Designing of the specialized computer system for making pulmonology diagnosis

N.O. Komlevaya, A.N. Komlevoy, K.S. Chernega

Abstract


In this article the problems of designing specialized computer systems for making medical diagnosis are considered. The architecture of software system that allows making non-invasive diagnosis of human respiratory system is developed. The analysis of domain and physical foundations of chosen diagnostics method – laser correlation spectroscopy – is made. The source data which are used in the automated system for identifying the state of respiratory system are formalized. The common borders and the context of the simulated domain in initial phase of the designing system are identified. The general requirements for functional behavior of the designed system are formulated. The non-functional requirements for the developed software product are listed. System users are considered – they are entities which are external in relation to the system. being modeled that interact with the system and its functionality is used to achieve the objectives. They interact with the system and used its functional capabilities to achieve the objectives. The main use cases of the system are considered. Its analysis and formalization are made using UML-diagrams of the form Use case and Activity. The basic algorithms of diagnostic data are considered.

Prombles in programming 2014; 2-3: 253-262


References


Бажора Ю.И., Носкин Л.А. Лазерная корреляционная спектроскопия в медицине. – Одеса: «Друк», 2002. – 400 с.

Комлевая Н.О., Комлевой А.Н. Разработка информационной модели диагностирования состояния дыхательной системы // Холодильна

техніка і технологія. – 2011. – Вып. 2(130). – С. 75–79.

Комлевая Н.О., Комлевой А.Н. Автоматизация диагностирования состояния дыхательной системы // Тр. XIII Междунар. научно-практ. конф. «Современные информационные и электронные технологии». – Одесса, 2012. – С. 55.

Мацяшек Л.А. Анализ требований и проектирование систем // Разработка информационных систем с использованием UML. – М.:

Вильямс, 2002. – 432 с.

Реброва О.Ю. Статистический анализ медицинских данных. – М.: Медиа Сфера, 2006. – 310 с.


Refbacks

  • There are currently no refbacks.