri C., Naqvi S., Ramakrishnan R., Shmueli O., Tsur S. Sets and Negation in a Logic Database Language, in: Proceedings of the ACM Symposium on Principles.

Kerisit J.M., Pugin J.M. Efficient Query An- swering on Stratified Databases, in: Proceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, Japan, Nov. 1988, pp. 719-725.

Przymusinski T. On the Declarative Semantics of Stratified Deductive Databases, in J. Minker (ed.), Foundations of Deductive Da- tabases and Logic Programming, 193-216, Morgan-Kaufmann, Los Altos, 1988.

https://doi.org/10.1016/B978-0-934613-40-8.50009-9

Ross K.A. Modular Stratification and Magic Sets for Datalog Programs with Negation. Proceedings of the ACM Symposium on Prin- ciples of Database Systems, 161-171, Nashville, 1990.

https://doi.org/10.1145/298514.298558

Warren D.S. Memoing for Logic Programs, Communzcations of the ACM 35 (3): 93-111 (Mar. 1992)

https://doi.org/10.1145/131295.131299

Sacca D., Zaniolo C. The Generalized Count- ing Methods for Recursive Logic Queries, in: Proceedings of the First International Confer- ence on Database Theory, 1986.

Naughton J.F., Ramakrishnan R., Sagiv Y., Ullman J.D. Argument Reduction Through Factoring, in: Proceedings of the Fifteenth International Conference on Very Large Da- tabases, Amsterdam, The Netherlands, Aug. 1989, pp. 173-182.

Sagiv Y., Optimizing Datalog Programs, in: J. Minker (ed.), Foundations of Deductive Da- tabases and Logic Programming, Los Altos, CA, Morgan Kaufmann, 1988, pp. 659-698.

https://doi.org/10.1016/B978-0-934613-40-8.50021-X

Ramakrishnan R., Beeri C., Krishnamurthy

R. Optimizing Existential Datalog Queries, in: Proceedings of the ACM Symposium on Principles of Database Systems, Austin~ TX, Mar. 1988, pp. 89-102.

Sippu S., Soisalon-Soinen E. An Optimization Strategy for Recursive Queries in Logic Data- bases, in: Proceedings of the Fourth Interna- tional Conference on Data Engineering, Los Angeles, CA, 1988.

Bancilhon F., Ramakrishnan R. An amateur's introduction to recursive query processing strategies. SIGMOD Record, Vol. 15, No.2, 1986, pp. 16-52

https://doi.org/10.1145/16856.16859

Gallaire H., Minker J. and Nikolas J.M. Logic and databases: a deductive approach. Computing Surveys, 16:1, 1984, pp. 154-185

https://doi.org/10.1145/356924.356929

Ramakrishnan R., Ullman J.D. A survey of deductive database systems. The Journal of Logic Programming, 1995, Vol. 23, No 2, pp. 125-149

https://doi.org/10.1016/0743-1066(94)00039-9

Finkelstein S.J., Mattos N., Mumick I., Pi- rahesh H. Expressing Recursive Queries in SQL SO/IEC JTC1/SC21 WG3 DBL MCI- X3H2-96-075 Tech. Rep., March, 1996

Reznichenko V.A. Recursive SQL (Rus). Software Engineering, 2010, vol. 4, No 4, pp. 48-65.

Kifer M., Lausen G. F-Logic: A Higher Order Language for Reasoning about Objects, Inheritance, and Schema. SIGMOD Record, v. 18, no.2,1989, pp. 139- 146.

https://doi.org/10.1145/66926.66939

Liu M. Deductive Database Languages: Problems and Solutions. ACM Computing Sur- veys, v. 31, no. 1, 1999. pp. 27-62.

https://doi.org/10.1145/311531.311533

Falcone Sampaio P.R., Paton N.W. (1997) Deductive object-oriented database systems: A survey. In: Geppert A., Berndtsson M. (eds) Rules in Database Systems. RIDS 1997. Lecture Notes in Computer Science, vol 1312. Springer, Berlin, Heidelberg. pp 1-19.

https://doi.org/10.1007/3-540-63516-5_14

Paton N.W., Díaz O. Active database systems. ACM Computing Surveys. 1999, vol. 31, No 1, pp. 63-103.

https://doi.org/10.1145/311531.311623

Chakravarthy S, Blaustein B, Buchmann A.P, Carey M, Dayal U, Goldhirsch D, Hsu M, Jauhuri R. Ladin R, Livny M, McCarthy D, McKee R, Rosenthal A. HiPAC: a research project in active, time-constrained database management. Technical report. CCA-88-02. Cambridge, MA: Xerox Advanced Information Technology; 1988.

