Representing dynamic dimensions in OLAP cubes

Т.V. Panchenko


Two well-known approaches to modelling the dynamic dimensions are considered: a model with many-to-many relationship between the dimension hierarchy elements as well as Slowly Changing Dimensions. A method of independent dimensions creating for the dynamic dimensions modelling in the OLAP-cubes is proposed. It is proved that the method has a lower model development complexity because of idea clearance. The comparative analysis of three methods is given here.




Mike Blechar, Merv Adrian, Ted Friedman, W. Roy Schulte, Douglas Laney. Predicts 2012: Information Infrastructure and Big Data. – Gartner Inc. – 2011, 10 p. (

Douglas Laney. 3D Data Management: Controlling Data Volume, Velocity and Variety // Application Delivery Strategy, META Group, – 6 Feb 2001 (

Mark Beyer. Gartner Says Solving 'Big Data' Challenge Involves More Than Just Managing Volumes of Data. – Stamford, Conn., – June 27, 2011 (

Codd E.F., Codd S.B., and Salley C.T. Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate. – Codd & Date, Inc. – 1993.

Marco Russo, Alberto Ferrari. The Many-to-Many Revolution: Advanced dimensional modeling with Microsoft SQL Server Analysis Services (V.2 Rev.1). – SQLBI.COM. – 2011. (

Richard Tkachuk. Many-to-Many Dimensions in Analysis Services 2005. (

Ralph Kimball, Margy Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition). – Indianapolis, IN: John Wiley & Sons. – 2002. (ISBN 0-471-20024-72002)

Панченко Т.В. Композиційні методи специфікації та верифікації програмних систем. Дис. канд.. фіз.-мат. наук / Київський національний університет імені Тараса Шевченка. – Київ, 2006. – 177 с.


  • There are currently no refbacks.