Multiagent models based on fuzzy logic of the highest type for a high-performance environment

I.N. Parasyuk, S.V. Ershov

Abstract


Models of intelligent agents and multiagent systems based on fuzzy logic of higher type, that allows to represent more informatively an uncertainty degree of linguistic representation of fuzzy rules system in the specification of behavior of these agents are considered. A model-driven approach to generate platform-specific models of fuzzy multiagent systems that operate in advanced high-performance environments, including cluster systems SKIT, is described. Multi-agent system architecture to achieve such aspects of behavior, specified by means of higher type fuzzy logic, as maintaining a distance between the agents, speed coordination and, respectively, obstacle avoidance is proposed.

Keywords


multiagent models; fuzzy logic

References


Macal C., North M. Аgent-based modeling and simulation for exascale computing. – SciDAC Review, Summer 2008. – P. 34–41.

Zadeh L.A. Fuzzy Logic = Computing With Words// IEEE Transactions on Fuzzy Systems. – 1996. – Vol. 4. – P. 103–111.

Zadeh L. A. The concept of a linguistic variable and its application to approximate reasoning // Information Sciences. – 1975. – Vol.8, N 8. – P. 199–249, P. 301–357.

Mendel J.M., John R.I. Type-2 sets made simple // IEEE Trans. on Fuzzy Systems. – 2002. – Vol.10, N 2. – P. 117–127.

Karnik N.N., Mendel J.M., Liang Q. Type-2 fuzzy logic system // IEEE Trans. on Fuzzy Systems. – 1999. – Vol.7, N 6. – P. 643–658.

Парасюк И.Н., Ершов С.В. Трансформационный подход к разработке интеллектуальных агентов на основе нечетких моделей // Проблеми програмування. – 2011. – № 2. – C. 62–78.

Парасюк И.Н., Ершов С.В. Нечеткие модели мультиагентных систем в распределенной среде // Проблеми програмування. – 2010. – № 2–3. – C. 330–339.

Парасюк И.Н., Ершов С.В. Моделе-ориентированная архитектура нечетких мультиагентных систем // Компьютерная математика. – 2010. – № 2. – C.139–149.

Ершов С.В. Принципы построения нечетких мультиагентных систем в распределенной среде // Там же. – 2009. – № 2. – C. 54–61.

Mendel J.M. Type-2 fuzzy sets and systems: an overview // IEEE Computational Intelligence Magazine. – 2007. – Vol. 2. – P. 20–29.

Wang D., Zeng X., Keane J. A survey of hierarchical fuzzy systems // International Journal of Computational Cognition. – 2006. – Vol. 4, N 1. – P. 18–29.

Суперкомпьютеры ИК НАН Украины. – http://icybcluster.org.ua.

International Electrotechnical Commission (IEC). Technical Committee No. 65: Industrial Process Measurement and Control. IEC 1131 – Programmable Controllers Part 7 – Fuzzy Control Programming. – http://www.fuzzytech.com/binaries/ieccd1.pdf

Bellifemine F., Caire G., Greenwood D. Developing Multi-Agent Systems with JADE. – Chichester: John Wiley & Sons Inc, 2007. – 303 p.

Eclipse Modeling Framework. – http://wiki.eclipse.org/EMF/

MOF 2.0/XMI Mapping. – http://www.omg.org/spec/XMI/2.1.1/

OMG MetaObject Facility. – http://www.omg.org/mof/

Graphical Modeling Framework. – http://www.eclipse.org/modeling/gmp/

Application Design Patterns: Producer/Consumer. – http://zone.ni.com/devzone/cda/tut/p/id/3023/

Perini А., Susi A. Automating model transformations in agent-oriented modeling // Agent-oriented software engineering VI. Lecture notes in computer science. – Springer, 2006. – P. 167–178.

Pavon J., Gomez-Sanz J. Agent-oriented software engineering with INGENIAS // Multi-agent system and applications III. Lecture notes in computer science. – Springer, 2003. – P. 8–38.

Wooldridge M.J. An Introduction to Multiagent Systems. – Cambridge: MIT Press, 2002. – 366 p.

Reynolds C.W. Flocks, herds and schools: a distributed behavioural model // Comput. Graph. – 1987. – Vol.21, N 4. – P. 25–34.


Refbacks

  • There are currently no refbacks.