Paton N., Diaz O., Williams M., Campin J., Dinn A., Jaime A. Dimensions of active behaviour. In N. Paton and M. Williams Eds., Proc. 1st Int. Workshop on Rules In Database Systems, Springer- Verlag., 1994, pp. 40-57.

https://doi.org/10.1007/978-1-4471-3225-7_3

Stonebraker M., Jhingran A., Goh J., Pota- mianos S. On rules, procedures, caching and views in database systems. In Proc. ACM SIGMOD 1990, pp. 281-290.

https://doi.org/10.1145/93605.98737

Dayal U., Buchmann A., McCarthy D. Rules are objects too: A knowledge model for an active object oriented database system. In

K. Dittrich Ed., Proc. 2nd Inti Workshop on OODBS, Volume 334, 1988, pp. 129-143. Springer-Verlag. Lecture Notes in Computer Science

Widom J., Finkelstein S. Set-Oriented Production Rules in Relational Database Systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data,1990, pp. 259-270.

https://doi.org/10.1145/93605.98735

Dayal U, Blaustein B, Buchmann A, Chakravarthy S, Hsu M, Ladin R, McCarty D, Rosen- thal A, Sarin S, Carey M.J, Livny M, Jauhari

R. The HiPAC project: combining active databases and timing constraints. ACM SIGMOD Rec. 1988;17(1):51-70.

https://doi.org/10.1145/44203.44208

Chakravarthy S, Krishnaprasad V, Anwar E, Kim S.K Composite events for active database: semantics, contexts, and detection. In: Proceedings of the 20th International Conference on Very Large Data Bases; 1994. p. 606-617.

Chakravarthy S, Mishra D. Snoop: an expres- sive event specification language for active databases. Data Knowl Eng. 1994;14(1):1-26.

https://doi.org/10.1016/0169-023X(94)90006-X

Gehani N.H., Jagadish H.V., Schmueli O. Gehani N., Jagadish H.V., Shmueli O. COM- POSE: A system for composite specification and detection. In: Adam N.R., Bhargava B.K. (eds) Advanced Database Systems. 1993, pp. 3-15. Lecture Notes in Computer Science, vol 759. Springer, Berlin.

https://doi.org/10.1007/3-540-57507-3_1

Gatziu S., Dittrich K. Events in an active object-oriented database. In N. Paton and M. Williams Eds., Proc. 1st Int. Workshop on Rules in Database Systems, 1994, pp. 23-39. Springer-Verlag.

https://doi.org/10.1007/978-1-4471-3225-7_2

Mellin J., Berndtsson M. Event Detection. In Encyclopedia of Database Systems, Ling Liu, M. Tamer Özsu Editors, pp. 1361-1366.

https://doi.org/10.1007/978-1-4614-8265-9_506

Mellin J., Berndtsson M. Event Specifica- tion. In Encyclopedia of Database Systems, Ling Liu, M. Tamer Özsu Editors, pp. 1389- 1393.

https://doi.org/10.1007/978-1-4614-8265-9_505

Gehani N., Jagadish H.V., Smueli O. Event specification in an active object-oriented da- tabase. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1992. p. 81-90.

https://doi.org/10.1145/141484.130300

Motakis I., Zaniolo C. Composite Temporal Events in Active Databases: A Formal Seman- tics. In: Clifford J., Tuzhilin A. (eds) Recent Advances in Temporal Databases. Workshops in Computing. Springer, London, 1995), 332- 352.

https://doi.org/10.1007/978-1-4471-3033-8_18

Chakravarthy S., Anwar E., Maugis L., Mishra

D. Design of Sentinel: an object-oriented DBMS with event-based rules. Information and Software Technology, 1994, 36, 9, 555- 568.

https://doi.org/10.1016/0950-5849(94)90101-5

Diaz O., Jaime, A. EXACT: an EXtensible ap- proach to ACTive object-oriented databases. VLDB Journal 1997,.6, 4, 282-295.

https://doi.org/10.1007/s007780050046

Branding H, Buchmann A, Kudrass T, Zimmermann J. Rules in an open system: the REACH rule system. In: Proceedings of the 1st International Workshop on Rules in Database Systems, Workshops in Computing; 1994. p. 111-126.

https://doi.org/10.1007/978-1-4471-3225-7_7

Agrawal R., Cochrane R., Lindsay B. On maintaining priorities in a production rule language. In G. Lohman, A. Sernadas, and

R. Camps Eds., Proc. 17th VLDB, 1991, pp. 479-487. Morgan-Kaufmann.

Widom J. The Starburst Rule System: Language Design, Implementation, and Applica- tions. In: IEEE Data Engineering Bul letin, Special Issue on Active Databases, 1992, 15(4): 15-18.

Stonebraker M., Kemnitz, G. The POST- GRES Next-generation Database Manage- ment System. Communications of the ACM 1991, Vol. 34, No.10, pp. 78-92.

https://doi.org/10.1145/125223.125262

Hanson E.N. The Design and Implementation of the Ariel Active Database Rule System. IEEE Trans. Knowl. Data Eng. 1996, 8(1): 157-172

https://doi.org/10.1109/69.485644

Kotz A., Dittrich K., Mulle J. Supporting semantic rules by a generalized event/trigger mechanism. In Advance in Database Technol- ogy, EDDT, Veniceб 1988, pp. 76-91.

https://doi.org/10.1007/3-540-19074-0_48

Reddi S., Poulovassilis A., Small C. Extending a Functional DBPL With ECA-Rules. In T. Sellis Ed., Proc. 2nd Int. Wshp. on Rules in Database Systems 1995, pp. 101-115. Springer-Verlag.

https://doi.org/10.1007/3-540-60365-4_122

Kiernan G., de Maindreville C., Simon E. Making Deductive Databases a Practical Technology: a step forward. In II. Garcia-Molina and II. Jagadish Eds., Proc. ACM SIG- MOD Conf. 1990., pp. 237-246.

https://doi.org/10.1145/93605.98733

Zaniolo C. A Unified Semantics for Active and Deductive Databases. In: Paton N.W., Williams M.H. (eds) Rules in Database Sys- tems. Workshops in Computing. Springer, London. 1994, pp 271-287.

https://doi.org/10.1007/978-1-4471-3225-7_16

Harrison J., Dietrich. S. Integrating active and deductive rules. In N. Paton and M. Williams Eds., Proc. 1st Int. Workshop on Rules In Da- tabase Systems, 1994, pp. 288 305. Springer-Verlag.

https://doi.org/10.1007/978-1-4471-3225-7_17

Widom J. Deductive and Active Databases: Two Paradigms or Ends of a Spectrum In N. Paton and M. Williams Eds., Proc. 1st Int. Workshop on Rules In Database Systems 1994, pp. 306 315. Springer-Verlag.

https://doi.org/10.1007/978-1-4471-3225-7_18

Bayer P., Jonker W. A framework for supporting triggers in deductive databases. In N. Pa- ton and M. Williams Eds., Proc. 1st Int. Workshop on Rules In Database Systems 1994, pp. 316 330. Springer-Verlag.

https://doi.org/10.1007/978-1-4471-3225-7_19

Kulkarni K., Mattos N., Cochrane R. Active Database Features in SQL3. In: Paton N.W. (eds) Active Rules in Database Systems. 1999, pp. 197-219 Monographs in Computer Science. Springer, New York, NY.

https://doi.org/10.1007/978-1-4419-8656-6_10

Chakravarthy S. Rule management and evaluation: an active DBMS perspective. SIGMOD RECORD 1989, 18, 3, 20-28.

https://doi.org/10.1145/71031.71034

Collet C., Coupaye T. and Svensen T. NAOS: Efficient and modular reactive capabilities in an object-oriented database system. In J. Boc- ca, M. Jarke, and C. Zaniolo Eds., Proc. 20th VLDD Conf, 1994, pp. 132 -143. Morgan-Kaufmann.

Ceri S., Fraternali P., Parabosciii S., Tanca,

L. Active Rule Management in Chimera. In

J. Widom and S. Ceri Eds., Active Database Systems: Triggers and Rules for Active Database Processing, 1996, pp. 151-175. Morgan Kaufmann.

Gehani N. and Jagadish H. ODE as an Ac- tive Database: Constraints and Triggers. In R. C. G.M. Loiiman. A. Sernadas Ed., 17th Intl. Conf. on Very Large Data Bases, Barce- lona,1991, pp. 327-336. Morgan Kaufmann

Atkinson M., Bancilhon F., DeWitt D., Dittrich K., Maier D., Zdonik S. The object-oriented database system manifesto. In: Proceedings of the 1st International Conference on Deductive and Object-Oriented Databases; 1989. p. 223-240.

https://doi.org/10.1016/B978-0-444-88433-6.50020-4

Hull R., Tanaka K., Yoshikawa M. Behavior Analysis of Object-Oriented Databases: Method Structure, Execution Trees, and Reachibility // Lect. Notes Comput. Sci.- 367.- 1989.- 372-388.

https://doi.org/10.1007/3-540-51295-0_143

Mozaffari M., Tanaka Y. ODM: An Object-Oriented Data Model // New. Generat. Comp.- 7, N 1.- 1989.- 4-35.

https://doi.org/10.1007/BF03037506

Beeri C. A Formal Approach to Object-Oriented Databases // Data and Knowledge Eng.- 5.- 1990.- 353-382.

https://doi.org/10.1016/0169-023X(90)90020-E

Zicari R. Incomplete Information in Object- Oriented Databases // ACM SIGMOD Re- cord.- 19, N 3.- 1990.- 5-16.

https://doi.org/10.1145/101077.101079

Hong Sh., Maryanski F. Using a Meta Model to Represent Object-Oriented Data Models // 6th Int. Conf. Data Eng., Los Angeles, Calif., USA, Febr. 5-9, 1990.- 11-19.

Cornelio, Shamkant B. Navathe, Keith L. Doty. Extending Object-Oriented Concepts to Support Engineering Applications // 6th Int. Conf. Data Eng., Los Angeles, Calif., USA, Febr. 5-9, 1990.- 220-227.

Gunter Saake. Descriptive Specification of Database Object Behaviour // Data and Knowledge Eng.- 6, N 1. 1991.- 47-73.

https://doi.org/10.1016/0169-023X(91)90015-P

Lellani S.K., Spiratos N. Towards a Categori- cal Data Model Supporting Structured Ob- jects and Inheritance // Proc. 1st Int. East/ West Database Workshop, Kiev, Oct. 1990, Lect. Notes Comput. Sci.- 540.- 1991.

Cattell R.G.G., Barry D.K.(eds.). The Object Data Standard: ODMG 3.0. - San Francisco, Calif.: Morgan Kaufmann, 2000.

Stonebraker M., Rowe L.A., Lindsay B., Gray, Carey M., Brodie M., Bernstein Ph., Beech D. Third-Generation Database System Manifesto. SIGMOD Record 19(3), Septem- ber, 1990. pp 31-43

https://doi.org/10.1145/101077.390001

Rowe L, Stonebraker M. The Postgres data model. In: Proceedings of the 13th Interna- tional Conference on Very Large Data Bases; 1987. p. 83-96.

https://doi.org/10.21236/ADA184251

Won Kim. UniSQL/X unified relational and object-oriented database system. SIGMOD '94: Proceedings of the 1994 ACM SIGMOD international conference on Management of dataMay 1994, p. 481

https://doi.org/10.1145/191839.191938

Darwen H., Date C.J. (March 1995). "The third manifesto". ACM SIGMOD Record. New York, NY, USA: ACM Press. 24 (1): 39-49.

https://doi.org/10.1145/202660.202667




DOI: https://doi.org/10.15407/pp2021.04.036

Refbacks

  • There are currently no refbacks.